
A Restriction Mapping Engine Using Constraint Logic Programming

Trevor I. Dix Chut N. Yee*

Department of Computer Science
Monash University

Clayton, 3168, AUSTRALIA
trevor@cs.monash.edu.au and cyee@cs.monash.edu.au

Abstract
Restriction mapping generally requires the application of
information from various digestions by restriction
enzymes to find solution sets. We use both the predicate
calculus and constraint solving capabilities of CLP(R)
develop an engine for restriction mapping. Many of the
techniques employed by biologists to manually find
solutions are supported by the engine in a consistent
manner. We provide generalized pipeline and cross-
multiply operators for combining sub-maps. Our approach
encourages the building of maps iteratively. We show how
other techniques can be readily incorporated.

Introduction
Restriction site mapping (RSM) is a very common and
important procedure in analysis of DNA molecules. The
underlying problem is to construct a map of a DNA
molecule. The usual initial step is to break the molecule
into fragments which can be investigated individually.
Maps of fragments, or indeed sub-fragments, can then be
found and combined to obtain a map of the entire
molecule. Fragments are obtained by cleaving the DNA
using a restriction en~’me. The RSM problem is the
piecing together of all the fragments to yield a map of the
restriction sites for the original molecule.

The DNA molecule is prepared in such a way that it
can be inserted into another small circular DNA molecule
called a vector. The insertion is done at a known
restriction site. The resulting circular DNA is then
completely digested by a restriction enzyme, which cuts
the DNA into fragments at all sites with a specific, short
subsequence of nuclcotide bases. The lengths of the
digested fragments are measured.

Digestions are performed for a number of restriction
enzymes, and also for pairs of enzymes. These are called
single-digests (SD) and double-digests (DD) respectively.
In a DD, the DNA is cut at all the restriction sites for both
enzymes.

t Partially supported by a Monash University FCIT grant and

Australian Research Council grant A49330684.

Restriction map construction from digestion data is a
combinatorial problem that is well suited for computer
application. However, large RSM problems are
computationally intractable; the search space grows
exponentially with the number of fragments and
experimental error (Goldstein and Waterman 1987).
Experience (Ho et al. 1990) shows that even for problems
of relatively small number of fragments the number of
consistent solutions is often too big to be useful. To
compensate, the biologist usually resorts to data from
either biological sources or other supplementary
experimental techniques to prune down the number of
solutions. Some of these techniques include: sub-
experiments, partial digestion, hybridization and end-
labeling.

Most RSM programs treat the constraints imposed by
fragments in a purely local fashion where the bounds on a
fragment only affect placement of adjacent fragments.
The main developments in this regard are reflected in the
work of Stefik (1978), Pearson (1982), Fitch et al. (1983),
Zehetner and Lehrach (1986), Zehetner et al. (1987) and
Krawczak (1988). While progress has been made
solving the standard RSM problem using strict constraints
(Allison and Yee 1988) (Dix and Ho-Stuart 1992), we
little attempt to address these diverse and complicated
additional techniques.

Another aspect of RSM that is not being adequately
addressed is that often not all the digestion data are
available at once. The mapping process is an incremental
one where the next experiment is decided on by analysis
and reasoning about the currently available experimental
data. This aspect of restriction mapping is another
obvious area where computer tools would prove
invaluable.

The RSM problem is a complex synthesis of constraint
satisfaction and information processing. Ideally we
would like to have a system that integrates these
elements. Moreover, the rapid advancements in
biological sciences demand that such a system have the
flexibility to readily accommodate new techniques and
information. It is our judgement that such a system calls

112 ISMB-94

From: ISMB-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

for expressive powers beyond the conventional
programming framework.

In this paper, we will describe our use of constraint
logic programming to implement an integrated restriction
site mapping engine. We have chosen this programming
framework because of its declarative power and
flexibility. In particular, CLP(R) (Jaffar and Lassez 1987)
(Jaffar et al. 1990) has a general constraint solver in the
real number domain that manages the constraint
satisfaction problem of RSM automatically.

