
Interleaving belief updating and reasoning
in abductive logic programming

Fariba Sadri and Francesca Toni 1

Abstract. Most existing work on knowledge representation and rea-
soning assumes that the updating of beliefs is performed off-line, and
that reasoning from the beliefs is performed either before or after the
beliefs are changed. This imposes that, if an update occurs while rea-
soning is performed, reasoning has to be stopped and re-started anew
so that the update is taken into account, with an obvious wastage of
reasoning effort. In this paper, we tackle the problem of performing
belief updating on-line, while reasoning is taking place by means of
an abductive proof procedure.

1 INTRODUCTION

Traditionally, the area of knowledge representation and reasoning has
focused on identifying techniques for drawing correct conclusions
efficiently from beliefs. Beliefs can be held by intelligent agents, for
example, and reasoning can aim at identifying plans for the agents’
goals or answering queries on the agents’ beliefs. Such beliefs can
be subject to updates. The updates can be generated by a number of
different means, for example by learning, or, in a multi-agent setting,
by observation or by communication amongst agents.

If the updating of beliefs takes place while reasoning is performed,
the problem arises as to which parts of the already performed reason-
ing can be “saved”, because it has used beliefs which have not been
affected by the update. Conventional knowledge representation and
reasoning systems assume that no parts of reasoning can be saved,
by restarting the reasoning process anew.

In this paper, we show how belief updating and reasoning can be
interleaved, so that reasoning with beliefs that are not affected by the
updates can be saved and, if necessary, used after the updating. We
assume that reasoning is performed by means of the abductive proof
procedure IFF [3] and that beliefs are represented by means of abduc-
tive logic programs (ALPs) [6]. ALPs consist of logic programs and
integrity constraints. We also assume that belief updating amounts to
the addition or deletion of rules in the logic program component of
the ALP, or to the addition or deletion of integrity constraints in the
corresponding component of the ALP.

In this paper, we do not address how the updates are determined.
In particular, we do not focus on “belief revision” (e.g. as understood
in [1]) , but rather on how updates produced by such revision can be
interleaved with the reasoning process.

In order to save any reasoning effort not affected by updates, we
adopt a labeling technique that maintains dependencies. We define a
new variant of the IFF procedure, called LIFF, with labels occurring
in derivations. We formalise the soundness of LIFF, wrt the semantics

1 Department of Computing, Imperial College London, UK,
email:{fs,ft}@doc.ic.ac.uk

underlying the IFF procedure. We concentrate on the propositional
case only for the definition of LIFF and the results.

Our work is closely related to the work of [4, 5], which share our
aims. However, we extend an abductive proof procedure (IFF) for be-
liefs in the form of ALPs whereas [4] extends conventional SLDNF,
for ordinary logic programs. Our knowledge representation and rea-
soning choice paves the way to the use of our techniques for agent ap-
plications, following the abductive logic agent approach of [8, 13, 7].
Moreover, we use a labeling technique rather than the (arguably more
space consuming) technique based on full data structures associated
to atoms as in [4].

Amongst agent applications for which our approach is particularly
useful are those where the agents are situated in dynamic environ-
ments and need to adjust quickly to the changes in that environment.
For example, a situated pro-active agent can plan for its goals while
it interleaves the planning with action execution and observations in
the environment; such an agent has, for example been described in
[10]. The observations that it makes and records from the environ-
ment and the success or failure of the actions that it attempts to exe-
cute can lead to the agent revising its beliefs. LIFF allows the agent
to keep as much of its partial plan as possible and to replan only those
parts that are affected by the changes in its beliefs.

Another agent application that would benefit from our work is in-
formation integration via a mediator, for example to realise the se-
mantic web. In this application a mediator agent receives the user
query specified in some user-oriented high-level language. It then
constructs a query plan translating the user query into a form under-
standable by the sources of information it has at its disposal. It con-
tacts the sources for the necessary information, integrates their an-
swers, and translates the answer into the language of the user. Such an
information integration approach based on abductive logic program-
ming and, in particular the IFF proof procedure, has been described
in [19]. Now, while the agent is constructing the query plan for the
user query, it may receive information about content or availability
changes to the information sources. LIFF would allow the agent to
accommodate these changes within its reasoning without having to
discard all the work it has done in constructing the query plan.

This paper is a revised and extended version of [12].

2 PRELIMINARIES

Abductive logic programming is a general-purpose knowledge rep-
resentation and reasoning framework that can be used for a number
of applications and tasks [6, 8, 11, 14, 13, 17, 18]. It relies upon a
logic-based representation of beliefs, for any given domain of ap-
plication, via abductive logic programs (ALPs), and the execution
of logic-based reasoning engines, called abductive proof procedures,



for reasoning with such representations. In this paper we concentrate
on the propositional case.

An ALP consists of

• A logic program, P , namely a set of if-rules of the form Head←
Body, where Head is an atom and Body is either true (in which
case we write the if-rule simply as Head) or a conjunction of
literals. P is understood as a (possibly incomplete) set of beliefs.

• A set of abducible atoms, A, which are assumed not to occur in
the Head of any if-rule in P . Abducible atoms can be used to
“augment” the (beliefs held within the) logic program, subject to
the satisfaction of the integrity constraints (see below).

• A set of integrity constraints, I , namely if-then-rules of the form
Condition⇒ Conclusion, where Condition is either true (in
which case we write the if-then-rule simply as Conclusion) or
a conjunction of literals, and Conclusion is false or an atom.
The integrity constraints are understood as properties that must be
“satisfied” by any “acceptable” extension of the logic program by
means of abducible atoms.

