PROGRAMMING A HYPERCUBE MULTICOMPUTER *
Sanjay Ranka, Youngju Won, and Sartaj Sahni
University of Minnesota
* This research was supported in part by the National Science Foundation under grants DCR84-

20935 and MIP 86-17374

Abstract
We describe those features of distributed memory MIMD hypercube multicomputers that

are necessary to obtain efficient programs. Several examples are developed. These illustrate the
effectiveness of different programming strategies.

Keywords and phrases: Hypercube computers, MIMD computers, parallel computing

1 INTRODUCTION

Many applications such as weather forecasting, three dimensional modeling, fluid dynam-
ics, computational chemistry, real time image processing etc. require computational capability
far beyond what can be obtained from the fastest single processor computers available. There are
essentialy two ways in which this computational capability can be achieved. The first is to
develop even faster single processor computers. The second is to use several computers in paral-
lel to solve asingle problem.

Until recently, much of the emphasis in high speed computing was in the first of these
approaches. Recently, however computers supporting truly parallel computing have become
commercialy available. Hypercube computers are dominant in this class of commercialy avail-
able paralel computers. Ametek, Floating Point Systems, Intel Scientific Computers, NCUBE
and Thinking Machines are some of the vendors of hypercube and modified hypercube comput-
ers.

In Section 2, we describe the hypercube architecture. In Section 3, we develop an example
to illustrate the nature of programming on a hypercube efficiently. Section 4 considers program-
ming techniques specific to MIMD parallel computers.

2 HYPERCUBE ARCHITECTURE

Parallel computers may be classified by taking into account their memory organization,
processor organization, and the number of instruction streams supported.

Processor
Processor |- | | | \
n
t
e G Memory —
r |
c
Processor o [8
n &
n
e Processor |<~—
[M Inter-
Processor II PR ﬁ] Connection
0 0 Network
n {/ Memory
N
Processor | e B
t a
& k
E Processor "
Processor -_— : /
Memory
(a) Tightly coupled multiprocessor ('b) Loosely coupled multiprocessor

Figure 1 : Multiprocessor types

Memory organization

A multiprocessor is a parallel computer in which the (at least two) processors share a com-
mon memory or a common memory address space [QUINS87].

A block diagram of a tightly coupled multiprocessor is provided in Figure 1(a). In such a
computer, the processors access memory via a processor-memory interconnection network. This

network could be a simple bus or any of a variety of switching networks such as Omega net-
work, Benes network, full cross bar switch, etc [SIEG79] . In aloosely coupled multiprocessor,
each processor has alocal memory (Figure 1(b)). These local memories together form the shared
address space of the computer. Typically a memory reference to the local memory of a processor
is orders of magnitude faster than a memory reference to a remote memory as local memory
references are not routed through the interconnection network while remote memory references
are.
The block diagram for a multicomputer is shown in Figure 3.

Processing
Element
@ n
t
Memory <ra
c
n
Processing n
Element”™ |~—— g
|]
0
Memory n
N
e
t
W
‘
Processing |_—
Element
i
Memory

Figure 2 : A multicomputer

The significant difference between a multicomputer and a multiprocessor is that a multicomputer
has neither a shared memory nor a shared memory space [QUIN87]. Consequently to use datain
aremote memory, it is necessary to explicitly get that data into the local memory. This and all
other inter-processor communication is done by passing messages (via the interconnection net-
work) among the processors.

The distinction between multicomputers and multiprocessors is essentially that the former
has no shared memory or address space while the latter has this. The NCUBE hypercube is a
multicomputer. Our further discussion is restricted to multicomputers.
Processor organization

Processor organization is defined by the interconnection network used to connect the pro-
cessors of the multicomputer. Some of the more common interconnection networks are: two
dimensional mesh, ring, tree and hypercube (Figure 3). The first three are intuitive while the
fourth needs some elaboration. In a hypercube of dimension d, there are 29 processors. Assume
that these are labeled 0, 1, - - -,2% — 1. Two processors i and j are directly connected iff the binary

/N 0T

(&) A binary tree of 7 nodes (b) A mesh of 16 nodes

- | = :
7/0

/ \ | 40%
\ / A

/o
o o

(d) A hypercube of 16 nodes (dimension = 4)