Our experience demonstrates that the expressiveness of
CLP(R) is unmatched in this area. Our engine provides
an incremental pipeline generator that is a full
generalization of the separate, pipeline and simultaneous
permutation schemes first proposed in (Ho et al. 1990);
complete implementation of sub-experiments; and
consistent and homogeneous treatment of vector sites and
fragments using a database of known vectors.

Restriction Site Mapping Problem
Figure 1 illustrates a fragment of DNA to be mapped that
has been inserted in a vector. The site for enzymes a, b
and c are indicated by sites numbered 1 through 7. The
fragment has been inserted at the vector’s a site.

We denote a digestion by Digest[E], where E is the
cutting enzyme (or enzymes). For example, Digest[a]
a SD with enzyme a and Digest[ab] is a DD with
enzymes a and b. Fragments are denoted by the
enzyme(s) and a fragment number, as in al, b2, acl, etc.

Figure 2 shows an opened map for figure 1. The map
is opened at site 1; sites 1, 2 and 3 are duplicated to
represent wrap-around. The map for Digest[a] is
duplicated to obtain a planar diagram. Digest fragments
are represented by lines joining the sites. A double line
means two fragments, a SD and a DD fragment, join the
same sites, for example, site 6 and 1 are joined by
fragments from Digest[a] and Digest[ab].

c

°..°°"°’°°’~ °~’’"’... a

vec,or

a- l

Figure 1: Map for three enzymes

RSM attempts to reconstruct the original map from the
measured lengths of the digest fragments. Experimental
error in the length of a fragment is represented by a lower
and an upper bound. The bound is usually a percentage
error on the fragment length.

Placing a fragment between two sites is equivalent to
restricting, or constraining, the distance between the sites.
If a fragment is placed between sites si and sy, for j > i,
the constraint on the sites are:

L<sj-si<H

where H and L are the upper and lower bounds of the
fragment concerned. When i>j, the fragment spans the
circular boundary, and the constraint becomes:

L<sj-si+C<_H

where C is a variable that denotes the length of the
circular map (Dix and Ho-Stuart 1992).

For a map to be consistent, the constraints imposed by
all the fragments must be satisfiable, or mutually
consistent. There may be more than one consistent map
that falls within the error bounds. We wish to find all
such consistent maps.

Most RSM programs only treat constraints on
fragments locally. However, each constraint can have a
global influence in the system of inequalities (Allison and
Yee 1988). Generally, the strict treatment of constraints
will reduce the search space and execution time.

Allison and Yee (1988) and Bellon (1988) used logic
programming for the RSM problem. Our experience is
that more than 60% of logic programming code for RSM
dealt with ensuring constraints were satisfied. Yap (1993)
demonstrated the use of CLP(R) for two single-digests
and one double-digest. The benefit of CLP(R) of over
standard logic programming languages is the built-in
linear programming solver that can determine the
satisfiability of a set of inequalities in the real domain.
Moreover, constraints are applied automatically and as
soon as possible by the system.

Dix and Ho-Stuart (1992) developed a phased
separation theory for a circular restriction map. Our
engine handles more general situations, for example,

Digest [a]

Digest lab]

Digest [b]

Digest [bc]

Digest [c]

Digest [ac]

Digest [a]

1 4 6 1’

2 ! 2’

3’

1 4 6 1’
Figure 2: Opened map

Dix 113

Site 1 2 3 4 5 6 1’ 2’ 3’
Enzyme a b c b a c a b c

al a2
Digest[a]

~ / ab4
~abl ab3/ ~ \ablDigest[ab]

\ ab2 / i
Digest[b] i\ b,/--.., b2 .."/t%

Digest[ac]

Digest[al
al a2

Figure 3: Example generation

circular maps for sub-experiments intersecting with larger
circular maps. CLP(R) enforces all constraints correctly
without the need to develop a more general theory.

