
An Efficient Automatic Redeye Detection and Correction Algorithm

Huitao Luo, Jonathan Yen and Dan Tretter
Hewlett-Packard Labs,

1501 Page Mill Road, MS 1203, Palo Alto, CA 94304

Abstract

A fully automatic redeye detection and correction algo-
rithm is presented to address the redeye artifacts in digital
photos. The algorithm contains a redeye detection part and
a correction part. The detection part is modeled as a feature
based object detection problem. Adaboost is used to simul-
taneously select features and train the classifier. A new fea-
ture set is designed to address the orientation-dependency
problem associated with the Haar-like features commonly
used for object detection design. For each detected redeye,
a correction algorithm is applied to do adaptive desatura-
tion and darkening over the redeye region.

1 Introduction

Redeye is a common problem in consumer photography.
Currently, many image processing software applications in
the market offer redeye removal solutions. However, the
majority of them are semi-automatic or manual solutions in
that the user has to either click on the redeye or draw a box
containing the redeye before the redeye removal algorithms
can find the redeye pixels and correct them. It is desirable
to design a fully automatic redeye removal algorithm such
that no user intervention is needed. Recently, two such algo-
rithms [2, 4] have been proposed. Both algorithms primarily
based their redeye detection scheme on general face detec-
tion and eye detection algorithms, though other heuristics
and features were also discussed.

This paper discusses the design of an automatic redeye
detection and correction algorithm that requires no user in-
tervention. Technically, a redeye removal algorithm can be
decomposed into a redeye detection step and a redeye cor-
rection step, where the detection step is the more challeng-
ing part. Unlike the available algorithms [2, 4], we pro-
pose a redeye detection algorithm that is less strongly tied
to face detection and eye detection. Instead of starting with
a strong, but difficult classifier such as face detection, the
proposed algorithm starts with a weak, but much easier clas-
sifier that identifies red oval regions. The detected red re-

gions are regarded as initial candidates, and they are further
verified by a number of classifiers that separate false alarms
from real redeyes, before the final redeye detection results
are obtained. In this architecture, although the initial detec-
tion module and each individual verification classifier may
be weak by itself, the final detection algorithm could still be
very strong as long as the proper training procedure is used.

In our work, the verification classifiers are trained in two
stages: a single eye verification stage and a pairing ver-
ification stage. Adaboost [1] is used to train the classi-
fiers because of its ability to select relevant features from
a large number of object features. This is partially moti-
vated by the face detection work of Viola and Jones [5].
However, in comparison to their work, our contributions
come in three aspects. First, in addition to grayscale fea-
tures, our detection algorithm utilizes color informationby
exploring effective color space projection and space con-
version in designing object features. Second, we design
a set of non-orientation-sensitive features to address the
orientation-sensitivity problem associated with the Haar-
like features used in Viola and Jones’ work. Third, our al-
gorithm uses not only Haar-like rectangle features, but also
features of different semantics such as object aspect ratio,
percentage of skin tone pixels, etc.

2 System Overview

The proposed redeye removal system contains two steps:
the redeye detection and the redeye correction (see Fig. 1).
The detection step contains three modules: initial candidate
detection, single eye verification and pairing verification.
Among them, the initial candidate detection is a fast pro-
cessing module designed to find all the red oval regions
that are possibly redeyes. The single eye verification mod-
ule verifies the redeye candidates using various object fea-
tures, and eliminates many candidate regions correspond-
ing to false alarms. Pairing verification further verifies the
remaining redeye candidates by grouping them into pairs.
Conceptually, single eye verification module plays the role
of eye detection and pairing verification corresponds to face
detection. However, they are different from general eye and

redeye
verification
pairing

verification
single eye

detection
initial candidate

correction

Figure 1. System flowchart

x

d2d1

y

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

(a) (b)

Figure 2. (a) Initial candidate detection filter
design, (b) Concentric templates

face detection because the classifiers involved are trained
specifically on redeye samples. As will be shown soon,
many object features that are not appropriate for general eye
or face detection can be used to improve the detection per-
formance.