(¢) Aring of 8 nodes

Figure 3 : Different types of interconnection network

representations of i and j differ in exactly one bit. Each edge of Figure 3(d) represents a direct
connection. Thus in a hypercube of dimension d, each processor is connected to d others. If the
direct connection between a pair of processors i and j is unidirectional, then at any given time
messages can flow from either i to j or from j toi. In the case of bidirectional connections, it is
possible for i to send a message to j and for j to ssimultaneously send one to i. The interconnec-
tionsin NCUBE's hypercube are bidirectional.

a)

b)

The popularity of the hypercube network may be attributed to the following:

Using d connections per processor, 2¢ processors may be interconnected such that the max-
imum distance between any two is d. While meshes, rings, and binary trees use a smaller
number of connections per processor, the maximum distance between processors is larger.
It isinteresting to note that other networks such as the star graph [AKER87] do better than
ahypercube inthis regard. A star graph connects (d+1)! processors using d connections per

processor. The inter-processor distance is at most %

. The hypercube has the
advantage of being awell studied network while the star graph isrelatively new.

Most other popular networks are easily mapped into a hypercube. For example a 2 x 4
mesh, 8 node ring, and a 7 node full binary tree may be mapped into an 8 node hypercube

as shownin Figure 4. A full binary tree cannot be mapped on the hypercube such that every
two nodes of the tree are connected by a hypercube connection [DESH86]. In Figure 4(c)
nodes 000 and node 110 have a connection via node 100. Node 100 is not used for any of
the tree nodes. Thus, it only performs message passing between nodes 000 and 110. Gray
codes are often used to obtain efficient mappings of meshes and rings onto a hypercube
[CHANSE]. Ani bit binary gray code § is defined recursively as below:

$1=01 S=0[S], USl?
where [S._1]R is the reverse of the k-1 bit code S._; and b[S] is obtained from S by
prefixing b to each entry of S So, S,=00,01,11,10 and
S; = 000, 001, 011, 010, 110, 111, 101, 100. The ring to hypercube mapping of Figure 4.(a)
USes S;.

A hypercube is completely symmetric. Every processors interconnection pattern is like
every other processors. Furthermore, a hypercube is completely decomposable into sub-
hypercubes (i.e., hypercubes of smaller dimension).

000 001 011 ——| o010 110 111 101 100

(a) An8nodering : :
000 ——: 100 :
000 | 001 011 010 ‘ ‘
001 110
100 101 111 110 / \
011 101 010 111
(b)A2X 4mesh

(¢) A 7 node complete binary tree
(node 100 is not a part of the tree)

Figure 4 : Embeddings of different networks in a 8 node hypercube

I nstruction streams

Flynn [FLYN66] classified computers based on the number of instruction and data streams.

The two categories relevant to our discussion here are SIMD (single instruction multiple data
streams) and MIMD (multiple instruction multiple data streams). In an SIMD parallel computer,
al processors execute in a synchronous manner. In any given cycle, all processors execute the
same instruction. MIMD parallel computers are generally asynchronous (in theory they could be
synchronous too) and different processors may execute different instructions at any given time.

In this paper, we consider strategies to develop efficient programs for MIMD hypercube

multicomputers. When programming such a computer, one must be aware of the significant
differences between the cost of arithmetics and that of communication in the commercialy avail-
able machines. For instance, [DUNI86] has performed an experimental study of inter processor
communication time and time to perform arithmetic operations on an NCUBE hypercube multi-
computer. A summary is provided in Figure 5. >From Figure 5(a), we see that an 8 byte message
transfer between two directly connected processors (i.e., processors 1 hop apart) takes 42 times
the time for an 8 byte real addition and 32 times that of an 8 byte real multiplication. Further-
more, longer messages are transferred at a higher rate (i.e., bytes per second) than shorter ones
going the same distance and it takes longer to send the same message to a processor 4 hops away
than to one 2 hops away (Figure 5(b)). The time for a one hop communication of a message of
length N bytes is approximately 446.7 + 2.4N microseconds [DUNI86].