Map Generation
The model that we use for searching for solution maps is
based on that of permutations of enzyme sites and digest
fragments (Stefik 1982) (Fitch et aL 1983) (Dix and
Kieronska 1988). The maps are generated by a recursive
search process that extends the current map by one site at
a time. At each step, the site is conjectured to be for one
of the enzymes in turn. For each conjecture, we iterate
through all possible combinations of digest fragments that
could confirm the current site.

Figure 3 shows a map for enzymes a, b and c. The
extension process starts from site number 1. Sites 1’, 2’
and 3’ are wrap-around sites for placing the remaining
fragments. Table 1 illustrates the placement of the
fragments.

The first steps for generating the map are as follows:
1) Site 1 is conjectured to be an a site.

2) Site 2 is conjectured to be an a site, rejected (say)
because we failed to find digest fragments to confirm
it. Iterating through the enzymes, site 2 then is
conjectured to be a b site, and confirmed with
fragment abl from Digest[ab] joining sites l and 2.

3) Site 3 confirmed as a c site, with confirming
fragments bcl joining sites 2 and 3; and acl joining
sites 1 and 3.

41)Etc.
A consistent map is found when all fragments are

placed. Each solution is stored. To force CLP(R)
backtrack and find all solutions, the fail predicate is
applied. Retract and assert are used to update the fact
recording the count of solutions.

Solution Map

A solution map is uniquely defined by the site
configuration and the fragment configuration. The site
configuration is the order in which the enzymes cut the
plasmid. The fragment configuration is the order in
which the fragments are placed in each of the digests.
The order in which the fragments in different digests are
placed relative to each other is implicit in the site
ordering.

The map for the example in figure 3 is defined by:
Site : [a,b,c,b,a,c]

Digest[a] : [al,a2]
Digest[b] : [bl,b2]
Digest[c] : [ci,c2]
Digest[ab] : [abl,ab2,ab3,ab4]

Digest[bc] : [bcl,bc2,bc3,bc4]
Digest[ac] : [acl,ac2,ac3,ac4]

Mapping Engine

Our engine uses common logic programming techniques
to instantiate variables and backtrack on constraint
failure. However, CLP(R) uses the test and generate
paradigm where appropriate constraints are checked for
mutual satisfiability when a constraint is introduced.
Satisfiability is ensured by application of the Simplex
method. Constraints are tested incrementally. For RSM,
this allows maps to be built incrementally, placing one
fragment at a time and backtracking to try alternative
fragments when a constraint fails.

Table i: Fragments placed at each site

SiteNumber 1 2 3 4 5 6 1’ 2’ 3’
Enzyme a b c b a c a b c

Digest[a] al a2
Digest[b] bl b2
Digest[c] Cl C2

Digest[ab] abl ab2 ab~ ab4
Digest[bc] bcl bc2 bc3 bc4
Digest[ac] acl ac2 at3 ac4

114 ISMB-94

The engine is driven by goals, including different sub-
map and sub-experiment information for common
enzymes and fragments. The nesting of the information
in the query determines the order of application of the
associated digest information. If the query can be
satisfied, a solution map will be available. Currently,
CLP(R) only tests constraint satisfiability. Mutual
constraints typically reduce the original bounds for each
fragment. These final bounds are not directly available as
part of the solution.

Program development started with a generalized
permutation map generator for an arbitrary number of
enzymes and digestions. We then added code for sub-
maps and finally sub-experiments. During this process
very few changes were made to the permutation generator
that forms the core of the RSM engine.

Our CLP(R) code is about 2400 lines, 800 being
comments. The permutation core is about 60 lines. Of
the remaining lines, about 800 lines deal with the
interface. The code runs on a variety of platforms.

Vectors

Traditionally, vector fragments are identified manually
prior to the mapping process. Sometimes this approach is
unsatisfactory: the vector fragments may not be
identifiable within the bounds of experimental error, and
removal of these fragments takes constraints imposed by
the vector out of the system arbitrarily.

