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Abstract

We study an approach to text categorization that combines distributional clustering
of words and a Support Vector Machine (SVM) classifier. The word-cluster repre-
sentation is computed using the recently introduced Information Bottleneck method,
which generates a compact and efficient representation of documents. When combined
with the classification power of the SVM, this method yields high performance in text
categorization. We compare this technique with SVM-based categorization using the
simple minded bag-of-words (BOW) representation. The comparison is performed over
three known datasets. On one of these datasets (the 20 Newsgroups) the method that
is based on word clusters significantly outperforms the word-based representation in
terms of categorization accuracy or representation efficiency. On the two other sets
(Reuters-21578 and WebKB) the word-based representation slightly outperforms the
word-cluster representation. We investigate the potential reasons for this behavior.
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Notation

D Set of documents
Strain Training set of documents
n Size of Strain

Stest Test set of documents
d A document
w A word
`(d) A true label of document
C Set of categories
c A category
m Cardinality of C
h(d) A classifier (hypothesis) h : D → C
TPi Number of documents of category ci that are correctly categorized to ci

TNi Number of documents of category ci that are mistakenly not categorized to ci

FPi Number of documents of a category other than ci that are mistakenly
categorized to ci

FPi Number of documents of a category other than ci that are correctly not
categorized to ci

Pi(h) Precision of categorizer h on a category ci

Ri(h) Recall of categorizer h on a category ci

P (h) Micro-averaged precision of categorizer h over all the categories
R(h) Micro-averaged recall of categorizer h over all the categories
F (h) F-measure of categorizer h
Acc(h) Accuracy of categorizer h
Xc Binary random variable that denotes the event that a random document

belongs or not to category c
Xw Binary random variable that denotes the event that word w belongs or

not to a random document
I(Xc, Xw) Mutual Information between category c and word w
k Dimension of each document representation
β Annealing parameter
w̃ A word centroid
Wlow freq Threshold on filtering low-frequent words
C and J SVM parameters
s A sentence subject
v A sentence predicate (main verb)
b A syntactic bigram
Iw(c) Averaged Mutual Information of all words for a category c
Ib(c) Averaged Mutual Information of all syntactic bigrams for a category c

2



Iw̃(c) Averaged Mutual Information of all clustered words for a category c
Ib̃(c) Averaged Mutual Information of all clustered syntactic bigrams for a

category c

3



1 Introduction

Text categorization is a fundamental task in Information Retrieval, and much knowledge
in this domain has been accumulated in the past 25 years. The “standard” approach to
text categorization has so far been using a document representation in a word-based ‘input
space’, i.e. as a vector in some high (or trimmed) dimensional Euclidean space where each
dimension corresponds to a word. This method relies on classification algorithms that are
trained in a supervised learning manner. Since the early days of text categorization (see,
e.g., Salton and McGill, 1983), the theory and practice of classifier design has significantly
advanced, and several strong learning algorithms have emerged (see, e.g., Duda et al.,
2000; Vapnik, 1998; Schapire and Singer, 2000). In contrast, despite numerous attempts
to introduce more sophisticated techniques for document representation, like ones that are
based on higher order word statistics (Caropreso et al., 2001) or NLP (Jacobs, 1992; Basili
et al., 2000), the simple minded independent word-based representation, known as bag-of-
words (BOW), remained very popular. Indeed, to-date the best multi-class, multi-labeled
categorization results for the well-known Reuters-21578 dataset are based on the BOW
representation (Dumais et al., 1998; Joachims, 1998b; Weiss et al., 1999).

Nevertheless, attempts at devising more sophisticated text representation methods are
not ceasing. In this paper we give further evidence to the usefulness of a statistical feature
generation technique that is based on applying the recently introduced Information Bot-
tleneck (IB) clustering framework (Tishby et al., 1999; Baker and McCallum, 1998; Slonim
and Tishby, 2000, 2001). In this approach, IB clustering is used for generating document
representation in a word cluster space (instead of word space), where each cluster is a
distribution over classes of documents. We show that the combination of distributional rep-
resentation with a Support Vector Machine (SVM) classifier (Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000) allows to achieve high performance in categorization of the well known
20 Newsgroups (20NG) dataset. This categorization of 20NG outperforms the strong algo-
rithmic word-based setup of Dumais et al. (1998), which achieved one of the best reported
categorization results for the 10 largest categories of the Reuters dataset.

These findings are perhaps not too surprising, since the use of distributional word clus-
ters (instead of words) for representing documents has several advantages. First, word
clustering implicitly reduces dimensionality because it groups various features (terms or
words). In contrast, popular filter-based greedy approaches for feature selection such as
Mutual Information, Information Gain and TFIDF (see, e.g., Yang and Pedersen, 1997)
only consider each feature individually. Second, the clustering that is achieved by the IB
method provides a good solution to the statistical sparseness problem that is prominent
in the straightforward word-based (and even more so in n-gram-based) document repre-
sentations. Thus, the clustering of words allows for extremely compact representations
with minor information compromises that allow for the use of strong but computationally
intensive classifiers.

Despite advantages we found for distributional clustering in categorizing the 20NG
dataset, it does not show improvement of accuracy over BOW-based categorization when
used over the Reuters dataset (ModApte split) and over a subset of the WebKB dataset.
We analyze this phenomenon and argue that the categories of documents in Reuters and
WebKB are less “complex” than the categories of 20NG in the sense that they can almost be
“optimally” categorized using a small number of keywords. This is not the case for 20NG.

The rest of this paper is organized as follows. Section 2 describes the problem of text
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categorization, some approaches to its solution, including feature selection and generation.
Section 3 discusses related results. Section 4 briefly presents the algorithmic components
we use, which involve a novel combination of existing techniques for feature selection, clus-
tering and categorization. Section 5 briefly describes the datasets we use and their textual
preprocessing in our experiments. Section 6 presents our experimental setup and Section 7
gives a detailed description of the results. Section 8 discusses these results. Section 9 details
the computational efforts that were required for these experiments. Finally, in Section 11
we conclude and outline some open questions.

2 Preliminaries

In this section we state the text categorization problem that will be addressed, discuss its
components, and introduce terminology that will facilitate the discussions in the rest of the
paper.

The goal in the machine learning approach to text categorization is to devise a learning
algorithm that can generate a classifier capable of categorizing (or classifying) text doc-
uments according to a number of predefined categories (or classes). This task has been
mostly considered within a supervised learning scheme (see, e.g., Duda and Hart, 1973;
Sebastiani, 2002) but it can also be considered within an unsupervised and semi-supervised
learning setups (see, e.g., Slonim and Tishby, 2001; Slonim et al., 2002; El-Yaniv and
Souroujon, 2001). This paper focuses on the more common supervised learning approach
to text categorization.

In its simplest form, the text categorization problem can be formulated as follows. We
are given a training set Dtrain = {(d1, `1), . . . , (dn, `n)} of labeled text documents where
each document di belongs to a document set D and the label `i = `i(di) of di is within a
predefined set of categories C = {c1, . . . , cm}. We assume that the initial representation of
a document is a sequence of words (or terms).1 The goal in text categorization is to devise
a learning algorithm that given the training set Dtrain as input will generate a classifier (or
a hypothesis) h : D → C that will be able to accurately classify unseen documents from D.

While this basic text categorization problem falls within the generic field of supervised
classifier learning, the growing interest in text categorization applications motivated dedi-
cated research efforts on text categorization. There are some distinctive properties of text
categorization that justify its dedicated study within the much larger field of supervised
learning:

• High Dimensionality. A faithful representation of a document that is based on a
sequence of words implies high dimensionality since the number of distinct words in
D can be very large even if D is of moderate size.

• Statistical sparseness. Although the number of possible features (words) can be very
large, each single document usually includes only a small fraction of them.

• Domain knowledge. Since documents are given in natural language, it appears that
linguistic studies should help in discovering their inner structure, and therefore in un-

1Lower-level or more sophisticated initial representations can be considered. For example, a document
can be given as a sequence of characters rather than words (see, e.g., Lodhi et al., 2000; Raskutti et al.,
2001). More involved initial representations are optional when documents are initially represented using some
markup language (e.g. XML), in which case a document is represented hierarchically and this representation
may include additional formatting cues and semantic tags.
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derstanding their meaning (see, e.g., Manning and Schütze, 1999). In addition, other
statistical properties of texts (e.g. their adherence to Zipf’s law) can be employed,
(see, e.g., Joachims, 2001).

• Multi-labeling. The basic text categorization problem, as presented above, has various
common extensions. In the multi-labeled version of text categorization, a document
can belong to several classes simultaneously. That is, both h(d) and `(d) can be sets
of categories rather than single categories. In case where each document has only a
single label we say that the categorization is uni-labeled.

Although documents are initially represented as sequences of words, it is common in
text categorization to consider a bag-of-words (BOW) representation, where a document
is represented as a multi-set of words and word order is ignored.2 This is also the initial
representation we adopt in this paper.

Text categorization problems are most often multi-class rather than binary; that is, the
cardinality m of the set of categories is larger than 2. While there are many classifier learn-
ing algorithms that can naturally handle multi-class problems (e.g. naive Bayes, Rennie,
2001), there are others that naturally handle only 2-class (or binary) problems (e.g. SVM,
Cristianini and Shawe-Taylor, 2000, and in general, classifiers based on linear separation
in feature or kernel space). A popular method for decomposing a multi-class classification
problem into binary problems is the one-against-all (also called one-per-class or max win)
strategy. In this method, the m-class problem is decomposed into m binary problems where
in the ith binary problem a binary classifier is trained to distinguish between the ith class
and the union of the other classes. This one-against-all decomposition is a special case of
the general Error-Correcting Output Coding (ECOC) scheme for multi-class decomposition,
which includes, as special cases, other decomposition schemes such as all pairs. A detailed
description of ECOC is beyond the scope of this paper. The reader is referred to Dietterich
and Bakiri (1995); Allwein et al. (2000) for details. For compatibility with other relevant
studies, in this work we consider the simple minded one-against-all decomposition method.

2.1 Dimensionality Reduction, Feature Selection and Generation

The design of learning algorithms for text categorization has been usually following the
classical approach in pattern recognition, where data instances (i.e. documents) first un-
dergo a transformation of dimensionality reduction. Then a classifier learning algorithm is
applied to the low-dimensionality representations (see, e.g., Duda and Hart, 1973). This
transformation is of course also performed prior to applying the learned classifier to unseen
instances. The incentives in using dimensionality reduction techniques are to improve clas-
sification quality (via noise reduction) and to reduce the computational complexity of the
learning algorithm and of the application of the classifier to unseen documents.

There are special dimensionality reduction techniques for documents in natural language.
Three of the most common techniques are stemming, stop words filtering and filtering of
words with low frequency. Stemming is pruning of word suffices that play only grammatical
role. Stop words are words that have only connecting function in sentences, such as prepo-
sitions, articles, etc. These words are usually very frequent, but their contribution to text
categorization is often negligible. One important incentive for stemming is to reduce the

2Dumais et al. (1998) use a BOW representation of documents as set of words, where each word that
appears in the documents is counted only once. See Section 3.
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statistical sparseness, which is achieved when occurrences of different words (e.g. ‘walk’ and
‘walking’) are mapped into one word (‘walk’) and counted together. Nevertheless, despite
the variance reduction that can be achieved, stemming can clearly increase bias and the
overall effect of stemming depends on the dataset at hand. An example for the biased effect
of stemming is the mapping of an unambiguous word such as “mining” into the ambiguous
word “mine”.

Other dimensionality reduction techniques typically fall into two basic schemes:

• Feature (subset) selection (or feature reduction): These techniques attempt to select
the subset of features (e.g. words in text categorization) that are most useful for the
categorization task. After the selection of a suitable subset, the reduced representation
of a document is computed by projecting the documents over the selected words.