3 Initial Candidate Detection

This module detects red oval regions that are potentially
redeyes. It utilizes two object features: the redness and
the shape. To capture the redness feature, we define a rel-
ative redness measurefr(I) for each color pixelI. This
forms a redness map for each input image. A contrast fil-
ter is then designed to detect red oval regions as follows.
At each pixel location, the filter is defined using two con-
centric squares centered at this pixel (see Fig 2(a)). If we
denote the average redness of the inner and outer squares
asAR1 andAR2 respectively, the filter output is defined as
AR1 + w ∗ (AR1

AR2

)n, wherew is a weighting factor, andn
is a predefined constant. Note the first term here represents
the absolute redness and the second term represents the red-
ness contrast between the inner square and its surrounding
margins.

Applying this contrast filter to a redness map followed
by a thresholding process yields a binary image, with “1”s
represent red areas and “0”s represent background. Note the
output of the filter is influenced by the size of the squares.
Normally we fix the ratio betweend1 andd2 and refer to
d1 as the kernel size of the filter. The output of the filter
will peak when the kernel size is close to the size of the
redeye. To detect redeye of different sizes, filters of multiple
kernel sizes are used to process the image, and the output
binary images are merged into one image by ”or”ing them.
The candidate objects are then generated by a standard blob
labeling operation, and the final detected candidate is each
represented by a containing rectangle (referred to as redness

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

(a)

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	

� �
� �
� �
� �

� �
� �
� �
� �

(d)(c)(b)

Figure 3. Features used by Viola and Jones

box thereafter), and some basic features such as the aspect
ratio and the size of the candidate can be easily computed
for false alarm elimination.

To design redness measure functionfr(I), we manu-
ally labeled about 1000 red eyes samples and analyzed their
statistical color distributions under different color spaces,
from which two measures are designed: one is based on
a linear projection of RGB vector asfr(I(R, G, B)) =
w(4R − 3G + B) (wherew is a weighting factor), and
the other is based on a nonlinear projection to CIEL∗a∗b∗

space:fr(I(R, G, B)) = I(a∗) + a0 whereI(a∗) is thea∗

component anda0 is a shifting constant. Overall the L*a*b*
measure produced slightly better performance.

4 Single Eye Verification

This module verifies that the redeye candidates detected
by the initial candidate detection module are actually red
eyes rather than false alarms such as red flowers. We use
feature based object detectiondo design the verification
classifier because feature computation helps compress and
select relevant data and feature design can be controlled to
represent ad hoc domain knowledge that otherwise is diffi-
cult to learn from a limited quantity of training data.

4.1 Feature Design

For object recognition, simple Haar-like features have
been used by Papageorgiou [3]. Viola and Jones also used
three kinds of Haar-like features in their face detection
work [5] (see Fig. 3): atwo-rectangle feature(a-b), athree-
rectangle feature(c), and afour-rectangle feature(d). Fun-
damentally, this set of features corresponds to projectingthe
image to a set of over-complete Wavelet basis functions.
It has been proven quite successful in detecting upright,
frontal human faces [5]. However, it is not quite applicable
to this work because it is orientation sensitive. In order to
detect a single eye in arbitrary orientation, we design a dif-
ferent set of rectangle features that is motivated by [3, 5],
but extends their works to non-orientation-sensitive, color
object recognition.

The proposed design defines a feature by two factors: a
feature plane and a feature template. A feature plane is a
scalar image on which the rectangle features are computed.
Note in both [3, 5], only the grayscale feature is used and
the grayscale image works as the default feature plane. In

2

� �
� �
� �

� �
� �
� �

C1

C2C3

C4C5

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �
� �
� �

� �
� �
� �
� �

C0

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

(a) (b)

Figure 4. (a) Circular templates, (b) Eight ro-
tated positions of a circular (C4) template

redeye detection work, color is used in addition to grayscale
information.