Operation Time Comm./Comp.
8 byte transfer 470 us
(1 hop echo)
8 byte real add. 11.2 us 42
8 byte real mult. 14.7 ps 32

@

Communication speeds
KB/s

Length 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops
8 17.2 11.7 8.9 7.1 5.9 51
16 33.1 22.4 16.9 13.7 114 9.8
32 61.6 41.7 314 25.2 21.1 18.1
64 106.6 72.1 54.4 43.7 36.5 31.1
128 169.5 114.4 86.1 69.1 57.6 494
256 241.2 162.2 121.4 97.1 81.0 69.5
512 304.8 203.4 152.4 121.9 101.6 87.1
1024 351.1 2334 174.9 139.8 116.4 99.8
2048 380.8 252.2 188.8 150.8 125.6 107.6

(b)
Figure 5: Performance table

3 AN EXAMPLE PROGRAM

The template matching problem is a problem that is solved frequently in Computer Vision.
We are given an N x N image | and an M x M template T. The match of the template to the
image at point (i, j) is measured by the two dimensiona convolution:

M-1 M-1
() C2D(i,j)= > > I((+s)ymodN, (j+t)ymodN)OT(s,t)
s=0 t=0
O(N?M?) operations are required to compute C2D for al points (i,j) using (1) directly. In
obtaining a hypercube program to compute the two dimensional convolution, we assume (for
simplicity) that the hypercube is of dimension d, where d is even. Our discussion is easily
extended to the case when d is odd. Further, we assume that the image matrix | is distributed

over the 29 processors as indicated by the partitioning scheme of Figure 7. Here, processors are
numbered using the gray code mesh mapping scheme of Figure 4. When our program is done
computing the matrix C2D, C2D(i,j) will be in processor k iff I(i,j) was initialy in this processor.
Hence the partioning of C2D across the processors isidentical to that of I.

——— HI

Figure 6: Region (of image values or result) required by M

Observe that no processor has all the image values needed to compute the C2D valuesin its
partition (Figure 6). The additional image values required are with the east, south, and southeast
neighbor processors (cf. mesh mapping). This difficulty may be overcome in one of two ways.

(1) Thethree neighbors cited above send the required image values to the processor which then
does all the computing required for its C2D partition. The data to be transferred is shown in
Figure 6 by vertical and horizontal lines.

(2) Each processor does al the computing involving the image values it has initidly (this
includes some of the computing for C2D values in its west, north, and northwest neighbor
processors) and then transmits the partially computed C2D values to these neighbors. The
partially computed values are shown in Figure 6 by horizontal and vertical lines.

If we assume that the size of the image values (in bytes) is the same as that of the C2D
values, then both the schemes involve the same amount of data transfer. We continue with stra-
tegy (2). Two high level descriptions of the node program for each hypercube node are given in
Figures 7 and 8. Notice that the latter program exploits the nonblocking nature of the node write
(nwrite) function and attempts to overlap node computing and data transmission. Figure 9 is a
high level description of the host program.

The run times of the C code of Figure 8 on an NCUBE hypercube are given in Figure 10.
Since the amount of computation is much larger than the amount of communication, we did not
find any significant differences between the run times of the programs of Figures 7 and 8. In the
next section, we will develop an example in which the overlap of computation and communica-
tion leads to a significant reduction in run time.

int TemplateAtNode;
{
if (nodeid == 0) Receive Template from host
Broadcast Template from node 0 (using tree expansion)
Cadculate Convolution for self
Cadlculate Convolution for North node
Cadculate Convolution for West node
Cadculate Convolution for NorthWest node
Send Convolution for NorthWest node
Send Convolution for West node
Send Convolution for North node
for(i=0;i<3;i++)
{
Receive Convolution from a node
Update Convolution

}
End Signal to node 0 (using tree collapse)
if (nodeid == 0) Send End Signal to the host
}
Figure 7: Template Matching (High Level Description of the node)
No overlap between communication and computation

int TemplateAtNode;

{
if (nodeid == 0) Receive Template from host
Broadcast Template from node 0 (using tree expansion)
Cadculate Convolution for NorthWest node
Send Convolution for NorthWest node
Cadculate Convolution for West node
Send Convolution for West node
Cadculate Convolution for North node
Send Convolution for North node
Cadculate Convolution for self
for(i=0;i<3;i++)

Receive Convolution from a node
Update Convolution

}
End Signal to node 0 (using tree collapse)
if (nodeid == 0) Send End Signal to the host