• Feature generation (or feature extraction): New features, which are not necessarily
words, are sought for representation. Usually, the new features are synthesized from
the original set of features.

Feature subset selection and feature generation are computationally challenging. A good
set of (either selected or generated) features should be optimized to the text categorization
goal. Intuitively, the ideal optimization criterion is an algorithmic procedure that depends
on the classifier learning scheme being used (Kohavi and John, 1998). The use of the clas-
sifier as the optimization criterion is called the “wrapper approach” (for feature selection).
By contrast, in the “filter approach”, the subset of features is chosen based on the data
itself, regardless of the classifier. Such filters are constructed by defining a cost (or benefit)
function for features or for subsets of features. At the outset, the wrapper approach is
clearly computationally more demanding than the filter approach and as far as we know,
wrapper-based feature selection (or generation) are rarely used in practice. In both cases
(either wrapper or filter) the selection (or generation) process suffers from combinatorial
explosion and under any reasonable optimality criterion, the computation of an optimal
representation appears to be intractable.3

Whether it is selection or generation one can consider either unsupervised selection (resp.
generation) or a supervised selection (resp. generation). In an unsupervised selection a
single subset of features is selected for representing documents of all categories and document
labels are not used in the computation. In a supervised selection, document labels are
utilized in the computation. In the case of supervised selection one can distinguish between
two selection methods. One method generates a “local” feature set for each category or
for subsets of categories (e.g. depending on the multi-class decomposition technique used).
Another kind of methods generates the same global set of features for all categories. In
this paper we focus on supervised feature generation methods that generate a global set of
features for all the categories.

So far, practical applications of dimensionality reduction techniques follow for the most
part a heuristic approach both in setting the optimization criterion and in selecting (or
generating) the set of features. In practice, the most commonly used methods for feature
selection are simple filter-based indices that compute the contribution of each feature in-
dependently and then greedily collect a set of the most highly ranked features (see, e.g.,
Yang and Pedersen, 1997). Common approaches for feature generation attempt to combine

3Wang et al. (1999) present an axiomatization of an optimality criterion for feature selection and show
that using the resulting criterion, the problem of identifying the optimal subset of features is NP-hard.
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the initially given features using some formal grammar or clustering (see, e.g., Markovitch
and Rosenstein, 2002; Sebastiani, 2002).

2.2 Evaluating the Performance of Text Categorization

For the most part, evaluation of text categorization performance has been done exper-
imentally.4 The two main issues under consideration are computational efficiency and
categorization effectiveness.

The computational efficiency of the feature selection (generation) algorithm, of the clas-
sifier learning algorithm and of the constructed classifier can be of major importance when
considering applications that need to categorize a large number of documents into many
categories. For measuring the performance of applications that require online categorization
we need to distinguish between training time complexity and categorization time complexity.
With the current processing (and memory) speed and the available memory sizes, an algo-
rithm with sub-quadratic (time and space) complexities (in the number of documents) can
be considered efficient even for very large applications. Algorithms of quadratic complexity
can introduce a bottleneck in some applications.

We measure the empirical effectiveness of multi-labeled text categorization in terms
of the classical information retrieval parameters of “precision” and “recall” (Baeza-Yates
and Ribeiro-Neto, 1999). Consider a multi-labeled categorization problem with m classes,
C = {c1, . . . , cm}. Let h be a classifier that was trained for this problem. For a document d,
let h(d) ⊆ C be the set of categories designated by h for d. Let `(d) ⊆ C be true categories
of d.

Let Dtest ⊂ D be a test set of “unseen” documents that were not used in the construction
of h. For each category ci, define the following quantities:

TPi =
∑

d∈Dtest

I [ci ∈ `(d) ∧ ci ∈ h(d)] ,

TNi =
∑

d∈Dtest

I [ci ∈ `(d) ∧ ci 6∈ h(d)] ,

FPi =
∑

d∈Dtest

I [ci 6∈ `(d) ∧ ci ∈ h(d)] ,

FNi =
∑

d∈Dtest

I [ci 6∈ `(d) ∧ ci 6∈ h(d)]

where I[·] is the indicator function. For example, FPi (the “false positives” with respect to
ci) is the number of documents categorized by h into ci whose true set of labels does not
include ci, etc. For each category ci we now define the precision Pi = Pi(h) of h and the
recall Ri = Ri(h) with respect to ci as

Pi =
TPi

TPi + TNi

Ri =
TPi

TPi + FPi
.

4While there are numerous attempts to study statistical properties and generative models for text, we
are not familiar with explicit theoretical studies on the generalization abilities of learning algorithms for
text classifiers, with the exception of a recent paper by Joachims (2001), which attempts to characterize
conditions for the effectiveness of categorization using a Support Vector Machine.
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The overall micro-averaged precision P = P (h) and recall R = R(h) of h is a weighted
average of the individual precisions and recalls (weighted with respect to the sizes of the
test set categories).5

P =
∑m

i=1 TPi∑m
i=1(TPi + TNi)

R =
∑m

i=1 TPi∑m
i=1(TPi + FPi)

.

There is a natural tradeoff between precision and recall. For example, in the extreme case
where for each document d ∈ Dtest, h(d) = C we get maximal recall but minimal precision,
etc. If we are interested in a single quantity that measures the performance of the classifier
there are a number of sensible options. The following two are often used:

• F-measure: The harmonic mean of precision and recall; that is F = F (h) = 2
1/P (h)+1/R(h) .

• Break-Even Point (BEP): A flexible classifier provides the means to control the trade-
off between precision and recall. For such classifiers, the value of P (and R) satisfying
P = R is called the break-even point. Usually it is not so easy to achieve the exact
break-even point and one attempts to identify “sufficiently close” precision and recall
values and use the interpolated break-even point, which is the (arithmetic) mean of P
and R.

Note that the arithmetic mean (P + R)/2 is not a reliable measure when P and R are far
apart. For instance, in the extreme case of a trivial classifier that achieves P = 0 and R = 1
we get an interpolated break-even point of 0.5. The harmonic mean in this case approaches
0.

The above performance measures concern multi-labeled categorization. In a uni-labeled
categorization the accepted performance measure is accuracy, defined to be the percentage
of correctly labeled documents of Dtest. Specifically, assuming that both h(d) and `(d) are
singletons (i.e. uni-labeling), the accuracy Acc(h) of h is:

Acc(h) =
1

|Dtest|
∑

d∈Dtest

I[h(d) = `(d)]. (1)

Is it not hard to see that in this case the accuracy equals the precision and recall (and the
break-even point).6

3 Related results

In this section we briefly overview results which are most relevant for the present work.
Thus, we limit the discussion to related feature selection and generation techniques and
best known categorization results over the corpora we consider (Reuters-21578, the 20
Newsgroups and WebKB). For more comprehensive surveys on text categorization the reader

5Some authors advocate the use of macro-averaged precision and recall, which are non-weighted averages
of the individual categories precisions and recalls.

6Assuming a uni-labeled setting the numerator in (1) is
P

d∈Dtest
I[h(d) = `(d)] =

Pk
i=1 TPi, and the

denominator is |Dtest| =
P

d∈Dtest
(I [h(d) = `(d)]+I [h(d) 6= `(d)]) =

Pk
i=1(TPi+TNi) =

Pk
i=1(TPi+FPi).
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is referred to Sebastiani (2002); Singer and Lewis (2000) and references therein. We start
with a discussion of feature selection and generation techniques.

As noted in Section 2.1 the selection of an “optimal” subset of features suffers from com-
binatorial explosion. Consequently, many authors use simple filter-based greedy approaches
where each feature is given a score and a subset of the top-scored features is taken. How-
ever, more sophisticated methods that attempt to consider the utility of a set of features
(including the interaction between features) have also been studied (see, e.g., Koller and
Sahami, 1996). Many of the greedy methods are supervised and rank the features according
to their contribution to separation between categories, and then extract the most “useful”
features.

Yang and Pedersen (1997) empirically compare five filter-based (supervised and unsu-
pervised) greedy methods for feature selection.7 They conclude that among the five methods
tested the χ2 and Mutual Information (MI, see Equation (2) below) feature indices are the
most effective.

Dumais et al. (1998) report on experiments with multi-labeled categorization of the
Reuters dataset. Over a BOW binary representation (where each word receives a count of 1 if
it occurs once or more in a document and 0 otherwise) they applied the Mutual Information
index for feature selection. Specifically, let Xc ∈ {0, 1} be a binary random variable denoting
the event that a random document belongs (or not) to category c. Similarly, let Xw ∈ {0, 1}
be a random variable denoting the event that the word w occurred in a random document.
The Mutual Information between Xc and Xw is

I(Xc, Xw) =
∑

Xc,Xw∈{0,1}
P (Xc, Xw) log

P (Xc, Xw)
P (Xc)P (Xw)

. (2)

Note that when estimating I(Xc, Xw) from a training set sample, we estimate P (Xc, Xw),
P (Xc) and P (Xw) using their empirical estimates. For each category c, all the words are
sorted according to decreasing value of their Mutual Information with respect to c and the
first k words are kept. Thus, for each category there is a specialized representation using
the most discriminative words for the category.8 For each category c after the selection of
the top k(c) words, each document is represented using only the k(c) most discriminating
words for c.

Dumais et al. show that together with a support vector machine (SVM) classifier this
method yields a 92.0% break-even point (BEP) on the 10 largest categories in the Reuters
dataset. As far as we know this is the best multi-labeled categorization result of the (10
largest categories of) Reuters dataset. Therefore, in this paper we adopt the SVM classifier
with MI feature selection as a baseline for handling BOW-based categorization.

Rather than reducing the number of features (e.g. by filtering out low-scored features),
feature generation techniques attempt to construct new features from existing ones. A
general framework for constructing new features is to combine existing features using logical
operators on existing features. There are two common applications of this approach. The

7The feature indices they considered were the unsupervised document frequency, and the supervised
information gain, Mutual Information, χ2-test and term strength. Note that there is a confusion between
the terms “Information Gain” and “Mutual Information”. Specifically, the index that is called in this paper
Information Gain is in fact the standard Mutual Information as defined for example in Cover and Thomas
(1991). Throughout this paper, we refer to this index (as defined in Eq. (2)) as Mutual Information.

8Note that this specialized representation for each category assumes a decomposition of the multi-category
categorization problem into binary problems such that each category has a special classifier (see Section 2).
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first one combines features using only disjunctions. In this approach one groups features
into subsets and consider each such subset as a new feature. Any occurrence of a member
of a subset is then considered as occurrence of the feature. Word clustering belongs to this
family of methods. A second approach groups features using only conjunctions, for example,
by grouping consequent or close (in proximity) words into phrases. The use of n-grams is
a common method in this family. Disjunction-based methods for feature generation are
quite radically different than conjunction-based methods and they achieve different goals.
One crucial difference between these methods is that disjunction methods can decrease and
somewhat overcome statistical sparseness while conjunction methods can only increase it.
Thus, disjunction methods can decrease variance. On the other hand, conjunction methods
can sometimes decrease bias. There are quite a few “soft” variants of these two extreme
techniques. For instance Latent Semantic Indexing (LSI) (Deerwester et al., 1990) can be
viewed as a soft, weighted disjunction of words.

Another type of specialized feature generation for text categorization concerns the struc-
ture of the categorized texts. For instance, features such as document titles or section
headings are often more informative than other features. A number of experimental studies
deal with feature extraction using such structural information. In the case of web pages
(where documents are encoded using a markup language such as HTML) this structural
information can be easily identified and used (see, e.g., Fürnkranz, 1999; Ghani et al.,
2001).