In CLP(R), logical variables and partial instantiation
provide a natural way of expressing vector information in
a consistent and homogeneous way. In map generation,
we require sequences, lists in CLP(R), of fragments and
sites. A routine can be written that recursively appends a
fragment to the uninstantiated tail of a list, backtracking
through alternatives. The same routine can confmn the
constraints of a given list. These two modes, generation
and confirmation for our application, form the basis of
our RSM engine.

For vector fragments, we use the known vector sites to
partially define the map. The map generator starts with a
partially defined sequence instead of a completely
uninstantiated variable and applies the associated
constraints to append fragments. If vector fragments
cannot be assigned uniquely, each possible start sequence
will be tried.

For example, assume the target fragment is inserted
into the vector pACYC184 at the EcoRI enzyme site and
digestions are performed with enzymes EcoRI, HindlI
and BamHI. The pACYC184 vector with the fragment
attached can be represented by:

Site

EcoRI HindI I BamHI EcoRI
+ + + +...target

1.45kb 0.30kb 2.25kb

Distance

We place the vector at the beginning of the map to make
maximum use of the known information. Then the site
variable for the map generator will be:

Site: [’EcoRI’, ’HindII’, ’BamHI’, ’EcoRI’] _]

The square bracket is logic programming syntax for a list.
Elements in the lists are separated by commas. The ’1’ is
the symbol that splits the list into a head part and a tail
part. Here the tail of the list is unknown and is specified
by’_’.

The bounds of the vector fragments are constraints on
the distances between the vector sites. They are
expressed very simply with the following constraints:

V2 - V~ = 1.45, V3 - V2 = 0.30, V4 - V3 = 2.25

where Vl, V2, V3 and V4 are variables that represents the
location of sites 1, 2, 3 and 4 respectively.

Map Generation in Stages -
The Pipeline Scheme

During the RSM process, the biologist will perform sets
of digestions, try to map them, then decide whether
further experiments are required, and so on. Often not all
the digest data are available at once.

Sometimes in constructing a restriction map that
involves many enzymes, the biologist will try to divide
the problem into smaller sub-problems, each involving a
few enzymes, and then try to combine maps from these
sub-problems to form the final solution.

For example, say a biologist performs SD and DD with
enzymes a and b - Digest[a], Digest[b] and Digest[ab] -
and finds there are many maps satisfying the constraints.
To further reduce the solution set, additional digests with
enzyme c are performed, say Digest[c], Digest[ac] and
Digest[bc].

It would be naive to perform the map generation all
over again with all the digestion data. Instead, the ability
to partially instantiate logical variables gives us a
convenient way to use the solution maps obtained for
digests a, b and ab as starting points for map generation
with the new data. The fragment orders from the a, b and
ab digests are already known. We only need permute
fragments from the new digests c, ac and bc.

We will illustrate this with an example. Say we found
two solutions ml and m2 over the domain Digest[a],
Digest[b] and Digest[ab]:

DJx 115

ml = Site : [a,b,a,b]
Digest[a] : [al,a2]
Digest[b] : [bl,b2]

Digest[ab] : [abl,ab2,ab3,ab4]

m2 = Site : [a,b,b,a]

Digest[a] : [al,a2]
Digest[b] : [b2,bl]
Digest[ab] : [abl,ab3,ab2,ab4]

To obtain a new map with the new digestions Digest[c],
Digest[ab] and Digest[bc], we first expand ml and m2
into the domain involving the new digests:

: [a,b,a,b]ml’ = Site

Digest[a] : [al,a2]
Digest[b] : [bl,b2]
Digest[ab] : [abl,ab2,ab3,ab4]
Digest[c] : _
Digest[ac] : _
Digest[bc] : _

m2’ = Site : [a,b,b,a]
Digest[a] : [al,a2]
Digest[b] : [b2,bl]
Digest[ab] : [abl,ab3,ab2,ab4]
Digest[c] : _
Digest[ac] : _
Digest[bc] : _

use ml
With
and

We then ’ as the initial value for the map
generator, the fragment order of Digest[a],
Digest[b] Digest[ab] already known only
permutations of the fragments for Digest[c], Digest[ac]
and Digest[be] are required. The same is done for m2’
when map generation with m l’ is completed.