Figure 8: Template Matching (High Level Description of the node)
Overlap between communication and computation

4 PROGRAMMING CONSIDERATIONS

HostTemplate();

Open a hypercube of the required dimension;

Load the "node' program on al the nodes;

Send the template to node O;

Receive Completion Signal from node O;

Dedllocate the hypercube;

Figure 9: Template Matching (High Level Description of the host)

p n 4 8 16 32
1 32 | 0505 | 1.857 | 7.000 | 20.450
4 32 | 0139 | 0482 | 1417
64 | 0514 | 1872 | 7.026 | 20.497
32 | 0045 | 0.115
16 64 | 0142 | 0484 | 1422
128 | 0516 | 1.874 | 7.031 | 20.510
32 | 0.021
64 64 | 0.047 | 0.118
128 | 0.144 | 0487 | 1.426
256 | 0519 | 1.878 | 7.036 | 20.520

Times are in seconds

n = size of the image
m = size of the template
p = number of processors
Figure 10: Run times of the programin Figure 8

One view of programming is that it is the process of mapping an agorithmic abstraction
onto a target computer. The resultant mapping (called a program) is specified in any one of the
programming languages supported by the target computer. To arrive at an efficient program for a

multicomputer, one needs to consider the following:

1)

2)

a)
b)

initial algorithmic abstraction - quite clearly, this has a significant influence on the resulting

program.

mapping the abstraction on to the target computer . Here the following issues are important:

distributing the data across the local memories of the multicomputer
load balancing - ensuring that all the processors have a comparable computational

load

10

C) repeating identical computations vs sharing results
d) overlapping computation and communication
€ number of processors to use

Before proceeding with a discussion of these considerations, it is appropriate to define two
terms, speedup and processor utilization efficiency, that are commonly used when one talks about
the efficiency of a multicomputer program.

Definition: Let ty be the time required to solve a problem using the fastest single processor
program for that problem. Let t, be the time required by the multicomputer program when k pro-
cessors are in use. The speed up, S, obtained by the multicomputer program is:

t
%= t
The efficiency of processor utilization, E, is:
E=>
k

Barring any anomalous behavior, one strives for a speed up S, = k and E = 1. Anomalous
behavior [LAI84] can result in S, > k and E > 1. In practice, because of the inter processor com-
munication overhead, S, will generally be less than k and E will be less than 1.

4.1 Algorithm Selection

There are essentially two approaches to obtaining the initial algorithm that is to be
developed into a muticomputer program. The first is to start with an existing paralel algorithm
and the second to develop a new agorithm. When the latter approach is used one is aware of the
target architecture and is more likely to arrive at an algorithm that is efficiently and easily
mapped into a program. When the first approach is used, one must keep the following in mind:

1) Isthe required inter-processor communication pattern easily obtained on the target com-
puter. For example, an algorithm requiring frequent and random exchange of messages will
not perform well on a hypercube multicomputer. Furthermore, since the memory of a multi-
computer is distributed across the multicomputer nodes, it must be possible to partition the
data so that locality of memory reference is preserved to alarge extent.

2) Letthetotal work done by an algorithm be the product of its run time and the number of pro-
cessors used. For many of the asymptotically fastest parallel algorithms, this exceeds the
total work done by the correspondingly fastest uniprocessor algorithms by more than a con-
stant factor. So, for example, one can find the shortest paths between al pairs of verticesin

an n vertex directed graph in O(log?n)* time using O(T) processors, [DEKE81]. How-

ever, Floyd's dynamic programming agorithm [HORO85] runs in O(n®). Thus, the parallel
algorithm of [DEKEB81] does O(log n) times the work done by Floyd's algorithm. For the
sake of concreteness, suppose that it does 4 log n times the work. We can run the algorithm
of [DEKES1] on ak processor hypercube by letting each processor of the hypercube do the

work of O() processors in the algorithm of [DEKES81]. However the resulting algo-

rithm will not %e faster than using Floyd's algorithm on a single processor unless the
number, k, of hypercube processors exceeds 4 logn (actually more are needed because of
the reasons cited below). This means that if n = 1024, then we need at least 4log,1024 = 40
processors to break even with Floyd’s algorithm on a single processor!. For larger n, more
processors are needed just to catch up with the uniprocessor agorithm!. * al logarithms
are assumed to have a base of 2 Floyd's algorithm can, however, be parallelized to runin

3
O(nT) time for k < n? (k is the number of processors), [JENQ87]. While this does not yield

the asymptotically fastest algorithm, it can be mapped into a multicomputer program that
exhibits acceptable speedups. To be effective, the total work done by the initial parallel
algorithm must be within a constant factor of the work done by the fastest uniprocessor

11

agorithm (unless the number of processors available isvery large).