Caropreso et al. (2001) experiment with n-grams for text categorization of the Reuters
dataset. They define an n-gram as an alphabetically ordered sequence of n stems of con-
secutive words in a sentence (after stop words were removed). As features the authors use
both unigrams and bigrams. They extract the top-scored features using various feature se-
lection indices including Mutual Information. Their results indicate that in general bigrams
can better predict categories than unigrams. However, despite the fact that bigrams are
the majority of the top-scored features, the addition of bigrams does not yield significant
improvement of the categorization results.9 Specifically, in 20 of the 48 reported experi-
ments a certain increase in accuracy is observed, while in 28 others the accuracy decrease,
sometimes quite sharply.

Baker and McCallum (1998) apply the distributional clustering scheme of Pereira et al.
(1993) (see Section 4) for clustering words that are represented as distributions over cat-
egories of the documents. Given a set of categories C = {ci}m

i=1, a distribution of a word
w over the categories is {P (ci|w)}m

i=1. Then the words (represented as distributions) are
clustered using an agglomerative clustering algorithm. Using a naive Bayes classifier the
authors examine uni-labeled categorization accuracy over the 20NG dataset and reported
an 85.7% accuracy. They also compare this representation to other feature selection and
generation techniques such as Latent Semantic Indexing (see, e.g., Deerwester et al., 1990),
the above Mutual Information index and the Markov “blankets” feature selection technique
of Koller and Sahami (1996). The authors conclude that categorization that is based on
word clusters is only slightly less accurate than the other methods, this is while keeping the
word-cluster representation significantly more compact.

Tishby et al. (1999) experiment with a similar word clustering approach, using the In-
formation Bottleneck (IB) method (see Section 4.1). Slonim and Tishby (2000) explore the
properties of this word cluster representation and motivate it within the more general IB
method. In Slonim and Tishby (2001), the authors show that categorization with a repre-

9These authors use the Rocchio classifier (Rocchio, 1971).
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sentation that is based on IB-clustering of words can improve the categorization accuracy
that is achieved by a BOW representation whenever the training set is small (about 10
documents per category). Specifically, using a Naive Bayes classifier on a dataset consisting
of 10 categories of 20NG, they observe 18.4% improvement in accuracy over a categorization
that is based on BOW.

Many algorithms for classifier learning have been tested in the text categorization do-
main. Here we mainly focus on SVM categorization results as well as some other results
relevant for the corpora we use. Some recent work provide strong evidence that SVM is
among the best classifiers for text categorization.10 Yang and Liu (1999) test five classi-
fiers11 and observe that SVM is among the classifiers that show the best performance on
the Reuters dataset, with both large and small training sets. Over the ModApte split of
Reuters their result is 86.0% of micro-averaged F-measure.

Joachims (1998b) uses an SVM classifier for a multi-labeled categorization of Reuters
without feature selection, and achieved a break-even point of 86.4%. In Joachims (1997), he
also investigates uni-labeled categorization of the 20NG dataset, and applies the Rocchio
classifier (Rocchio, 1971) over TFIDF weighted (see, e.g., Manning and Schütze, 1999)
BOW representation that is reduced using the Mutual Information index. He obtains 90.3%
accuracy, which is, to our knowledge, the best published accuracy to-date of a uni-labeled
categorization of the 20NG dataset.

As mentioned earlier, Dumais et al. (1998) study the categorization performance of some
classification techniques, including SVM.12 Their conclusion is that the SVM is superior to
the other methods tested on the Reuters dataset (ModApte split). In particular, the SVM
(together with Mutual Information index for feature selection) achieve a 92.0% BEP on the
10 largest categories of Reuters. To-date this is the best known result for this set.

Schapire and Singer (1998) apply a boosting algorithm based on the AdaBoost classifier
(with one-level decision trees – also known as decision stamps – as the base classifiers) for
the text categorization The resulting algorithm, called Boostexter, achieves 86.0% BEP on
all the categories of Reuters (ModApte split).

Weiss et al. (1999) also employ boosting (using decision trees as the base classifiers and a
powerful adaptive resampling method) and on Reuters (ModApte split) they obtain 87.8%
of break-even point on the largest 95 categories (each having at least 2 training examples).
To our knowledge this is the best result that has been achieved on (almost) the entire
Reuters dataset.

Table 1 summarizes the results that were discussed in this section.

4 Methods and algorithms

The text categorization scheme we study is based on two components: on a representation
scheme of documents as “distributional clusters” of words, and on a Support Vector Machine
(SVM) classifier learning algorithm. In this section we describe both components. Since
SVMs are rather familiar and thoroughly covered in the literature, our main focus in this
section is on the Information Bottleneck method and distributional clustering.

10Joachims (2001) provides a theoretical account of the suitability of SVM for text categorization.
11Specifically, they test SVM, kNN, three-layered Neural Network (with a hidden layer consisting of

empirically optimized number of nodes), LLSF (see Yang and Chute, 1992) and Naive Bayes.
12The other techniques are a variant of the Rocchio classifier, Decision Trees, Naive Bayes and Bayesian

Networks.
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Authors Dataset Feature Classifier Main Result Comments
Selection or
Generation

Caropreso et al. (2001) Reuters MI for Rocchio Bigrams do not
unigrams help
& bigrams

Dumais et al. (1998) Reuters MI SVM, Rocchio SVM performs Our baseline
decision trees, best: 92.0% BEP for Reuters
Naive Bayes on 10 largest (Best on 10

categories categories)

Joachims (1998b) Reuters none SVM 86.4% BEP

Schapire and Singer (1998) Reuters none AdaBoost 86% BEP

Weiss et al. (1999) Reuters none Boosting with 87.8% BEP Best on 95
multiple categories
decision trees of Reuters

Yang and Liu (1999) Reuters none SVM, kNN, 86% F-measure 95 categories
LLSF, NB (SVM)

Joachims (1997) 20NG MI Rocchio with 90.3% accuracy Our baseline
TFIDF (uni-labeled) for 20NG

Baker and McCallum (1998) 20NG Distrib. Naive Bayes 85.7% accuracy
clustering (uni-labeled)

Slonim and Tishby (2000) 10 Informa- Naive Bayes Up to 18.4%
cate- tion improvement
gories Bottleneck on small
of 20NG training sets

Joachims (1999) WebKB none SVM 94.2% - “course” Our baseline
79.0% - “faculty” for WebKB
53.3% - “project”
89.9% - “student”

Nigam et al. (1998) WebKB MI Naive Bayes 82% accuracy

Table 1: Summary of related results.

4.1 Information Bottleneck and distributional clustering

Data clustering is a challenging task in information processing and pattern recognition. The
challenge is both conceptual and computational. Intuitively, when we attempt to cluster a
dataset, our goal is to partition it into subsets such that points in the same subset are more
“similar” to each other than to points in other subsets. Common clustering algorithms
depend on choosing a similarity measure between data points and a “correct” clustering
result can be dependent on an appropriate choice of a similarity measure. However, the
choice of a “correct” measure is an ill-defined task without a particular application at hand.
For instance, consider a hypothetical dataset containing articles by each of two authors, so
that half of the articles authored by each author discusses one topic, and the other half
discusses another topic. There are two possible dichotomies of the data which could yield
two different bi-partitions: according to the topic or according to the writing style. When
asked to cluster this set into two sub-clusters, one cannot successfully achieve the task
without knowing the goal. Therefore, without a suitable target at hand and a principled
method for choosing a similarity measure suitable for the target, it can be meaningless to
interpret clustering results.
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The Information Bottleneck (IB) method of Tishby, Pereira, and Bialek (1999) is a
rather new framework that can sometimes provide an elegant solution to this problematic
“metric selection” aspect of data clustering. Consider a dataset given by i.i.d. observations
of a random variable X. Informally, the IB method aims to construct a relevant encoding of
the random variable X by partitioning X into domains that preserve as much as possible the
Mutual Information between X and another “relevance” variable, Y . The relation between
X and Y is made known via i.i.d. observations from the joint distribution P (X,Y ). Denote
the desired partition (clustering) of X by X̃. We determine X̃ by solving the following
variational problem: Maximize the Mutual Information I(X̃, Y ) with respect to the parti-
tion P (X̃|X), under a minimizing constraint on I(X̃,X). In particular, the Information
Bottleneck method considers the following optimization problem: Maximize

I(X̃, Y )− βI(X̃, X),

over the conditional P (X̃|X) where the parameter β determines the allowed amount of
reduction in information that X̃ bears on X. Namely, we attempt to find the optimal
tradeoff between the minimal partition of X and the maximum preserved information on
Y . In Tishby et al. (1999), it is shown that a solution for this optimization problem is
characterized by

P (X̃|X) =
P (X̃)

Z(β,X)
exp

[
−β

∑

Y

P (Y |X) ln
(

P (Y |X)
P (Y |X̃)

)]
, (3)

where Z(β, X) is a normalization factor, and P (Y |X̃) in the exponential is defined implic-
itly, through Bayes’ rule, in terms of the partition (assignment) rules P (X̃|X), P (Y |X̃) =

1
P (X̃)

∑
X P (Y |X)P (X̃|X)P (X) (see Tishby et al., 1999, for details). The parameter β is

a Lagrange multiplier introduced for the constrained information, but using a thermody-
namical analogy β can also be viewed as an inverse temperature, and can be utilized as an
annealing parameter to choose a desired cluster resolution.

Before we continue and present the IB clustering algorithm in the next section, we note
on the contextual background of the IB method and its connection to “distributional cluster-
ing”. Pereira, Tishby, and Lee (1993) introduced “distributional clustering” for distributions
of verb-object pairs. Their algorithm clustered nouns represented as distributions over co-
located verbs (or verbs represented as distributions over co-located nouns). This clustering
routine aimed at minimizing the average distributional similarity (in terms of the Kullback-
Leibler divergence, Cover and Thomas, 1991) between the conditional P (verb|noun) and
the noun centroid distributions (i.e. these centroids are also distributions over verbs). It
turned out that this routine is a special case of the more general IB framework. IB cluster-
ing has since derived a variety of effective clustering and categorization routines (see, e.g.,
Slonim and Tishby, 2001; Bekkerman et al., 2001; Slonim et al., 2001) and has interesting
extensions (Friedman et al., 2001).
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4.2 Distributional clustering via deterministic annealing

A solution to the IB optimization satisfies the following self-consistent equations.

P (X̃|X) =
P (X̃)

Z(β, X)
exp

[
−β

∑

Y

P (Y |X) ln
(

P (Y |X)
P (Y |X̃)

)]
; (4)

P (X̃) =
∑

X

P (X)P (X̃|X); (5)

P (Y |X̃) =
∑

Y

P (Y |X)P (X|X̃). (6)

In Tishby et al. (1999), it is shown that a solution can be obtained by starting with an
arbitrary solution and then iterating the equations. For any value of β this procedure is
guaranteed to converge.13 Lower values of the β parameter (high “temperatures”) corre-
spond to poor distributional resolution (i.e. fewer clusters) and higher values of β (low
“temperatures”) correspond to higher resolution (i.e. more clusters).

Algorithm 1 Information Bottleneck Distributional Clustering
Input:

P (X, Y ) - Observed joint distribution of two random variables X and Y
k - desired number of centroids
βmin, βmax - minimal / maximal values of β
ν > 1 - annealing rate
δconv > 0 - convergence threshold, δmerge > 0 - merging threshold

Output:
Cluster centroids, given by {P (Y |x̃i}k

i=1

Cluster assignment probabilities, given by P (X̃|X)

Initiate β ← βmin - current β parameter
Initiate kcurr ← 1 - current number of centroids
repeat
{ 1. “EM”-like iteration: }
Compute P (X̃|X), P (X̃) and P (Y |X̃) using Equations (4), (5) and (6) respectively
repeat

Let Pold(X̃|X) ← P (X̃|X)
Compute new values for P (X̃|X), P (X̃) and P (Y |X̃) using (4), (5) and (6)

until for each x: ‖P (X̃|X = x)− Pold(X̃|X = x)‖ < δconv

{ 2. Merging: }
for all i, j ∈ [1, kcurr] s.t. i 6= j and ‖P (Y |X = x̃i)− P (Y |X = x̃j)‖ < δmerge do

Merge x̃i and x̃j and decrement kcurr

end for
{ 3. Centroid ghosting: }
Let kcurr ← 2kcurr, β ← νβ

until kcurr > k or β > βmax

If kcurr > k then merge kcurr − k closest centroids (each to its closest centroid neighbor)

We use a hierarchical top-down clustering procedure for recovering the distributional IB
clusters. A pseudo-code of the algorithm is given in Algorithm 1.14 Starting with one cluster
(very small β) that contains all the data we incrementally achieve the desired number of

13This procedure is analogous to the Blahut-Arimoto algorithm in Information Theory (Cover and Thomas,
1991).