Performing map generation in stages like this is usually
significantly more efficient than permuting all the digests
simultaneously. For the above example, the mapping
solutions for digests a, b and ab uses simultaneous
permutation. The subsequent mapping with digests c, ac
and bc is pipelined.

The above sequence of operations is denoted by

[a,b,ab] ---) [c,ac,bc]
where [a,b,ab] denotes the simultaneous permutation of
fragments for the a, b and ab digests and "---)’ denotes the
pipeline operator. The simultaneous permutation operator
[c,ac,bc] causes the digests within the brackets to be
permuted against solutions obtained to the left of the
pipeline operator.

The two schemes can be combined in any arbitrary
order. For example:

[a,b,ab] ---) [c,ac] ~ [bc]

denotes a three stage process. The first stage involves
solution maps for digests a, b and ab; these are pipelined
with permutations of fragments from c and ac digests,
and in turn for ac. Notice, not all applications of the
operators are useful. For example, [a,b] or [a]---)[b]
would generate all possible permutations of the a and b

116 ISMB-94

fragments but with no mutual constraints for pruning.

Divide and Conquer -
The Cross Multiply Operator

When many fragments result from many digestions,
simultaneous generation is infeasible. Solving sub-
problems and applying the pipeline operator described in
the previous section is an effective way of overcoming
this problem. Moreover, it is a natural path to follow -
dividing the problem into sub-problems involving smaller
numbers of enzymes and digestions, then merging the
sub-maps to form the final solution map.

Merging sub-maps involves cross multiplying the
solution sets of the sub-maps. The result is a solution set
in the larger domain involving the union of all the
enzymes and digests in the sub-maps. The sub-maps
usually have digests in common. We use x to denote the
cross multiply operator. The cross multiply operator only
applies fragment ordering constraints for each common
digest and site ordering for common enzymes.

Consider the example in the previous section, which
involves 6 digestions over 3 enzymes. There are three
ways of dividing it into sub-problems involving two
enzymes: [a,b,ab], [b,c,be] and [a,c,ac].

Say we mapped [a,b,ab] and [b,c,bc]. Let {ml, m2} be
the solution set for [a,b,ab]:

ml =

m2 =

Site : [a,b,a,b]
Digest[a] : [al,a2]
Digest[b] : [bl,b2]
Digest[ab] : [abl,ab2,ab3,ab4]

Site : [a,b,b,a]
Digest[a] : [al,a2]
Digest[b] : [b2,bl]
Digest[ab] : [abl,ab3,ab2,ab4]

and {nl } be the solution set for [b,c,bc]:
nl = Site : [b,c,b,c]

Digest[b] : [bl,b2]
Digest[c] : [ci,c2]
Digest[bc] : [bcl,bc2,bc3,bc4]

The fragment order for m2 is incompatible with that of nl
- the b digest fragment orders are different. Combining
ml with nl gives:

Site : [a,b, (a,c),b,c]
Digest[a] : [al,a2]
Digest[b] : [bl,b2]
Digest[c] : [ci,c2]
Digest[ab] : [abl,ab2,ab3,ab4]
Digest[bc] : [bcl,bc2,bc3,bc4]

We also must check that the site configuration of the
sub-maps are compatible, by forming an alignment for the
common enzymes. For the above example the common
enzyme is b and the alignment is as follows:

ml: a b a b
i I

nl: b c b c

The alignment imposes a partial ordering on the sites. In
this case, the partial order is [a,b,(a,c),b,c], where atoms
within parentheses can appear in any order (and either or
both may be valid solutions).