3) Evenwhen the communication pattern is suited to the target architecture and the total work
done is not excessive relative to the work done by the best uniprocessor algorithm and the
number of processor available, the algorithm may not result in a satisfactory program. This
is so as most of the existing parallel algorithms with good asymptotic behavior assume that
the cost of inter-processor communication is comparable to that of abasic operation (i.e, an
add, subtract, etc.). Asaresult, these algorithms do not attempt to reduce communication at
the expense of arithmetics. However, on commercialy available multicomputers such as
NCUBE/10, communication is significantly more expensive than basic arithmetic opera-
tions (cf. Figure 5).

4.2 Datadistribution

In a multicomputer, it is necessary to distribute the data across the local memories for the
following reasons:

1) There may be more data than can be accommodated in the local memory of a single node
processor.

2) Loca memory access is much faster than access to a remote memory, hence each processor
should have as much of the data it needs in its own local memory.

In some cases, it is possible to reduce or even eliminate inter-processor communication by
replicating some or all of the data across some or all of the processors. For example, consider the
template matching problem of the previous section with the following assumptions:

a) Theimage and template matrices areinitially in the host

b) The convolution matrix isto be left on the hypercube after it has been computed. Thisis to
be partitioned across the processors as in the previous section.

One way to accomplish this task is to distribute the image and template matrices to obtain
the distribution required by the program of Figure 8. Another possibility is to distribute the
image matrix so that each processor has al the image values it heeds to compute the convolution
at all the points assigned to it. Thus, in addition to the data a processor begins within Figure 8, it
has the nece ssary data that was previously only in its east, south-east and south neighbor proces-
sors (shown by horizontal and vertical lines in Figure 15). In this case, the hypercube processors
do not need to communicate any image or partial convolution values to their north, west, and
northwest neighbors. When this image distribution is used, the node program is simpler. Further-
more, the computation time is reduced. Figure 11 gives a high level description of the new node
program. Figure 12 gives the times for the two different cases. These times include the time
needed to transmit the image and template matrices from the host to the hypercube . Hence the
times of the program of Figure 8 are higher in the table of Figure 12 as compared with Figure 10.

While data replication may be desirable, the size of the local memory will often limit the
extent to which it is possible. As noted in [JENQ87], the all pairs shortest path problem is
efficiently solved using the single source al destinations algorithm of Dijkstra [HORO85]. How-
ever, this requires the full cost matrix to be present in the local memory of each processor. For
large graphs, thisis not possible. Hence, it is necessary to use other algorithms.

4.3 Load Balancing

The objective of load balancing isto obtain an approximately equal distribution of the work
load across the multicomputer processors. When the work load is known a priori, it is generally
the responsibility of the host to ensure such a work load distribution. When the work load is not
known a priori, the multicomputer nodes need to dynamically readjust the load. We shall concern
ourselves only with thislatter case of dynamic load balancing.

Figures 13 and 14 give two variations of the same heuristic to balance the load. In both,
load balancing is accomplished by averaging over the load in processors that are directly

12

TemplateAtNode; {
if (nodeid == Q) receive template from host
Broadcast Template from node 0 (using tree expansion)
Receive Image from the Host
Perform Convolution;
End Signal to node 0 (using tree collapse)
if (nodeid == 0) Send End Signal to the host }

Figure 11: Template Matching (High Level Description of the node program)
The node has all the necessary image values for convolution

Figure 8 Figure 11
m m
P 4 8 16 4 8 16

16 | 0902 | 2422 | 8143 | 0.760 | 1.731 | 5413
64 | 0.637 | 1.176 | 2532 | 0.607 | 1.016 | 2.345

Times are in seconds

Size of theimage = 128 x 128
m = size of the template
p = number of processors
Figure 12: Table comparing performance of programsin Figure 8
and Figure 11.