14A similar annealing procedure procedure, known as deterministic annealing, was introduced in the
context of clustering by Rose et. al. (Rose, 1998).
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clusters by performing a process that consists of annealing stages. At each annealing stage
we increment β and attempt to split existing clusters. This is done by creating (for each
centroid) a new “ghost” centroid at some random small distance from the original centroid.
We then attempt to cluster the points (distributions) using all (original and ghost) centroids
by iterating the above IB self-consisting equations, similar to the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). During these iterations the centroids are adjusted
to their (locally) optimal positions and (depending on the annealing increment of β) some
“ghost” centroids can merge back with their centroid sources.

Word Clustering to 300 clusters Clustering to 50 clusters

at w̃97 (1.0) w̃44 (0.996655) w̃21 (0.00334415)
ate w̃205 (1.0) w̃42 (1.0)
atheism w̃56 (1.0) w̃3 (1.0)
atheist w̃76 (1.0) w̃3 (1.0)
atheistic w̃56 (1.0) w̃3 (1.0)
atheists w̃76 (1.0) w̃3 (1.0)
atmosphere w̃200 (1.0) w̃33 (1.0)
atmospheric w̃200 (1.0) w̃33 (1.0)
atom w̃92 (1.0) w̃13 (1.0)
atomic w̃92 (1.0) w̃35 (1.0)
atoms w̃92 (1.0) w̃13 (1.0)
atone w̃221 (1.0) w̃14 (0.998825) w̃13 (0.00117386)
atonement w̃221 (1.0) w̃12 (1.0)
atrocities w̃4 (0.99977) w̃1 (0.000222839) w̃5 (1.0)
attached w̃251 (1.0) w̃30 (1.0)
attack w̃71 (1.0) w̃28 (1.0)
attacked w̃4 (0.99977) w̃1 (0.000222839) w̃10 (1.0)
attacker w̃103 (1.0) w̃28 (1.0)
attackers w̃4 (0.99977) w̃1 (0.000222839) w̃5 (1.0)
attacking w̃4 (0.99977) w̃1 (0.000222839) w̃10 (1.0)
attacks w̃71 (1.0) w̃28 (1.0)
attend w̃224 (1.0) w̃15 (1.0)
attorney w̃91 (1.0) w̃28 (1.0)
attribute w̃263 (1.0) w̃22 (1.0)
attributes w̃263 (1.0) w̃22 (1.0)

Table 2: An example of the 20NG words clustered by the soft clustering scheme. w̃i are
centroids to which the words refer, the centroid weights are shown in the brackets. Many
of the words are related to only one cluster.

In this scheme (as well as in the similar deterministic annealing algorithm of Rose, 1998),
one has to use an appropriate annealing rate in order to identify phase transitions which
correspond to cluster splits.

An alternative agglomerative (bottom-up) hard-clustering algorithm was developed by
Slonim and Tishby (2000). This algorithm generates hard clustering of the data and thus
approximates the above IB clustering procedure. Note that the time complexity of this
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algorithm is O(n2) where n is the number of data points (distributions) to be clustered (see
also an approximate faster agglomerative procedure in Baker and McCallum, 1998).

The application of the IB clustering algorithm in our context is straightforward. The
variable X represents words that appear in training documents. The variable Y represents
class labels and thus, the joint distribution P (X, Y ) is characterized by pairs (w, c) where
w is a word and c is the class label of the document where w appears. Starting with the
observed conditionals {P (Y = c|X = w)}c (giving for each word w its class distribution) we
cluster these distributions using Algorithm 1. For a pre-specified number of clusters k the
output of Algorithm 1 is: (i) k centroids, given by the distributions {P (X̃ = w̃|X = w)}w̃

for each word w where w̃ are the word centroids (i.e. there are k such word centroids which
represent k word clusters); (ii) Cluster assignment probabilities given by P (X̃|X). Thus,
each word w may (partially) belong to all k clusters and the association weight of w to the
cluster represented by the centroid w̃ is P (w̃|w).

The time complexity of Algorithm 1 is O(c1c2mn), where c1 is an upper limit on the
number of annealing stages, c2 is an upper limit on the number of convergence stages, m is
the number of categories and n is the number of data points to cluster.

In Table 2 we see an example of the output of Algorithm 1 applied to the 20NG corpus
(see Section 5.2) with both k = 300 and k = 50 cluster centroids. For instance, we see
that P (w̃4|attacking) = 0.99977 and P (w̃1|attacking) = 0.000222839. Thus, the word
“attacking” mainly belongs to cluster w̃4. As can be seen, all the words in the table belong
to a single cluster or mainly to a single cluster. With values of k in this range this behavior
is typical to most of the words in this corpus (and in fact, to also to the other two corpora
we consider). Only a small fraction of less than 10% of words significantly belong to more
than one cluster, for any number of clusters 50 6 k 6 500. It is also interesting to see that
IB clustering often results in word stemming. For instance, “atom” and “atoms” belong to
the same cluster. Moreover, contextually synonymous words are often assigned to the same
cluster, as can be seen in Table 13 (in Appendix A), which lists prominent members of one
cluster that mainly captures “computer words” such as “computer”, “hardware”, “ibm”,
“multimedia”, “pc”, “processor”, “software”, “8086” etc., which compose the bulk of this
cluster.

4.3 Support Vector Machines (SVMs)

The support vector machine (SVM) (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000)
is a strong inductive learning scheme that enjoys a considerable theoretical and empirical
support. As noted in Section 3 there is much empirical support for using SVMs for text
categorization (Joachims, 2001; Dumais et al., 1998, etc.).

Informally, for linearly separable two-class data, the (linear) SVM computes the maxi-
mum margin hyperplane that separates the classes. For non-linearly separable data there
are two possible extensions. The first (see Cortes and Vapnik, 1995; Burges, 1998) com-
putes a “soft” maximum margin separating hyperplane that allows for training errors. The
accommodation of errors is controlled using a fixed cost parameter. The second solution is
obtained by implicitly embedding the data into a high (or infinite) dimensional space where
the data is likely to be separable. Then, a maximum margin hyperplane is sought in this
high-dimensional space. A combination of both approaches (soft margin and embedding) is
often used.

The SVM computation of the (soft) maximum margin is posed as a quadratic optimiza-
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tion problem that can be solved in time complexity of O(kn2) where n is the training set
size and k is the dimension of each point (number of features). Thus, when applying SVM
for text categorization of large datasets, an efficient representation of the text can be of
major importance.

SVMs are well covered by numerous papers, books and tutorials and therefore we sup-
press further descriptions here. Following Joachims (2001) and Dumais et al. (1998) we use
a linear SVM in all our experiments. The implementation we use is the SVMlight package
by Joachims.15

4.4 Putting it all together

As discussed in Section 2, for handling m-class categorization problems (m > 2) we chose
(for both the uni-labeled and multi-labeled settings) a straightforward decomposition into
m binary problems. Although this decomposition is not the best for all datasets (see, e.g.,
Allwein et al., 2000) it allows for a direct comparison with the related results (which in all
cases used this decompositions as well).

Thus, for a categorization problem into m classes we construct m binary classifiers such
that each classifier is trained to distinguish one category from the rest. In multi-labeled
categorization experiments we construct for each category a “hard” (threshold) binary SVM
and each test document is considered by all binary classifiers. The subset of categories
attributed for this document is determined by the subset of classifiers that “accepted” it.
On the other hand, in uni-labeled experiments we construct for each category a confidence-
rated SVM that output for a (test) document a real confidence-rate based on the distance of
the point to the decision hyperplane. The (single) category of a test document is determined
by the classifier that outputs the largest confidence rate (as noted earlier, this approach is
sometimes called “max-win”).

A major goal of our work is to compare two categorization schemes based on the two
representations: The simple BOW representation together with Mutual Information feature
selection (called here BOW+MI ) and a representation that is based on word clusters
computed via IB distributional clustering (called here IB).

Considering first a uni-labeled categorization, given a training set of documents in m
categories, for each category c, a binary confidence-rated linear SVM classifier is trained
using the following procedure: The k most discriminating words are selected according to
the Mutual Information between the word w and the category c (see Equation (2)). Then
each training document of category c is projected over the corresponding k “best” words
and for each category c a dedicated classifier hc is trained to separate c from the other
categories. For categorizing a new (test) document d, for each category c we project d over
the k most discriminating words of category c. Denoting a projected document d by dc,
we compute hc(dc) for all categories c. The category attributed for d is arg maxc hc(dc).
For multi-labeled categorization the same procedure is applied except that now we train,
for each category c, hard (non-confidence-rated) classifiers hc and the subset of categories
attributed for a test document d is {c : hc(dc) = 1}.

The structure of the IB categorization scheme is similar (in both the uni-labeled and
multi-labeled settings) but now the representation of a document consists of vectors of word
cluster counts corresponding to a cluster mapping (from words to cluster centroids) that is

15The SVMlight software can be achieved at: http://svmlight.joachims.org/.
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computed for all categories simultaneously using the Information Bottleneck distributional
clustering procedure (Algorithm 1).

5 Datasets

5.1 Reuters-21578

The Reuters-21578 corpus contains 21578 articles taken from the Reuters newswire.16 Each
article is typically designated into one or more semantic categories such as “earn”, “trade”,
“corn” etc., where the total number of categories is 114. We used the ModApte split, which
consists of a training set of 7063 articles and a test set of 2742 articles.17

In both the training and test sets we preprocessed each article so that any additional
information except for the title and the body was removed. In addition, we lowered the
case of letters. Following Dumais et al. (1998) we generated distinct features for words
that appear in article titles. In the IB-based setup (see Section 4.4) we applied a filter
on low-frequent words: we removed words that appear in less or equal to Wlow freq words,
where Wlow freq is determined using cross-validation (see Section 6.2). In the BOW+MI
setup this filtering of low-frequency words is essentially not relevant since these words are
already filtered out by the mutual information feature selection index.

5.2 20 Newsgroups

The 20 Newsgroups (20NG) corpus contains 19997 articles taken from the Usenet news-
groups collection.18 Each article is designated into one or more semantic categories and the
total number of categories is 20, all of them are of about the same size. Most of the arti-
cles have only one semantic label and about 4.5% of the articles have two or more labels.
Following Schapire and Singer (2000) we used the “Xrefs” field of the article headers to
detect multi-labeled documents and to remove duplications. We preprocessed each article
so that any additional information except for the subject and the body was removed. In
addition, we filtered out lines that seemed to be part of binary files sent as attachments
or pseudo-graphical text delimiters. A line is considered to be a “binary” (or a delimiter)
if it is longer than 50 symbols and contains no blanks. Overall we removed 23057 such
lines (where most of these occurrences appeared in a dozen of articles). Also, we lowered
the case of letters. As in the Reuters dataset, in the IB-based setup we applied a filter on
low-frequent words, using the parameter Wlow freq that is determined via cross-validation.