The site ordering can be determined by using each
solution of the cross multiplication as a starting point for
the map generator. The sequence of operations is
represented by:

[a,b,ab] x [b,c,bc] ~ []

The pipeline step will ensure that the sub-maps are
mutually consistent. The time required for this extra
conf’Lrming step is small compared to the simultaneous
generation from all SD and DD fragments. From
experience, it is almost always worthwhile to confirm the
solution after every cross multiplication.

Notice again that not all applications of cross
multiplication are useful. [a] x [b] produces the product
of permutations of the Digest[a] and Digest[b] fragments.

Sub-Experiments
A sub-experiment is a relatively small RSM problem
where a SD fragment is isolated and placed in a vector.
Its solution map is usually generated independently. Sites
for common enzymes are shared within the sub-
experiment fragment and the parent map, as shown in
figure 4.

Sites ei and ei+m in the parent map are cut by the SD
enzyme. The SD fragment is inserted at site sj (cut by
the same enzyme) and extends to site ej+m in the sub-
experiment. In this figure only common enzymes are
shown; there could be other digestions for either map that
do not contribute mutual constraints. For common
enzymes, all sites in the parent map (within sj and Sj+m
above) must occur in the sub-experiment map (within
sites ei and el+m).

There are two mutual constraints for common
enzymes:

.......]~] Parent
ei ei+1 ¯ ¯ ̄ ei+m Map

sj Sj+l o o , Sj+m

.--’1 I I’-.. Sub-Experiment
," Map

", vector ."
*’’’’°-o..o-°°°°°

Figure 4: Common sites in sub-experiment

(1) The site configuration for the common enzymes are
the same.

(2) The relative positions of the sites are mutually
compatible.

This mutual consistency check is denoted by .. For a
parent map to succeed, it must be mutually consistent
with at least one solution map from each sub-experiment.
Since we suppress the generation of symmetric solutions,
we also consider the reflection of one of the maps.

For example, let the parent map be M and Sj = {ml,

mz } be a sub-experiment and its solution set.
Similarly for Sz = {nl, nz }. Finding sub-experiment
maps that confirm M is represented by:

M ̄ choice(Sl) ̄ choice(S2)
where choice(S) backtracks through all choices from set
S. The choice operator is required because mutual
constraint (2) above may propagate to sites beyond the
sub-experiment fragment. Confirming a parent map thus
involves a backtracking search through the cross product
of the solution sets for the sub-experiments. A parent
map may have more than one confirming combination of
sub-experiments maps.

We could apply the ¯ operation whenever we place a
sub-experiment fragment. The constraints from the sub-
experiment will limit the search space, however this
makes the choice operator a branching factor and maps
with multiple confirming sub-experiment maps will be
returned as distinct solutions.

We overcame this problem with a compromise operator
o that only applies mutual constraint (1) above, the site
configuration:

M o first(Si) o first(Sz)

where first(E) finds the first element in E that satisfies
the o operator. The choice operator becomes unnecessary
because constraint (1) is local. We delay applying the
operator until the extension of the parent map is
completed.

We found the simple checking for site configuration to
be very effective in cutting down the search space and
execution time due to the surprisingly small number of
site configurations in sub-experiments. For sub-
experiments with 8 sites and up to 50 solutions the
number of site configurations is usually one and hardly
ever more than two.

Results
We now give results of execution with a randomly
generated digestion with three enzymes. The enzymes
are represented by b (BamHI), e (EcoRI) and h (HindlI)
respectively. The vector used is pACYC184, whose
pictorial representation is given earlier. The length of the
vector is 4kb, and the length of the DNA is 14kb.

Dix 117

The data was generated by making random cuts from a
uniform distribution for each enzyme. The length of the
digest fragments are computed from the enzyme sites.
The number of sites (including the vector sites) for each
enzyme are 6, 7 and 8. Data are generated for the full set
of SD’s and DD’s, a total of 6 digestions, b, e, h, be, bh
and eh.