LoadBalancel();
{

for(i =0; i < CubeSize ; i++) {

Send MyL oad to neighbor processor along dimension i;

Receive HisLoad from neighbor processor along dimension i;

and append to Myload;

avg = (MyloadSize + HisLoadSize + 1) / 2;

if (MyLoadSize > Avg) MyloadSize = Avg;

dseif (HisLoadSize > Avg) MyLoadSize += HidoadSize - Avg;

}

}

Figure 13: Load balancing (Heuristic 1)

connected. The variables used have the following significance:
MyLoad = current load in the node processor
HisLoad = load in adirectly connected node processor

MyL oadSize = size of the load in the node processor
HisLoadSize = size of the load in a directly connected node processor

13

LoadBalance2();

for(i =0; i < CubeSize ; i++) {
Send MyL oadSize to neighbor processor along dimensioni;
Receive HisL oadSize from neighbor processor along dimension i;
avg = (MyloadSize + HisLoadSize + 1) / 2;

If (MyLoadSize > Avg) {
Send extra load (MyL oadSize - Avg) to neighbor processor along
dimension i;

MyloadSize = Avg;

}

eseif (HisLoadSize > Avg) {

Receive extraload (Avg - HisLoadSize) from neighbor processor
along dimension i;

MyL oadSize += HisloadSize - Avg;

Figure 14: Load balancing (Heuristic 2)

avg = average size of the load of the two processors

The only difference between the two variations isthat in the first one a processor transmits
its entire work load (including the necessary data) to its neighbor processor while in the second
variation only the amount in excess of the average is transmitted. However, in order to achieve
this reduction in load transmission, it is necessar y to first determine how much of the load isto
be transmitted. This requires an initial exchange of the load size. Hence variation 2 requires
twice as many message transmissions. Each message of variation 2 is potentially shorter than
each message transmitted by variation 1. We expect variation 1 to be faster than variation 2 when
the number of bytes in MyLoad and HisLoad is relatively small and the time to set up a data
transmission relatively large. Otherwise, variation 2 is expected to require less time.

Before incorporating a load balancing scheme into an agorithm, it is necessary to weigh
the potentia reduction in time required to complete the work against the time required to balance
the node. If the latter is larger, our algorithm will perform bett er when the load is not dynami-
cally balanced by us. [RANKS88] reports on the effect of introducing a load balancing step into
the computation of the Hough Transform. This resulted in a significant reduction in run times.

4.4 Replication of Computation

When computing on a conventional uniprocessor computer, we can reduce the run time by
repeatedly using a computed value rather than recomputing the value each time it is needed.
Thus, the code of Figure 15(a) runs faster than that of Figure 15(b). On a multicomputer with 16
processors, it would be faster to have the i’ th processor compute f;(g (x)), 1<i<16 (assuming all 16
have the value of x) rather than to have to have one compute g (x) and then broadcast the value to
the remaining 15 processors. Recomputing g(x) (Figure 15(d)) will be faster than reusing g(x)
(Figure 15(c)) by approximately the time needed to broadcast g (x).

14

y:g(x) d0100i=1,16
do100i=1, 16 100 z = fi(g(x))
100 z = fi(y)
(a) g (x) computed only once (b) g(x) computed 16 times
if (Processorld = 0) y=9(x)
theny = g(x) Compute fi(y)

Broadcast y to other processors
else Receive g(x) invariabley
Compuite f;(y)

(c) Only processor 0 computes g (x) (d) Each processor computes g (x)
Figure 15

45 Overlapping Computation and Communication

In Section 4, we saw an example where rearranging the computation so as to overlap com-
putation and communication resulted in an improvement in program performance. Since thisis a
very important aspect of multicomputer programming, we develop another example in this sec-
tion. This example has to do with finding a shortest path in a maze.