5.3 WebKB: World Wide Knowledge Base

The World Wide Knowledge Base dataset (WebKB)19 is a collection of 8282 web pages
obtained from four academic domains. The WebKB was collected by Craven et al. (1998).
The web pages in the WebKB set are labeled using two different polychotomies. The first

16The Reuters-21578 collection can be downloaded at: http://www.research.att.com/∼lewis.
17Note that in these figures we count documents with at least one label. The original split contains

9603 training documents and 3299 test documents where the additional articles have no labels. While in
practice it may be possible to utilize additional unlabeled documents for improving performance using semi-
supervised learning algorithms (see, e.g., El-Yaniv and Souroujon, 2001), in this work we simply discarded
these documents.

18The 20 newsgroups collection can be downloaded at: http://kdd.ics.uci.edu/.
19The WebKB collection can be downloaded at: http://www.cs.cmu.edu/∼WebKB.
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is according to topic and the second is according to web domain. In our experiments we
only considered the first polychotomy, which consists of 7 categories: course, department,
faculty, project, staff, student and other. Following Nigam et al. (1998) we discarded the
categories other20, department and staff. The remaining part of the corpus contains 4199
documents in four categories. Table 3 specifies the 4 remaining categories and their sizes.

Category Number of articles Proportion (%)
course 930 22.1
faculty 1124 26.8
project 504 12.0
student 1641 39.1

Table 3: Some essential details of WebKB categories.

Since the web pages are in HTML format, they contain much non-textual information:
HTML tags, links etc. We did not filter this information because some of it is useful, for
instance anchor-texts of URLs, which in some documents are the only useful textual infor-
mation. We filter out non-literals and lowered the case of letters. As in the other datasets, in
the IB-based setup we applied a filter on low-frequent words, using the parameter Wlow freq

that is determined via cross-validation.

6 Experimental setup

6.1 Performance measures and performance estimation

Following Dumais et al. (1998) (and for comparison with this work), in our multi-labeled ex-
periments (Reuters and 20NG) we report on micro-averaged break-even point (BEP) results.
In our uni-labeled experiments (20NG and WebKB) we report on accuracy (see Section 2.2).
Note that we experiment with both uni-labeled and multi-labeled categorization of 20NG.
Although this set is in general multi-labeled, the fraction of multi-labeled articles is rather
small (about 4.5%) and therefore a uni-labeled categorization of this set is also meaningful.
To this end, we follow Joachims (1997) and consider our (uni-labeled) categorization of a
test document to be correct if the label we assign to the document belongs to its true set
of labels.

In order to better estimate the performance of our algorithms on test documents we use
standard cross-validation estimation in our experiments with 20NG and WebKB. However,
when experimenting with Reuters, for compatibility with the experiments of Dumais et al.
we use its standard ModApte split (i.e. without cross-validation).

Specifically, in both 20NG and WebKB we use 4-fold cross-validation where we randomly
and uniformly split each category into 4 folds and we took three folds for training and one
fold for testing. Note that this 3/4:1/4 split is proportional to the training to test set
size ratios of the ModApte split of Reuters. In the cross-validated experiments we always
report on the estimated average (over the 4 folds) performance (either BEP or accuracy),
estimated standard deviation and standard error of the mean..

20Note however that other is the largest category in WebKB and consists about 45% of this set.

20



6.2 Hyperparameter optimization

A major issue when working with SVMs (and in fact with almost all inductive learning
algorithms) is parameter tuning. As noted earlier (Section 4.3) in our implementation
we used linear SVMlight. The only relevant parameters (for the linear kernel we use)
are C (trade-off between training error and margin) and J (cost-factor, by which training
errors on positive examples outweigh errors on negative examples). We optimize these
parameters using one of the three folds of the training set as a validation set.21 For each of
these parameters we fix a small set of feasible values22 and in general, we attempt to test
performance (over the validation set) using all possible combinations of parameter values
over the feasible sets.

Note that tuning the parameters C and J is different in the multi-labeled and uni-labeled
settings. In the multi-labeled setting we tune the parameters of each individual (binary)
classifier independently of the other classifiers. In the uni-labeled setting, parameter tuning
is more complex. Since we use the max-win decomposition, the categorization of a document
is dependent on all the binary classifiers involved. For instance, if all the classifiers except
for one are perfect, this last bad classifier can generate confidence rates that are maximal
for all the documents, which results in extremely poor performance. Therefore, a global
tuning of all the binary classifiers is necessary.

Despite this, in the case of the 20NG, where we have 20 binary classifiers, a global
exhaustive search is too time-consuming and, ideally, a clever search in this high dimensional
parameter space should be considered. Instead, we simply utilized the information we have
on the 20NG categories to reduce the size of the parameter space. Specifically, among the
20 categories of 20NG there are some highly correlated ones and we split the list of the
categories into 9 groups as in Table 4.23 For each group the parameters are tuned together
and independently of other groups. This way we achieve an approximately global parameter
tuning also on the 20NG set. Note that the (much) smaller size of WebKB (both number
of categories and number of documents) allow for global parameter tuning over the feasible
parameter value sets without any need for approximation.

In IB categorization also the parameter Wlow freq (see Section 5), which determines a
filter on low-frequent words, has significant impact on categorization quality. Therefore, in
IB categorization we search for both the SVM parameters and Wlow freq. To reduce the
time complexity we employ the following simple search heuristic. We first fix random values
of C and J and then, using the validation set, we optimize Wlow freq.24 After determining
Wlow freq we tune both C and J as described above.25

21We note that also Dumais et al. (1998) use 1/3 random subset of the training set for validated parameter
tuning.

22Specifically, for the C parameter the feasible set is {10−4, 10−3, 10−2, 10−1} and for J it is
{0.5, 1, 2, . . . , 10}.

23It is important to note that an almost identical split can be computed in a completely unsupervised
manner using the Multivariate Information Bottleneck of (Friedman et al., 2001).

24The set of feasible Wlow freq values we use is {0, 2, 4, 6, 8}.
25The “optimal” determined value of Wlow freq for Reuters is 4, for WebKB (across all folds) it is 8 and

for 20NG it is 0. The number of distinct words after removing low-frequent words is: 9,953 for Reuters
(Wlow freq = 4), about 110,000 for 20NG (Wlow freq = 0) and about 7,000 for WebKB (Wlow freq = 8),
depending on the fold.
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Group Content

1 (a) talk.religion.misc; (b) soc.religion.christian (c) alt.atheism
2 (a) rec.sport.hockey; (b) rec.sport.baseball
3 (a) talk.politics.mideast
4 (a) sci.med; (b) talk.politics.guns; (c) talk.politics.misc
5 (a) rec.autos; (b) rec.motorcycles; (c) sci.space
6 (a) comp.os.ms-windows.misc; (b) comp.graphics; (c) comp.windows.x
7 (a) sci.electronics; (b) comp.sys.mac.hardware; (c) comp.sys.ibm.pc.hardware
8 (a) sci.crypt
9 (a) misc.forsale

Table 4: Split of the 20NG’s categories into thematic groups.

6.3 Fair vs. unfair parameter tuning

In our experiments with the BOW+MI and IB categorizers we sometimes perform unfair
parameter tuning in which we tune the SVM parameters over the test set (rather than the
validation set). If a categorizer A achieves better performance than a categorizer B while
B’s parameters were tuned unfairly (and A’s parameters were tuned fairly) then we can get
stronger evidence that A performs better than B. In our experiments we sometimes use
this technique to accentuate differences between the two categorizers.

7 Categorization Results

7.1 Multi-labeled categorization

Table 5 summarizes the multi-labeled categorization results obtained by the two categoriza-
tion schemes (BOW+MI and IB) over Reuters (10 largest categories) and 20NG datasets.
Note that the 92.0% BEP result for BOW+MI over Reuters was established by Dumais
et al. (1998).26 To the best of our knowledge, the 88.6% BEP we obtain on 20NG is the
first reported result of a multi-labeled categorization of this dataset. Previous attempts at
multi-labeled categorization of this set were performed by Schapire and Singer (2000), but
no overall result on the entire set was reported.

On 20NG the advantage of the IB categorizer over BOW+MI is striking when k = 300
words (and k = 300 word clusters) are used. Note that the 77.7% BEP of BOW+MI is
obtained using unfair parameter tuning (see Section 6.3). However, this difference does
not sustain when we use k = 15, 000 words. Using this rather large number of words
the BOW+MI performance significantly increases to 86.3% (again, using unfair parame-
ter tuning), which taking into account the statistical deviations is similar to the IB BEP
performance. The BOW+MI results that are achieved with fair parameter tuning show an
increase in the gap between the performance of the two methods. Nevertheless, the IB cat-
egorizer achieves this BEP performance using only 300 features (word clusters), almost two
order of magnitude smaller than 15,000. Thus, with respect to 20NG, the IB categorizer
outperforms the BOW+MI categorizer both in BEP performance and in representation

26This result was achieved using binary BOW representation, see Section 3. We replicated Dumais et al.’s
experiment and in fact obtained a slightly higher BEP result of 92.3%.
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Categorizer Reuters (BEP) 20NG (BEP)

BOW+MI 92.0 77.7± 0.5 (0.31) unfair
k = 300 obtained by Dumais et al. (1998) 76.5± 0.4 (0.25) fair
BOW+MI 92.0 86.3± 0.5 (0.27) unfair
k = 15000 85.6± 0.6 (0.35) fair
IB 91.2 fair 88.6± 0.3 (0.21)
k = 300 92.6 unfair

Table 5: Multi-labeled categorization BEP results for 20NG and Reuters. k is the number
of selected words or word-clusters. All 20NG results are averages of 4-fold cross-validation.
Standard deviations are given after the “±” symbol and standard errors of the means
are given in brackets. “Unfair” indicates unfair parameter tuning over the test sets (see
Section 6.3).

efficiency. We also tried other values of the k parameter, where 300 < k ¿ 15, 000 and
k > 15, 000. We found that the learning curve, as a function of k, is monotone increasing
until it reaches a plateau around k = 15, 000.

We repeat the same experiment over the Reuters dataset but there we obtain different
results. Now the IB categorizer lose its BEP advantage and achieves a 91.2% BEP27, a
slightly inferior (but quite similar) performance to the BOW+MI categorizer (as reported by
Dumais et al., 1998). Note that the BOW+MI categorizer does not benefit from increasing
the number of features up to k = 15, 000.

Categorizer WebKB (Accuracy) 20NG (Accuracy)

BOW+MI 92.6± 0.3 (0.20) 85.5± 0.7 (0.45) unfair
k = 300 84.7± 0.7 (0.41) fair

BOW+MI 92.4± 0.5 (0.32) 90.9± 0.2 (0.12) unfair
k = 15000 90.2± 0.3 (0.17) fair

IB 91.0± 0.5 (0.32) unfair 91.3± 0.4 (0.24)
k = 300 89.5± 0.7 (0.41) fair

Table 6: Uni-labeled categorization accuracy for 20NG and WebKB. k is the number of
selected words or word-clusters. All accuracies are averages of 4-fold cross-validation. Stan-
dard deviations are given after the “±” symbol and standard errors of the means are given
in brackets. “Unfair” indicates unfair parameter tuning over the test sets (see Section 6.3).

7.2 Uni-labeled categorization

We also perform uni-labeled categorization experiments using the BOW+MI and IB cate-
gorizers over 20NG and WebKB. The final accuracy results are shown in Table 6. These
results appear to be qualitatively similar to the multi-labeled results presented above with
WebKB replacing Reuters. Here again, over the 20NG set, the IB categorizer is showing
a clear accuracy advantage over BOW+MI with k = 300 and this advantage is diminished

27Using unfair parameter tuning the IB categorizer achieves 92.6% BEP.
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Figure 1: Accuracy vs. number of word-clusters; uni-labeled categorization of 20NG by IB
categorizer. We have not performed similar tests on Reuters and WebKB.

if we take k = 15, 000. On the other hand, we observe a comparable (and similar) accu-
racy of both categorizers over WebKB, and as it is with Reuters, here again the BOW+MI
categorizer does not benefit by increasing the feature set size.