This artificial problem is quite large and difficult for
current mapping programs to solve. Even with 0% error,
there are 8 solutions that satisfy the constraints. The
program was run on a relatively slow Decstation 2100
under Ultrix.

Table 2 presents the results for various numbers of sub-
experiments. Fragments for sub-experiments were
chosen randomly from amongst the longest fragments.
All the sub-experiment maps are generated using the full
set of SD’s and DD’s. An entry in the table with fewer
sub-experiments is not necessarily a proper subset of
entries with more sub-experiments. There are two stages:
first applying the o operator when introducing a sub-
experiment and second applying the ¯ operator when a
solution has been generated that satisfies the weaker
constraints. The difference in number of solutions and
computation times between the best and worst entries are
quite marked, 60 times and 15 times respectively. There

Table 2: Effect of sub-experiments on the number of solutions and computation time

Number of Error = 2% Error = 3% Error = 4%
Sub- Solns Time Solns Time Solns Time

Experiments O and ° (100 sec) o ¯ (100 sec) O ¯ (100 sec)

0 240 23 4608 4608 216 6144 6144 410
1 240 14 2304 2304 133 3072 3072 249
2 64 16 384 256 140 512 384 285
3 32 14 1536 1024 156 2048 1536 363
4 16 12 384 256 99 512 384 154
5 16 6 96 64 32 128 96 53
6 16 3 96 64 17 128 96 29
7 16 3 96 64 17 128 96 28

Table 3: Computation timc for various generation rules with 6 digestions

Rule Stage Error = 0% Error = 2% Error = 4%
Solns Time Solns Time Solns Time

(sec) (sec) (see)

1. [b,e,h,be,bh,eh] 1 8 40 16 292 96 2920
Total 40 292 2920

2. [b,h,bh]---)[e,be]---r[eh] 1 4 8 4 46 4 332
2 4 23 4 70 12 260
3 8 9 16 37 96 443

Total 46 166 1068

3. [b,e,be]x[b,h,bh]---~[eh] I 48 59 48 100 144 299
2 4 8 4 44 4 344
3 8 66 16 166 96 1510

Total 140 325 2180

4. [b,e,belx[b,h,bhl--*[l--*[eh] 1 48 58 48 101 144 301
2 4 8 4 46 4 360
3 4 25 4 37 12 217
4 8 9 16 36 96 445

Total 106 234 1355

5. [e,h,eh]---~[b,be,bh] 1 8 47 96 4094 288 34600
2 8 oo 16 660 96 4209

Total 75 4770 38900

118 ISMB-94

is a general trend in reduction of the number of solutions
and time. However, the increases for 2 and 3 sub-
experiments illustrate the data dependence of such search
problems. Some sub-experiments provide more useful
data than others, but this can not be predicted.

Table 3 presents the results of map generation with
various computation rules for the 6 digestions from table
2. The rows for each rule represent the stages of
computation, with the total execution time, in seconds, in
the last. The total time includes various initializations
and all sub-experiment generation, so it is greater than the
sum of the sub-columns.

The first entry, the simultaneous permutation of all the
digests, selves as a reference for others. The difference in
time with the various rules are quite drastic, almost two
orders of magnitude between the best entry (2) and the
worst entry (5). The reference entry lies somewhere
the middle.

The timing for the various operators is highly data
dependent. In general, simultaneous permutation should
only be used for a small number of digests and fragments.
Pipelined mapping in stages usually performs best.

Conclusion

We have used CLP(R) to implement a RSM engine that
sound and complete with respect to the strictest
application of constraints. We encorporate a complete
implementation of sub-maps and sub-experiments,
dealing with vector sites consistently. With the
generalized pipeline and cross-multiply operator the RSM
engine also allows very many ways of building a map in
stages and dividing a problem into smaller sub-problems.
The implementation encourages the building of maps
iteratively.