Figure 16 : Shortest path in a maze

A shortest path between s and t in the maze at Figure 16 can be found using a breadth first
search. Shaded cells are blocked and the path cannot go through them. First, cells that are one
unit from s are labeled, then those 2 units from s are labeled, then those that are 3 units from s are
labeled, and so on. This labeling continues until the target cell t is reached. Blocked cells are not
labeled. Four labels: -, —, |, and t are used to point to the cell from which we reached the

15

current cell. Now the shortest path can be identified simply by following arrows fromt to s. Cells
which are the same distance from cell s are called front wave cells and thus the labeling process
is often called front wave expansion. This front wave expansion has been implemented on an
NCUBE by Won and Sahni [WON87], and two high level algorithms are given in Figures 17 and
18. The former is a straightforward implementation while the latter overlaps computation and
communication. A possible maze partitioning is given in Figure 19.

Step 1 [Maze partitioning and mapping] Partition the nxn maze into k parts and assign
one partition to each of the k node processors.
Step 2 [Front wave expansion] Each processor that has a maze cell on the current front

wave expands the front wave. This expansion may require communicating with
other processors as the cells adjacent to the front wave cell being expanded may
be in different processors. All communication requests are saved.

Step 3 [Inter processor communication] Each processor sends its communication
packets to the destination processor.

Step 4 [Process communication packets] Each processor examines the packets it
receives and labels the front wave cells contained in these packets.

Step 5 Repeat steps 2, 3, and 4 until either the target cell is reached or the new front

wave hasno cellsinit.

Figure 17 : Algorithm 1 for front wave expansion

Step 1 [Maze partitioning and mapping] Partition the nxn maze into k parts and assign
one partition to each of the k node processors.

Step 2 [Inter processor communication] Each processor sends its communication
packets to the destination processor (front waves of distance d)

Step 3 [Front wave expansion] Each processor that has a maze cell on the current front

wave expands the front wave (of distance d). This expansion may require
communicating with other processors as the cells adjacent to the front wave cell
being expanded may be in different processors. All communication requests are
saved for the next iteration.

Step 4 [Process communication packets] Each processor examines the packets it
receives and labels and expands (as in step 3) the distance d front wave cells
contained in these packets.

Step 5 Repeat steps 2, 3, and 4 until either the target cell is reached or the new front
wave hasno cellsinit.

Figure 18 : Algorithm 2 for front wave expansion

To faciliate the front wave expansion, each processor maintains a queue of front wave cells
that are in its maze partition. During front wave expansion, each cell on this queue is expanded
(i.e, the cdls to its north, south, east, and west on the routing grid are examined). Some of these
cells are in the processor's grid partition while others are in the grid partitions assigned to other

16

Figure 19 : Maze partitioning

processors. For those that are in the local partition, we may complete the front wave expansion.
I.e., unblocked cells are labeled and put on an internal queue for later expansion. Cells that are
not in the local partition are stored in a send queue for later transmission to the proper processors.
Once the front wave cells have been examined in this way, each node processor transmits the
cellsinits send queue to the processors assighed to them. These are received by the destination
processors and stored in their receive queues. The cells received (i.e., those in the receive
queues) are processed. Thisinvolves labeling them and adding them to the internal queue if they
are unlabeled and unblocked.

In algorithm 1 (Figure 17), following the sending of data packets in Step 3, a processor is
ready to do further work. However the next step causes it to wait asthere is a delay between data
leaving a source processor and arriving at its destination. We can rearrange the computation to
obtain algorithm 2 (Figure 18). This introduces a step between the send data and receive data
steps. Inthe first iteration, each processor sends distance O (i.e., null packets) front wave cells in
Step 2; processes distance 0 front wave cells in Step 3; and receives and processes remaining dis-
tance 0 packets in Step 4. In the next iteration, distance 1 packets are sent in Step 2; the local dis-
tance 1 front wave cells are processed in Step 3; and the remaining distance 1 front wave cells
are received from the neighbor processors and processed in Step 4; and so on.

On the tested mazes, algorithm 2 required 25% to 30% less time than algorithm 1. This
underscores the importance of reducing the communication overhead by overlapping communi-
cation with computation.

4.6 Number of Processors

For any given instance of a problem, there is an optimal hypercube dimension d to use.
Using a hypercube of larger or smaller size will result in an increase in the program run time.
While it is easy to expect an increase in run time using a smaller dimension hypercube, it is less
evident why this should happen with a larger dimension hypercube. Several of the factors that
contribute to this seemingly anomalous phenomena are:

17

1) The host to node data distribution time increases as more message transfers need to be set
up.
2) Total inter processor communication time may increase.