The use of k = 300 clusters in the IB categorizer is not necessarily optimal. This
choice is made for compatibility with the original BOW+MI results of Dumais et al. (1998).
The graph in Figure 1 plots the accuracy test results of the IB categorizer over 20NG as
a function of the number of clusters. Evidently, after a relatively small number of word
clusters the accuracy reaches a plateau.28

8 Corpora Complexity vs. Representation Efficiency

The categorization results reported above show that the performance of the BOW+MI
categorizer and the IB categorizer is sensitive to the dataset being categorized. What makes
the performance of these two categorizers different over different datasets? Why does the
more sophisticated IB categorizer outperform the BOW-MI categorizer (with either higher
accuracy or better representation efficiency) over 20NG but not over Reuters and WebKB?
In this section we discuss this question and attempt to identify differences between these
corpora that can account for this behavior.

One possible approach to quantify the complexity of a corpus with respect to a catego-
rization system is to observe and analyze learning curves plotting the performance of the
categorizer as a function of the number of words selected for representing each category. Be-
fore presenting such learning curves for the three corpora, we focus on the following extreme
case where we categorize each of the corpora using only the three top words per category
(where top-scores are measured using the Mutual Information of words with respect to cat-
egories). Tables 7, 8 and 9 specify for each corpus a list of the top three words for each
category, together with the performance achieved by the BOW+MI (binary) classifier of
the category. For comparison, we also provide the corresponding performance of BOW+MI
using the 15,000 top words (i.e. potentially all the significant words in the corpus). For in-

28No cross-validation was applied due to computational complexity of this experiment.
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stance, observing Table 7, computed for Reuters, we see that based only on the words “vs”,
“cts” and “loss” it is possible to achieve 93.5% BEP when categorizing the category earn.
We note that the word “vs” appears in 87% of the articles of the category earn (i.e., in 914
articles among total 1044 of this category). This word appears in only 15 non-earn articles
in the test set and therefore “vs” can, by itself, categorize earn with very high precision.29

This phenomenon was already noticed by Joachims (1997), who noted that a classifier built
on only one word (“wheat”) can lead to extremely high accuracy when distinguishing be-
tween the Reuters category wheat and the other categories (within a uni-labeled setting).30

The difference between the 20NG and the two other corpora is striking when considering
the relative improvement in categorization quality when using 15,000 words. While one
can dramatically improve categorization of 20NG by over 150% with many more words, we
observe a relative improvement of only less than 20% and 30% in the case of Reuters and
WebKB, respectively.
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Figure 2: Learning curves (BEP or accuracy vs. number of words) for the datasets: Reuters-
21578, 20NG and WebKB over the MI-sorted top 10 words (a) and the top 300 words (b)
using the BOW+MI categorizer.

In Figure 2 we present, for each dataset, a learning curve plotting the obtained perfor-
mance of the BOW+MI categorizer as a function of the number k of selected words.31 As
can be seen, the two curves of both Reuters and WebKB are very similar and almost reach
a plateau with k = 50 words (that were chosen using the greedy, non-optimal Mutual Infor-
mation index). This indicates that other words do not contribute much to categorization.
On the other hand, the learning curve of 20NG rises slower and still exhibits a rising slope
with k = 300 words.

The above findings indicate on systematic difference between the categorization of the
29In the training set the word “vs” appears in 1900 of the 2709 earn articles (70.1%) and only in 14 of the

4354 non-earn articles (0.3%).
30When using only one word per category, we observed a 74.6% BEP when categorizing Reuters (10 largest

categories), 66.3% accuracy when categorizing WebKB and 40.7% BEP when categorizing 20NG.
31In the case of Reuters and 20NG the performance is measured in terms of BEP and in the case of

WebKB in terms of accuracy.
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Category 1st word 2nd word 3rd word BEP on BEP on Relative
3 words 15000 words Improvement

earn vs+ cts+ loss+ 93.5% 98.6% 5.4%

acq shares+ vs− Inc+ 76.3% 95.2% 24.7%

money-fx dollar+ vs− exchange+ 53.8% 80.5% 49.6%

grain wheat+ tonnes+ grain+ 77.8% 88.9% 14.2%

crude oil+ bpd+ OPEC+ 73.2% 86.2% 17.4%

trade trade+ vs− cts− 67.1% 76.5% 14.0%

interest rates+ rate+ vs− 57.0% 76.2% 33.6%

ship ships+ vs− strike+ 64.1% 75.4% 17.6%

wheat wheat+ tonnes+ WHEAT+ 87.8% 82.6% -5.9%

corn corn+ tonnes+ vs− 70.3% 83.7% 19.0%

Average 79.9% 92.0% 15.1%

Table 7: Three best words (in terms of mutual information) and their categorization BEP
rate of the 10 largest categories of Reuters. The micro-average over these categories is
79.9%. ‘+’ near a word means that the appearance of the word predicts the corresponding
category, ’−’ means that the absence of the word predicts the category. Words in upper-case
are words that appeared in article titles (see Section 5.1).

Category 1st word 2nd word 3rd word Accuracy on Accuracy on Relative
3 words 15000 words Improvement

course courses course homework 79.0% 95.7% 21.1%

faculty professor cite pp 70.5% 89.8% 27.3%

project projects umd berkeley 53.2% 80.8% 51.8%

student com uci homes 78.3% 95.9% 22.4%

Average 73.3% 92.4% 26.0%

Table 8: Three best words (in terms of mutual information) and their categorization ac-
curacy rate of the 4 representative categories of WebKB. The micro-average over these
categories is 73.3%. All these words contribute by their appearance, rather than absence.

20NG dataset on the one hand, and of the Reuters and WebKB datasets, on the other
hand. We identify another interesting difference between the corpora (Reuters and WebKB
on one the hand and 20NG on the other). This difference is related to the hyper-parameter
Wlow freq (see Section 5). The bottom line is that in the case of 20NG IB categorization
improves when Wlow freq decreases while in the case of Reuters and WebKB it improves
when Wlow freq increases. In other words, more words and even the most infrequent words
can be useful and improve the (IB) categorization of 20NG. On the other hand, such rare
words do add noise in the (IB) categorization of Reuters and WebKB. Figure 3 depicts the
performance of the IB classifier on the three corpora as a function of Wlow freq. Note again
that this phenomenon is observed with respect to the IB representation and the previous
discussion concerns the BOW+MI representation.

9 Computational efforts

Here we note on the computational efforts that required for running the above categorization
experiments. We performed all our experiments using a 600MHz 2G RAM dual processor
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Category 1st word 2nd word 3rd word Accuracy on Accuracy on Relative
3 words 15000 words Improvement

alt.atheism atheism atheists morality 48.7% 84.8% 74.1%

comp.graphics image jpeg graphics 40.5% 83.1% 105.1%

comp.os.ms- windows m o 60.9% 84.7% 39.0%
windows.misc

comp.sys.ibm. scsi drive ide 13.8% 76.6% 455.0%
pc.hardware

comp.sys.mac. mac apple centris 61.0% 86.7% 42.1%
hardware

comp.windows.x window server motif 46.6% 86.7% 86.0%

misc.forsale 00 sale shipping 63.4% 87.3% 37.6%

rec.autos car cars engine 62.0% 89.6% 44.5%

rec.motorcycles bike dod ride 77.3% 94.0% 21.6%

rec.sport.baseball baseball game year 38.2% 95.0% 148.6%

rec.sport.hockey hockey game team 67.7% 97.2% 43.5%

sci.crypt key encryption clipper 76.7% 95.4% 24.3%

sci.electronics circuit wire wiring 15.2% 85.3% 461.1%

sci.med cancer medical msg 26.0% 92.4% 255.3%

sci.space space nasa orbit 62.5% 94.5% 51.2%

soc.religion.christian god church sin 50.2% 91.7% 82.6%

talk.politics.guns gun guns firearms 41.5% 87.5% 110.8%

talk.politics.mideast israel armenian turkish 54.8% 94.1% 71.7%

talk.politics.misc cramer president ortilink 23.0% 67.7% 194.3%

talk.religion.misc jesus god jehovah 6.6% 53.8% 715.1%

Average 46.83% 86.40% 153.23%

Table 9: Three best words (in terms of mutual information) and their categorization accu-
racy rate (uni-labeled setting) of the 20 categories of 20NG. The micro-average over these
categories is 46.8%. All these words contribute by their appearance, rather than absence.

Pentium III PC operated by Windows 2000. The computational bottlenecks were mainly
experienced over 20NG whose size is substantially larger than the sizes of Reuters and
WebKB.

Let us first consider the multi-labeled experiments with 20NG. When running the
BOW+MI categorizer, the computational bottleneck was the SVM training, for which a
single run (one of the 4 cross-validation folds, including both training and testing) could
take a few hours, depending on the parameter values. In general, the smaller the parameters
C and J are, the faster the SVM training is.32

As for the IB categorizer, the SVM training process was faster when the input vectors
consisted of word clusters. However, the clustering itself could take up to one hour on the
entire 20NG set, and required substantial amount of memory (up to 1G RAM). The overall
training and testing time over the entire 20NG in the multi-labeled setting was about 16
hours (4 hours for each of the 4 folds).

The computational bottleneck when running uni-labeled experiments was the SVM pa-
rameter tuning. It required a repetition for each combination of the parameters and indi-
vidual classifiers (see Section 6.2). Overall the experiments with the IB categorizer took
about 45 hours of CPU time, while the BOW-MI categorizer required about 96 hours (i.e.
4 days).

32SVMlight and its parameters are described in Joachims (1998a).
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Figure 3: Performance of IB categorizer vs. the parameter Wlow freq, that specifies the
threshold on low-frequent words filter: words that appear in less than Wlow freq articles
are removed; uni-labeled categorization of WebKB and 20NG (accuracy), multi-labeled
categorization of Reuters (BEP). Note that Wlow freq = 0 corresponds to the case where
this filter is disabled.

The experiments with the relatively small WebKB corpus were accordingly less time-
consuming. In particular, the experiments with the SVM+MI categorizer required 7 hours
of CPU time and those with the IB categorizer, about 8 hours. Thus, when comparing these
times with the experiments on 20NG we see that the IB categorizer is less time-consuming
than the BOW+MI categorizer (based on 15000 words) but the clustering algorithm requires
larger memory. On Reuters the experiments ran even faster, because there was no need to
apply cross-validation estimation.

10 Text representation using linguistic preprocessing

As it has been previously told in Section 2, a typical BOW-based text representation suf-
fers from high dimensionality, statistic sparseness and loss of semantical relations between
words. In initial stages of our research, our goal was to find a compact and efficient text
representation that would preserve main semantic relations. After Pereira et al. (1993), we
made the following assumptions:

1. In any text, a few highlighting words can capture important parts of the meaning of the
text. A text representation is therefore based on a small number of highlighting words.
For instance, let us consider the following sentence: “The continental breakfast has
been served”. Words such as “breakfast” and “served” give important information on
the meaning of the sentence, while the word “continental” adds some extra information
about the kind of breakfast that has been served, and the pair “has been” adds some
minor grammatical information.

2. Words that play main syntactic roles in a sentence, such as subject heads, verbs and
direct object heads, are often more semantically significant than other words. For the
example from the previous paragraph, the word “breakfast” is the head in the subject
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of the sentence, and the word “served” is its main verb (predicate). Omitting other
words, i.e. articles (“the”), auxiliary verbs (“has been”), adjectives (“continental”)
etc., would not significantly hurt the ability to represent the topic of the text. Thus,
subject heads, verbs and direct object heads of sentences are good candidates to take
part in the compact and efficient text representation.

3. Word tuples are more semantically informative than single words. For instance, ex-
tracting the separate words “breakfast” and “served” (see the example above) would
make a semantic connection to the following sentence: “In 19th century soldiers served
in army for 20 years”. However, extracting pairs (“breakfast served” and “soldiers
served”) will avoid such a collision.