Perhaps the most important criteria for a RSM
implementation is the capacity to adapt to new
experimental techniques effectively and easily. We find
CLP(R) is unmatched in this respect. We initially chose
CLP(R) as a prototype language. However, as the project
progressed we realized that the exponential time
complexity of the RSM problem is the determining factor
in execution time. The constant factor between different
implementation languages is outweighed by flexibility.

We also found the most effective way to reduce
exponential explosion is to employ divide and conquer
techniques and make full use of information provided by
auxiliary sources like sub-experiments. The problem
covered in tables 2 and 3 has 6 digestions, 21 sites and a
total of 63 fragments. This is far too large for our
previous programs that were written in C (Dix and
Kieronska 1988) (Ho et al. 1991). We were able to solve
it within a reasonable time using both divide and conquer
and sub-experiment techniques.

Other aspects of RSM like partial digestion, end-
labeling and hybridization probes can be readily
incorporated into our implementation. For example, a
probe can be represented by a site variable Sp. When
placing a hybridized fragment between the sites si and s j,
we only need to introduce an extra constraint:

si < sp < sj
We are currently building an integrated graphical user
interface and data management system to drive the RSM
engine.

References

Allison, L.; and Yee, C.N. 1988. Restriction site mapping
is in separation theory. Computer Applications in
Biosciences 4: 91-101.

Bellon, B. 1988. Construction of restriction maps.
Computer Applications in Biosciences 4:111-115.

Dix, T.I.; and Ho-Stuart, C.J. 1992. Constraint checking
for circular restriction site mapping. In Proceedings of
Twenty-Fifth Annual Hawaii International Conference on
Systems Sciences, 635-642.

Dix, T.I.; and Kieronska, D.H. 1988. Errors between sites
in restriction site mapping. Computer Applications in
Biosciences 4:117-123.

Fitch, W.M.; Smith, T.E; and Ralph, W.W. 1983.
Mapping the order of DNA restriction fragments. Gene
22: 19-29.

Goldstein, L.; and Waterman, M.S. 1987. Mapping DNA
by stochastic relaxation. Advances in Applied
Mathematics 8: 194-207.

Ho, S.T.S.; Allison, L.; and Yee, C.N. 1990. Restriction
site mapping for three or more enzymes. Computer
Applications in Biosciences 6: 195-204.

Ho, S.T.S.; Allison, L.; Yee, C.N.; and Dix, T.I. 1991.
Constraint checking for restriction site mapping. In
Proceedings of Twenty-Fourth Annual Hawaii
International Conference on Systems Sciences, 605-614.

Jaffar, J.; and Lassez, J-L. 1987. Constraint logic
programming. In Proceedings 14th ACM Symposium on
Principles of Programming Languages, 111-119.

Jaffar, J.; Michaylov, S.; Stuckey, P.J.; and Yap, R.H.C.
1992. The CLP(R) language and system. ACM
Transactions on Programming Languages and Systems
14(3): 339-395.
Krawczak, M. 1988. Algorithms for restriction site
mapping of DNA molecules. In Proceedings of National
Academy of Science USA 85, 7298-7301.

Stefik, M. 1982. Inferring DNA structures from
segmentation data. Artificial Intelligence 11 : 85-114.

Pearson, W.R. 1982. Automatic construction of

Dix 119

restriction site maps. Nucleic Acids Research 10:
217-227.

Yap, R.H.C. 1993. A constraint logic programming
framework for constructing DNA restriction maps.
Artificial Intelligence in Medichre 5: 447-464.

Zehetner, G.; and Lehrach, H. 1986. A computer
program package for restriction map analysis and
manipulation. Nucleic Acids Research 14: 335-349.

Zehetner, G.; Frischauf, A.; and Lehrach, H. 1987.
Approaches to restriction map determination. In Nucleic
Acid and Protein Sequence Analysis, a Practical
Approach, 147-164. M.J. Bishop and C.J. Rawlings
(Eds.), IRL Press.

120 ISMB-94