A feature template specifies how a feature is computed
over a feature plane. For example, under this definition,
Fig. 3 serves as a set of feature templates for Viola and
Jones’ work. In our approach, the proposed feature tem-
plates are composed of a number of concentric rectangles
of the same shape grouped in two classes: concentric tem-
plates, and circular templates, illustrated in Fig. 2(b) and
Fig. 4(a) respectively. A feature based on a concentric tem-
plate is obtained by subtracting the pixel average over an
inner rectangle (dashed area) from the pixel average over
another outer margin area (solid gray area). Note the solid
gray area and the dashed area do not have to be immedi-
ately adjacent. To compute a feature using circular tem-
plate (C5-C1), (see Fig. 4), the pixel average over a central
rectangle (dashed area) is compared with the pixel average
over its eight neighboring rectangles, which have the same
size and shape. In this comparison, different circular tem-
plate considers different number of neighboring rectangles
(solid gray area). To make the final feature non-orientation-
sensitive, each template is rotated circularly to eight differ-
ent positions (see Fig. 4(b) for an example of template C4).
The template value at each position is computed, and their
maximal and minimal values are used as the two features
yielded from this feature template. Note the template C0 is
an exception to circular template definition, in that it com-
pares two pairs of neighboring rectangles, rather than the
center rectangle and its neighboring rectangles.

With the above feature definition, the whole feature set is
populated by changing the size of the rectangles, changing
the control parameters for each template, and using different
feature planes for feature computation.
Grayscale Feature:Grayscale feature is computed by ap-
plying the feature templates to the grayscale feature plane.
To make grayscale features comparable across candidates of
different size, we first compute the iris area (modeled as a
dark square) of each candidate, and normalize each against
its iris square. The computing of the iris area is based on

Compute feature

Compute feature
vector(negative)

vector(positive)

Is redeye

Yes
machine
learning
model

For each
detected
candidate

No

Figure 5. Machine learning design

the grayscale information described as follows.
Given an initial redeye candidate, the iris square is as-

sumed to share the same center with its redness box, and
the iris size is determined through a searching procedure.
First, a template is defined using two concentric squares,
with the inner one having half the side length of the outer
one. The output of the search template is defined to be the
difference between the pixel average over the inner square
and the average over the outer margin area. To determine
the iris size, the size of this search template is searched over
a fixed range with respect to the size of the redness box. The
inner box of the search template producing the highest out-
put is considered as the detected iris. In this search design,
the search range is determined empirically to represent the
flexible relation between the redness box size and the actual
eyeball size. The red region of the redeye can occupy the
whole iris or only a small fraction of the iris, depending on
how much the pupil is dilated.
Color Feature: Color features are computed over two fea-
ture planes corresponding to the two redness measures de-
fined in Section 3. For feature computation on both planes,
each candidate is normalized with respect to its redness box
yielded from initial candidate detection.
Other Features: Additional features used include skin pix-
els in the neighborhood, aspect ratio of the redness box, per-
centage of pixels within the redness box labeled as red pix-
els, etc. These features are quite different semantically,and
are selected based on heuristics.

4.2 Learning Classification Functions

Given the feature set design, a classifier can be trained
using a machine learning framework. As illustrated by
Fig. 5), each training image is processed by the initial detec-
tion module, and the candidates obtained are further man-
ually labeled. Feature vectors are then computed for la-
beled candidates and the output is sent to a machine learning
model to train a binary classifier.

In our system, Adaboost [1] is used as the learning model
because the feature set we designed in Sec 4.1 are heuristics
based. And if fully populated, the size of the feature set
will be very big, representing fair amount of redundancy.
Adaboost’s ability to select relevant features (from a large
feature set) during the classifier training process makes it
the right choice for this application.

3

To include feature selection ability in Adaboost, a weak
learnerH(x) is restricted to a set of simple classification
functionshj(x) in which each classifier uses only one fea-
ture. The learning algorithm includes two steps. First, each
classification functionhj(x) is optimized individually by
finding the optimal thresholding function that minimizes its
classification error. Second, the classification function that
produces the smallest classification error is selected as the
final weak learner function. We show the boosting proce-
dure using the pseudo code detailed in Table 1. As indi-
cated,T simple classifiers are constructed each using one
single feature, and the final strong classifier is a weighted
linear combination of these T simple classifiers, where the
assignment of weights is such that the higher the training
erroret, the smaller the corresponding weightαt.