3) In severa applications the use of a multiple processors results in a recombination phase
where the partial results computed by the individual processors is combined to obtain the
overal solution. For example, consider the 0/1-Knapsack problem:

m
maximze > piX

i=1
subjectto Y wix<c

i=1

and x; J {0,1},1<i<m

This problem was solved on an NCUBE by Lee et al. [LEE87] by first partitioning an m
object instance into smaller instances, solving the smaller instances using dynamic programming
on each hypercube node, and combining the results from these. Figure 20 shows the total time,
time required to solve the smaller instances using dynamic programming, and the combining time
on atest set with m= 100 and ¢ = 30. The combining time increases as the number of processors
increases. Thisincrease eventually overshadows the reduction in the dynamic programming time.

Good speed up will be observed on larger hypercubes only when one is solving sufficiently
large problem instances.

100 g
\\\ m:SOO
\\ C=3O

75

504 \

t

25 | |

\\8-\7-,

() S Qeerrert 9 \\‘g;::gitlp

1 2 4 8 oo |

the number of processors

E— total time _
,,,,, dynam. prog. time
........... combining time

Figure 20 : Components of elapsed time for Knapsack Problem

18

5 CONCLUSIONS

The commercia availability of low cost multicomputers has opened new avenues of Com-
puter Science research - operating systems, languages, software development environments,
algorithms, etc. This paper has examined several issues that arise in programming a hypercube
multicomputer. To achieve the full promise of these computers, it is necessary to pay careful
attention to these issues.

6 REFERENCES

[AKERS87]S. B. Akers, D. Harel and B. Krishnamurthy, "The Star Graph: An attractive alterna-
tive to the n-Cube"’, Proc. of Intl. Conference on Parallel Processing, 1987.

[CHANSE]T. F. Chan and Y. Saad, "Multigrid agorithms on the hypercube multiprocessor”,
| EEE Transactions on Computers, vol. C-35, Nov. 1986, pp.

[DEKESG]E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix and graph algorithms', SAM
Journal on computing, 1981, pp. 657-675.

[DESH86]S. R. Deshpande and R. M. Jenevein, "Scalability of a binary tree on a hypercube’,
Proceedings of the 1986 Intl. Conf. on Parallel Processing, 1986, pp. 661-668.

[DUNI86]T. H. Dunigan, "Hypercube performance’, Proceedings of 2nd Conf. on Hypercube
multiprocessors, Knoxville, 1986, pp. 178-192 .

[FLYNG66]M. J. Flynn, "Very high-speed computing systems', Proceedings of the IEEE, 54 , Dec.
1966, pp. 1901-1909.

[HOROBSS5]E. Horowitz and S. Sahni, "Fundamentals of Data Structures in Pascal", Computer Sci-
ence Press, 1985.

[JENQ87]J. Jeng and S. Sahni, " All pairs shortest paths on a hypercube multiprocessor”,
Proceedings of Intl. Conf. on Parallel Processing, Aug. 1987.

[LAI84]T. H. Lai and S. Sahni, "Anomaliesin Parallel Branch-and-Bound Algorithms', Commun-
ications of the ACM 27, June 84, pp. 594-602.

[LEE87]J. Lee and S. Sahni, "0/1 Knapsack problem on a hypercube multiprocessor systent',
Proceedings of Intl. Conference on Parallel Processing, Aug. 1987.

[QUINS87]M. J. Quinn, "Designing efficient algorithms for parallel computers’, McGraw-Hill Inc.
, 1987.

[RANKS88]S. Ranka and S. Sahni, "Hough's transform on a hypercube multiprocessor computer”,
University of Minnesota Technical Report, In preparation.

[SAHNS85]S. Sahni, " Software development in Pascal”, Camelot Publishing Company, 1985.

[SIEG79]H. J. Siegel, "Interconnection networks for SIMD machines’, IEEE Trans. on Comput-
ers, 12, June 1979, pp. 57-65.

[WONB87]Y. Won and S. Sahni, "Maze routing on a hypercube multiprocessor computer",
Proceedings of Intl. Conf. on Parallel Processing, Aug. 1987.