Based on these assumptions, we suggested that a set of tuples 〈subject, verb〉, 〈verb, direct object〉
and 〈subject, verb, direct object〉 is a good text representation. For the sake of presentation,
let us consider only 〈s, v〉 (i.e. 〈subject, verb〉) pairs.

10.1 Extraction of 〈s, v〉 pairs

For extracting the 〈s, v〉 pairs, we constructed a shallow parser based on EngCG-2 - a Part-
Of-Speech tagger produced by Conexor Ltd., Finland.33 Given a text tagged and split to
sentences, the shallow parser determines a Subject and a Verb Phrase of each sentence, and
then it extracts a head noun from the Subject and a main predicate from the Verb Phrase.
Particularly, for each sentence the following procedure is performed:

1. (Initiate.) Put a separator $ before the first word.

2. (Find first verb.) Starting from $, run over the words until either a verb or end of
sentence is reached. Terminate if the end of sentence is reached. Otherwise, state v
for the verb.

3. (Find last noun.) Starting from v, run backwards over the words until either a noun,
$ or a delimiter34 is reached. Go to 8 if no noun is found. Otherwise, state s for the
noun.

4. (Check words between noun and verb.) Go to 8 if conjunctions, determiners, preposi-
tions or pronouns are found between s and v.

5. (Skip nouns with prepositions.) Starting from s, run backwards over nouns, adjectives
and determiners up to either a preposition or $ is reached. If a preposition is found,
check if the word that is placed before the preposition is a noun. If yes, state s for
the noun and go to 5. Otherwise, go to 8.

6. (Skip auxiliary verbs.) Starting from v, run forward over verbs and adverbs until none
of them is found. State v for the last verb found.

7. (Output pair.) If the verb v is not in its infinitive form and is not a “to be” verb,
output a pair 〈s, v〉.

8. (Proceed forward.) Put the separator $ after v and go to 2.
33The EngCG-2 POS tagger can be achieved at: http://www.conexor.fi/.
34A delimiter is a string of non-literals, such as commas, dots, brackets, etc.
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Note that the proposed algorithm skips dummy 〈s, v〉 pairs, e.g. ones whose subject head
is a pronoun or whose verb is a meaningless “to be” verb. This heuristic method provided
relatively good results: about 82% of manually checked 〈s, v〉 pairs appeared to be real
subject heads and predicates of sentences (the experiment was performed on the Reuters
dataset). An example of applying the shallow parser to one of the Reuters documents is
shown in Table 10.

Story Pairs

The value of the agreement will be based on value based - CORRECT
Citizens adjusted book value at year end and
the trading price of First Commercial’s stock.
Citizens’ book value was about 1.9 mln dlrs
at the end of the third quarter, according
to the bank’s counsel, Guy Gibson. Under the
agreement, Citizens shareholders could also shareholders trade - CORRECT
trade their stock for a five-year debenture stock issued - INCORRECT
issued by First Commercial. Terms of the terms established - CORRECT
debenture have not been established.

Table 10: An example of extracting 〈s, v〉 pairs from a Reuters document. One of the four
pairs extracted (“stock issued”) is incorrect: it should be “debenture issued”.

10.2 Text representation using 〈s, v〉 pairs

Text representation based on word tuples is far sparser than the BOW-based representation.
As it was shown in Section 4.1 one of the possible solutions of the problem is Distributional
Clustering. Following Pereira et al. (1993), given a set of pairs {〈s, v〉}, we represented
subject heads as distributions over verbs and then verbs as distributions over subject heads,
that is, we built distributions P (s|v) and P (v|s). Given a distribution P (s|v) we can cluster
subject heads s into subject-clusters s̃. Analogously, given a distribution P (v|s) we can
cluster verbs v into verb-clusters ṽ. This approach led us to creating “thesauri” of subject
heads and verbs. Table 11 illustrates such a thesaurus of subject heads that was created
from the Reuters dataset.35 Based on such thesauri, pairs 〈s, v〉 can be mapped onto pairs of
centroids 〈s̃, ṽ〉 that diminish the sparseness problem. Let us focus on possible approaches
to document representation based on such a mapping.

10.3 Text representation based on statistical meaning

Given a document D = {〈s, v〉} we defined its statistical meaning as a distribution PD =
P (s̃, ṽ|D). If the PD of documents is calculated, we can state whether the statistical meaning
of document D1 is close to or far from the statistical meaning of document D2. The distance

35Extraction of 〈s, v〉 pairs was performed as described in Section 10.1. The total amount of pairs extracted
from the Reuters dataset was 116,682. Pairs whose verb is “said” were then removed because of their biasedly
high frequency (28,753 pairs overall). The case of letters was lowered as in other experiments (see Section 5).
For the sake of representation only highly frequent pairs were then involved in clustering (only those pairs
which appeared 20 or more times: 159 distinct pairs in total, 87 distinct subject heads and 78 distinct verbs).
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

date analysts board action accord

dlrs baker chief decision agency

funds bankers dollar dlr agreement

group companies exports figures bank

loss dealers imports ltd banks

months earnings income market brazil

mths economists index offer commission

net mln miles orders pct

period notes prices points company

periods officials production progress corp

price shr profit senior debt

proceeds shrs profits stock fees

qtr sources reserves underwriting government

quarter spokesman sales interest

rate shareholders issue

terms supply p

underwriters transaction plan

week turnover share

weeks shares

year statement

unit

Table 11: An example of a thesaurus of clustered subject heads that was created from the
Reuters dataset. The last line highlights probable meta-words of the thesaurus.

between the two distributions can be expressed in terms of, for example, Jensen-Shannon
divergence (see, e.g., Lee, 1999).

Methods of calculating the statistical meaning of documents can vary form naive to
complex. A naive method implies individual mappings of subject heads to subject-clusters
and of verbs to verb-clusters:

P (s̃, ṽ|D) =
∑

s,v∈D

P (s̃|s)P (ṽ|v)/Z(s, v)

where Z(s, v) is a normalization factor. However, such a method assumes statistical inde-
pendence of subject heads and verbs in sentences, which is incorrect in a general case. A
neater approach is based on a maximum entropy scheme (see, e.g., Nigam et al., 1999)
which is a method of estimating an unknown distribution under given constraints. Intu-
itively, by applying this method we can build a distribution that stands in all the predefined
constraints and does not add constraints of its own. Since the distribution P (s̃, ṽ|s, v) can
be calculated by applying the Bayes law:

P (s̃, ṽ|s, v) =
P (s̃, ṽ, s, v)

P (s, v)
,

in order to compute the PD of a document, all we need to have is a 4-dimensional matrix
P (s̃, ṽ, s, v). Using the maximum entropy scheme we can build this matrix given its margins
P (s, v), P (s̃, s), P (ṽ, s), P (s̃, v), P (ṽ, v) and P (s̃, ṽ). The method of building this matrix
is based on a principle of preserving maximum entropy of its elements, with respect to
the margins. The first margin P (s, v) can be directly achieved from the corpus, the next
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four margins can be calculated via the clustering process. But the last margin P (s̃, ṽ)
cannot be achieved straightforwardly. Let us meanwhile assume that we have it in hand.
After initiating the distribution P (s̃, ṽ, s, v) uniformly, at each iteration we adjust it by a
multiplier which is calculated with respect to each margin consequently. Convergence of
the algorithm is guaranteed by convergence of the multiplier to 1. Algorithm 2 illustrates
the scheme. The sixth margin P (s̃, ṽ) can be calculated using the same scheme, given its
own margins P (s̃) and P (ṽ) that can be also achieved via the clustering process.

Algorithm 2 Building a matrix of P (x, y, z, w) given its margins, using the maximum
entropy scheme
Input: P (x, y), P (y, z), P (z, w), P (x, z), P (x, w), P (y, w) - the margins

ε - convergence rate
Output: P (x, y, z, w) - the matrix

P 0(x, y, z, w) ← 1
|x|·|y|·|z|·|w|

i ← 0
t ← 0
repeat

If i = 0 then N t ← P (x, y)/
∑

z,w P t(x, y, z, w)
If i = 1 then N t ← P (x, z)/

∑
y,w P t(x, y, z, w)

If i = 2 then N t ← P (y, z)/
∑

x,w P t(x, y, z, w)
If i = 3 then N t ← P (x,w)/

∑
y,z P t(x, y, z, w)

If i = 4 then N t ← P (y, w)/
∑

x,z P t(x, y, z, w)
If i = 5 then N t ← P (z, w)/

∑
x,y P t(x, y, z, w)

P t+1(x, y, z, w) ← P t(x, y, z, w) ·N t

Increment i and t
If i = 6 then i ← 0

until ‖P t(x, y, z, w)− P t−1(x, y, z, w)‖ < εP 0(x, y, z, w)

10.4 Categorization results

When applying the text representation based on the text statistical meaning to the problem
of text categorization on Reuters, we did not observe any improvement in the categorization
results. Furthermore, the results sharply decreased, down by 20% and even 30% to the
results reported by Dumais et al. (1998). After analyzing the results we made the following
conclusions:

1. The number of extracted tuples was too small. We saw many sentences whose sub-
ject head or predicate was dummy and therefore not extracted (e.g. a “there is”
form, where both subject head “there” and predicate “is” are dummy). Thus, many
sentences had no single representative in the list of tuples.

2. Subject heads, verbs and object heads are not necessarily the most informative words
in the text. More generally, it is probably wrong to conclude about semantical role of
a word on the base of its syntactic function in a sentence. For example, two sentences
“The continental breakfast has been served” and “She did not say anything while
serving the continental breakfast” share their most informative words (“breakfast”
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and “serve”), however in the first case these words are the subject head and the
predicate of the sentence and in the second case they are not.

Still, a text representation based on word tuples is presumably richer than a BOW-based
representation. To evaluate the potential of using word tuples for text categorization, we
performed an experiment that is described in the following section.

10.5 Contribution of words and word pairs

Let us define syntactic bigrams as all the ordered pairs of words which can be generated from
a sentence after removing stopwords. Let us define consecutive bigrams as those syntactic
bigrams whose elements follow each other. For instance, considering the sentence mentioned
above (“The continental breakfast has been served”), three pairs 〈continental, breakfast〉,
〈breakfast, served〉 and 〈continental, served〉 are the syntactic bigrams of the sentence36,
while only two pairs 〈continental, breakfast〉 and 〈breakfast, served〉 are its consecutive
bigrams.

One question is whether bigrams contribute more for separating categories than single
words. To answer on this question, for each category c we calculated two Mutual Information
indices, using Equation (2): I(Xc, Xw) for each word w, and I(Xc, Xb) for each syntactic
bigram b. Then we calculated the average Mutual Information for single words: Iw(c) =∑

w P (Xw)I(Xc, Xw), and for syntactic bigrams: Ib(c) =
∑

b P (Xb)I(Xc, Xb).
The result of comparing Iw and Ib showed that in all 10 largest categories of Reuters and

in 19 of 20 categories of 20NG single words discriminate categories better than syntactic
bigrams.

We then clustered the words into clusters w̃ and syntactic bigrams into clusters b̃ using
the Deterministic Annealing procedure as described in Section 4.2. We had to bound the
number of clusters k to 50 and fix Wlow freq = 5 (see Section 5) because the clustering
process is computationally heavy. When comparing Iw̃ and Ib̃ we saw that, surprisingly,
for all 10 largest categories of Reuters and for all 20 categories of 20NG the index Ib̃ is
greater than both Iw̃ and Iw. This approved that the set of clustered syntactic bigrams is
a potentially better text representation than the set of clustered words.