Practically, the total feature set (Section 4.1) is populated
as follows. Each feature template is applied 4 times using
4 different scales. Since each circular template produces 2
features (maximal and minimal), each concentric template
produces 1 feature, and there are 6 circular templates, 2 con-
centric templates and 3 feature planes, this creates a totalof
(6 × 4 × 2 + 2 × 4 × 1) × 3 = 168 features. The feature
set totals 178 when adding 10 features fromother features
category. The final classifier in our work utilizes 25 out of
the 178 features.

Once the single eye verification classifier is designed, the
pairing verification module can be designed similarly. The
details are omitted due to space limits.

5 Detection Experiments

The proposed redeye detection system is trained on a
data set of 420 redeye images with 1070 redeyes manual
labeled. The training images are collected from various
sources, including scanned images, digital camera images,
and Internet photos. The typical image size is 3M pixels.
Redeye sizes range from 25 pixels to over 10K pixels.

On this training data set, the three detection modules
are trained/adjusted sequentially (see Fig. 1) in three stages.
Due to the cascade architecture of the system, the first few
modules can afford more false alarms as long as the detec-
tion rate is high. In our experiment, the initial redeye detec-
tion module is adjusted to detect 98% of the redeyes, and
generates 59800 false alarms. In the next stage, the single
eye verification classifier detects94% of the redeyes, and
generates 2100 false alarms. In the final stage, pairing ver-
ification classifier further reduce the false alarm number to
150, and generates a detection rate of87.1%.

6 Redeye Correction & Conclusion

Once the locations and sizes of the redeyes are deter-
mined, a correction algorithm is applied to each detected

Input: Given training feature vectors(x1, y1), · · · ,
(xn, yn), whereyi = 0, 1 for negative and positive
examples respectively.
Boosting Algorithm:
I. Initialize weightsw(0)

i = 1/(2m), 1/(2l) for yi = 0, 1
respectively, wherem andl are the number of negative
and positive examples respectively.

II. For t = 1, · · · , T :

1) Normalize weights:w(t)
i = w

(t−1)
i /(

∑n

k=1 w
(t−1)
k).

2) For each feature j, train a classifierh
(t)
j () that is re-

stricted to using a single feature that minimizes the
classification errore(t)

j =
∑

i w
(t)
j |hj(xi) − yi|.

3) Choose the weak learner function as theh
(t)
j with the

lowest errore(t)
j , e.g.,Ht() = h

(t)
j0

(), et = e
(t)
j0

, where

j0 = arg minj(e
(t)
j).

4) Update the weights:w(t)
i = w

(t)
i β1−εi

t , whereεi = 0
if examplexi is classified correctly;εi = 1 otherwise,
andβt = et

1−et

.
Output: The final classifier is:

H(x) =

{

1
∑T

t=1 αtH
(t)(x) > 0.5

∑T

t=1 αt

0 otherwise
whereαt = − logβt.

Table 1. Adaboost Pseudo code.

redeye. In this algorithm, a pixel mask is first generated,
the mask is then refined and pixel values are desaturated.
Though we do not have space to cover details, one inter-
esting feature about redeye correction is that in most cases
when a false alarm from redeye detection is desaturated, the
final result is normally not perceivable by the end user1.
This helps further reduce theeffectivefalse alarm artifacts
of the system. Overall, the proposed algorithm is very effi-
cient computationally and we have actually implemented it
on a number of embedded platforms in HP products.

References

[1] Y. Freund and R. Schapire. A short introduction to boosting.
J. of Japanese Society for AI, pages 771–780, 1999.

[2] M. Gaubatz and R. Ulichney. Automatic red-eye detection
and correction. InICIP-2002.

[3] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-
work for object detection. InICCV, 1998.

[4] J. Schildkraut and R. Gray. A fully automatic redeye detection
and correction algorithm. InICIP-2002.

[5] P. Viola and M. Jones. Robust real-time object detection. In
ICCV Workshop Statistical Comp. Theories of Vision, 2002.

1As long as the false alarm is not located at the region of interest of
known colors.

4