However, when applying the text categorization experiment on 20NG after representing
documents as sets of clustered syntactic bigrams b̃, we saw a certain decrease in results.
This can be explained by the fact that the number of clusters was too small (k = 50) and
only bigrams that appeared in more than 5 articles participated in clusters (Wlow freq = 5),
while less frequent bigrams were not involved. Due to the computational difficulties we
could not increase the number of clusters or lower the Wlow freq. However, we managed
to cluster consecutive bigrams with Wlow freq = 2 but still the results were worse than the
described in Section 6.37 Table 12 shows a few most informative38 consecutive bigrams
extracted from the 20NG dataset.

36Words “the”, “has” and “been” are classified as stopwords.
37The overall number of syntactic bigrams of 20NG is about 2,000,000 and we decreased this number up

to 300,000 by choosing only consecutive bigrams and fixing Wlow freq = 2.
38In terms of Mutual Information between the pair 〈w1, w2〉 and one of the 20NG categories ci:

I(〈w1, w2〉, ci) > max(I(w1, ci), I(w2, ci)).
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1992 93 file stream next year spring training

2000 years find number operating system st johns

24 bit gamma ray opinions mine swap file

24 hours gordon banks proceeded work thanks advance

access bus high jacked resource listing today special

after 2000 human rights right keep too fast

black panther instruction set roads mountain top ten

burn love investors packet running system tower assembly

cd player last year san jose turn off

chastity intellect lets go see note under windows

closed roads mail server self defense virtual reality

config sys michael adams send requests warning please

considered harmful mirror sites serial number ways escape

court order model init shameful surrender white house

cs cornell ms windows skepticism chastity whos next

east sun newsletter page special investors windows crash

every american newton apple spider man world series

Table 12: An example of most informative consecutive bigrams extracted from the 20NG
dataset (among all its categories).

11 Concluding remarks

In this study we have provided further evidence for the effectiveness of a sophisticated
technique for document representation using distributional clustering of words. Previous
studies of distributional clustering of words remained somewhat inconclusive because the
overall absolute categorization performance were not state-of-the-art, probably due to the
weak classifiers they employed (to the best of our knowledge, in all pervious studies of
distributional clustering as a representation method for supervised text categorization, the
classifier used was Naive Bayes).

We show that when Information Bottleneck distributional clustering is combined with
an SVM classifier, it yields high performance (uni-labeled and multi-labeled) categorization
of the 20NG dataset. This result indicates that sophisticated document representations
can significantly outperform the standard BOW representation and achieve state-of-the-
art performance. In particular, on the 20NG dataset, with respect to either multi-labeled
or uni-labeled categorization, we obtain either accuracy (BEP) or representation efficiency
advantages over BOW when the categorization is based on SVM.

Nevertheless, we found no accuracy (BEP) or representation efficiency advantage to this
feature generation technique when categorizing the Reuters or WebKB corpora. Our study
of the three corpora shows fundamental differences between these corpora. Specifically, we
observe that Reuters and WebKB can be categorized with close to “optimal” performance
using a small set of words, where the addition of many thousands more words provides no
significant improvement. On the other hand, the categorization of 20NG can significantly
benefit from the use of a large vocabulary. This indicates that the “complexity” of the
20NG corpus is in some sense larger than that of Reuters and WebKB. In addition, we see
that the IB representation can significantly benefit from including even the most infrequent
words when it is applied with the 20NG corpus. On the other hand, such infrequent words
degrade the performance of the IB categorizer when applied to the Reuters and WebKB
corpora.
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Based on our experience with the above corpora we note that when testing fancy feature
generation techniques for text categorization, one should avoid making definitive conclusions
based only on “low-complexity” corpora such as Reuters and WebKB. It seems that sophis-
ticated representation methods cannot outperform BOW on such corpora.

Let us conclude with some questions and directions for future research. Given a pool
of two or more representation techniques and given a corpus, an interesting question is
whether it is possible to combine them in a way that will be competitive with (or even
sometimes outperform) the best technique in the pool. A straightforward approach would
be to perform cross-validated model selection. However, this approach will be at best
as good as the best technique in the pool. Another possibility is to try combining the
representation techniques by devising a specialized categorizer for each representation and
then use ensemble techniques. Other sophisticated approaches such as “co-training” (see,
e.g., Blum and Mitchell, 1998) can also be considered.

Our application of the IB distributional clustering of words employed document class
labels but generated a global clustering for all categories. Another possibility to consider is
to generate specialized clustering for each (binary) classifier. Another interesting possibility
to try is to combine clustering of all n-grams, with 1 6 n 6 N for some small N .

The BOW+MI categorization employed Mutual Information feature selection where the
number k of features (words) was identical for all categories. It would be interesting to
consider a specialized k for each category. Although it might be hard to identify good set
of vocabularies, this approach may lead to somewhat better categorization and is likely to
generate more efficient representations.

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. In Proceedings of ICML’00, 17th International Conference
on Machine Learning, pages 9–16. Morgan Kaufmann Publishers, San Francisco, CA,
2000.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley and
ACM Press, 1999.

L. D. Baker and A. K. McCallum. Distributional clustering of words for text classification.
In Proceedings of SIGIR’98, 21st ACM International Conference on Research and Devel-
opment in Information Retrieval, pages 96–103, Melbourne, AU, 1998. ACM Press, New
York, US.

R. Basili, A. Moschitti, and M. T. Pazienza. Language-sensitive text classification. In
Proceedings of RIAO’00, 6th International Conference “Recherche d’Information Assistee
par Ordinateur”, pages 331–343, Paris, France, 2000.

R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. On feature distributional clustering
for text categorization. In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors,
Proceedings of SIGIR’01, 24th ACM International Conference on Research and Develop-
ment in Information Retrieval, pages 146–153, New Orleans, US, 2001. ACM Press, New
York, US.

35



A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
COLT’98: Proceedings of 11th Annual Conference on Computational Learning Theory,
pages 92–100. Morgan Kaufmann Publishers, San Francisco, US, 1998.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

M. F. Caropreso, S. Matwin, and F. Sebastiani. A learner-independent evaluation of the
usefulness of statistical phrases for automated text categorization. In Amita G. Chin,
editor, Text Databases and Document Management: Theory and Practice, pages 78–102.
Idea Group Publishing, Hershey, US, 2001.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning 20, pages 273–297,
1995.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New York, 1991.

M. Craven, D. DiPasquo, D. Freitag, A. K. McCallum, T. M. Mitchell, K. Nigam, and
S. Slattery. Learning to extract symbolic knowledge from the World Wide Web. In
Proceedings of AAAI’98, 15th Conference of the American Association for Artificial In-
telligence, pages 509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41(6):391–
407, 1990.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, B(39):1–38, 1977.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

R. O. Duda and P. E. Hart. Pattern classification and scene analysis. John Wiley & Sons
Inc., New York, 1973.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed). John Wiley &
Sons, Inc., New York, 2000.

S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings of CIKM’98, 7th ACM Interna-
tional Conference on Information and Knowledge Management, pages 148–155, Bethesda,
US, 1998. ACM Press, New York, US.

R. El-Yaniv and O. Souroujon. Iterative double clustering for unsupervised and semi-
supervised learning. In Advances in Neural Information Processing Systems (NIPS),
2001.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck.
In Proceedings of UAI’01, 17th Conference on Uncertainty in Artificial Intelligence, 2001.

36



J. Fürnkranz. Exploiting structural information for text classification on the WWW. In
David J. Hand, Joost N. Kok, and Michael R. Berthold, editors, Proceedings of IDA’99,
3rd Symposium on Intelligent Data Analysis, pages 487–497, Amsterdam, NL, 1999.
Springer Verlag, Heidelberg, DE.

R. Ghani, S. Slattery, and Y. Yang. Hypertext categorization using hyperlink patterns and
meta data. In Carla Brodley and Andrea Danyluk, editors, Proceedings of ICML’01, 18th
International Conference on Machine Learning, pages 178–185, Williams College, US,
2001. Morgan Kaufmann Publishers, San Francisco, US.

P. S. Jacobs. Joining statistics with nlp for text categorization. In Proceedings of the Third
Conference on Applied Natural Language Processing, pages 178–185, 1992.

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text catego-
rization. In D. H. Fisher, editor, Proceedings of ICML’97, 14th International Conference
on Machine Learning, pages 143–151, Nashville, US, 1997. Morgan Kaufmann Publishers,
San Francisco, US.

T. Joachims. Making large-scale support vector machine learning practical, chapter 11,
pages 169–184. MIT Press, Cambridge, MA, 1998a. in B. Scholkopf, C. Burges, A.
Smola. Advances in Kernel Methods: Support Vector Machines.

T. Joachims. Text categorization with support vector machines: learning with many relevant
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A Example of one 20NG word cluster

Word Clusters and their weights Word Clusters and their weights

1m w̃148 (0.98813) w̃78 (0.0118695) funet w̃148 (1)

286 w̃148 (1) hardware w̃148 (1)

386 w̃148 (1) heine w̃148 (0.994673) w̃170 (0.00532703)

386s w̃148 (0.999098) w̃65 (0.000901958) humbly w̃148 (1)

42bis w̃148 (1) ibm w̃148 (1)

44m w̃148 (0.999984) install w̃148 (1)

4k w̃148 (1) interface w̃148 (1)

4m w̃148 (0.558864) w̃133 (0.441136) machine w̃148 (0.992741) w̃149 (0.00725856)

61801 w̃148 (0.994673) w̃170 (0.00532703) machines w̃148 (1)

640x480 w̃148 (1) mag w̃148 (1)

64k w̃148 (1) matrix w̃148 (1)

768 w̃148 (1) megabytes w̃148 (1)

8086 w̃148 (0.977137) w̃264 (0.0228628) memory w̃148 (1)

8500 w̃148 (1) micro w̃148 (1)

9090 w̃148 (1) mode w̃148 (1)

9600 w̃148 (1) modes w̃148 (0.998101) w̃140 (0.00189931)

accelerated w̃148 (0.999996) mts w̃148 (1)

accessed w̃148 (1) multimedia w̃148 (1)

architecture w̃148 (1) networking w̃148 (0.841069) w̃78 (0.158931)

aust w̃148 (1) nextstep w̃148 (1)

baud w̃148 (1) optimization w̃148 (1)

bbs w̃148 (1) optimized w̃148 (1)

buffered w̃148 (1) ox w̃148 (1)

buggy w̃148 (1) pc w̃148 (1)

bundled w̃148 (1) pcs w̃148 (1)

card w̃148 (1) polytechnic w̃148 (1)

cards w̃148 (1) printing w̃148 (1)

cd w̃148 (0.999082) w̃78 (0.000917885) proceeded w̃148 (1)

clone w̃148 (1) processor w̃148 (1)

compatibility w̃148 (1) processors w̃148 (1)

compatible w̃148 (1) resolution w̃148 (1)

computer w̃148 (1) roms w̃148 (1)

computers w̃148 (1) scanner w̃148 (1)

configured w̃148 (1) scanners w̃148 (1)

connect w̃148 (1) scanning w̃148 (1)

dat w̃148 (1) shadows w̃148 (1)

dial w̃148 (1) simtel w̃148 (1)

disabling w̃148 (1) simulator w̃148 (1)

disk w̃148 (1) slower w̃148 (1)

diskette w̃148 (1) slows w̃148 (1)

docs w̃148 (0.999975) software w̃148 (1)

fastest w̃148 (1) svga w̃148 (0.923418) w̃136 (0.0765818)

faxes w̃148 (0.999999) transferring w̃148 (1)

fd w̃148 (0.999607) w̃294 (0.000392778) vga w̃148 (1)

finder w̃148 (0.999973) victor w̃148 (1)

formatting w̃148 (1) video w̃148 (1)

freeware w̃148 (0.603074) w̃265 (0.396926) wanderers w̃148 (1)

Table 13: An example of one 20NG word cluster by the soft clustering scheme. w̃i are
pseudo-words to which the words refer, the pseudo-words weights are shown in the brackets.
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