In the sequel, A will refer to the complement of the set A wrt the
set of all atoms in the vocabulary of P , i.e. A is the set of non-
abducible atoms. Both IFF and LIFF rely upon the completion [2]
of logic programs. The completion of an atom p defined, within a
propositional logic program, by the if-rules p←D1, . . . , p←Dk is
the iff-definition p↔ D1 ∨ . . . ∨ Dk. The completion of an atom
p not defined in a given logic program is p ↔ false.The selective
completion compS(P ) of a logic program P wrt a set of atoms S in
the vocabulary of P is the union of the completions of all the atoms in
S. Both IFF and LIFF use compA(P ), i.e. the selective completion
of P wrt A .

Abductive proof procedures aim at computing ”explanations”
(or “abductive answers”) for ”queries”, given an ALP representing
knowledge about some underlying domain. A query is a (possibly
empty) conjunction of literals. Given an ALP 〈P,A, I〉, an explana-
tion (or abductive answer) for a query Q is a (possibly empty) set
E of abducible atoms such that P ∪ E entails Q and P ∪ E satis-
fies I . Various notions of entailment and satisfaction can be adopted,
for example entailment and satisfaction could be entailment and con-
sistency, respectively, in first-order, classical logic. In this paper, we
adopt truth wrt the 3-valued completion semantics of [9] as the un-
derlying notion of entailment and satisfaction, inherited from IFF [3].

IFF generates a derivation consisting of a sequence of goals,
starting from an initial goal, which is the given query conjoined with
the integrity constraints in I . IFF computes explanations (referred to
as extracted answers) for the given query extracting them from dis-
juncts in a goal in a derivation from the initial goal, when no further
inference rule can be applied to these disjuncts.

Goals in a derivation are obtained by applying inference rules
(see section 5.1). In the simplest case, these goals are disjunctions of
simple goals, which are conjunctions of the form

A1 ∧ . . . ∧An ∧ I1 ∧ . . . ∧ Im ∧D1 ∧ . . . ∧Dk

where n, m, k ≥ 0, n + m + k > 0, the Ai are atoms, the Ii

are implications, with the same syntax as integrity constraints , and
the Di are disjunctions of conjunctions of literals and implications.
Implications are obtained by applying the inference rules of the proof
procedure to either integrity constraints in the given 〈P,A, I〉 or to
the result of rewriting negative literals not A as A⇒ false.

IFF assumes that the inference rules are applied in such a way that
every goal in a derivation is a disjunction of simple goals. LIFF will
make the same assumption.

We omit here the definition of the inference rules of IFF, as they

can be re-constructed from the inference rules of LIFF, given in sec-
tion 5, by dropping the labels. In section 4 we illustrate the behaviour
of IFF and LIFF with an example. The example illustrates the main
difference between IFF and LIFF, namely the fact that the latter as-
sociates labels to literals and implications in goals, to be exploited
when the ALP is updated.

3 ASSIMILATING UPDATES IN THE
ABDUCTIVE LOGIC PROGRAM

As mentioned in section 1, the decision of what to revise and how can
be done in a number of different ways. However the belief revision
is handled, at the end of the process, if-rules or integrity constraints
will need to be added or deleted from the ALP. In this section we
define how a given ALP 〈P,A, I〉 is revised after (any number of)
the following kinds of updates:

• the addition to P of if-rules,
• the deletion from P of if-rules,
• the addition to I of integrity constraints,
• the deletion from I of integrity constraints.

Note that modification of if-rules and integrity constraints can be
achieved by suitable combinations of deletions and additions.

There are a number of different ways that we can accommodate
addition and deletion of if-rules in an ALP. For example, we can
decide whether or not an atom that is originally abducible will, in
effect, remain abducible after any updates. Similarly we can decide
whether or not an atom that is originally non-abducible will always
be non-abducible, even if all its definitions are deleted from the logic
program. LIFF is independent of these choices, and it can deal uni-
formly with any combinations or variations of these choices. Below,
we arbitrarily make the concrete choice where, after any updates,
non-abducible atoms remain non-abducible and abducible atoms re-
main “abducible”, in the sense that they can always be made to hold
by abduction, as we will see later. Below, 〈P,A, I〉 denotes the ALP
before the update.

3.1 Addition of if-rules
Let the update U be the addition of the if-rule p ← B, with B 6=
false, 2 and with B possibly true. We will refer toAB as the set of
atoms occurring in B but not in the vocabulary of 〈P,A, I〉.

We refer to the revision of 〈P,A, I〉 by U as
U (〈P,A, I〉)=〈P ′,A′, I〉, obtained as follows:

1. if p is an abducible in A, then

• P ′ = P ∪ {p← B} ∪ {p← p∗},
• A′ = ((A ∪ {p∗})− {p}) ∪ AB ,

where p∗ is an atom not in the vocabulary of 〈P,A, I〉;
2. if p is in the vocabulary of 〈P,A, I〉 but is not abducible or p is

not in the vocabulary of 〈P,A, I〉, then

• P ′ = P ∪ {p← B},
• A′ = A ∪AB .

Note that, in case 1, the definition of p in P ′ conforms to our pol-
icy that atoms that are abducible in the initial ALP always remain

2 The addition of p← false is not allowed directly, but it can be achieved by
deleting all if-rules with head p. We assume that p remains in the language
of the ALP even after all if-rules for p are deleted from it.



“abducible”, in the sense that they can be assumed to hold by abduc-
tion (of atoms p∗). Note also that we assume that any atom in the
body of any added rule but not present in the vocabulary of the ALP
prior to the update is treated as a new abducible (inAB). This choice
sees new undefined atoms as “open”. Finally, note that we do not al-
low the addition of new abducible atoms explicitly, from the outside.
However, new abducible atoms are added as a by-product of adding
definitions for abducible atoms (case 1 above) or definitions of atoms
containing the new abducible atoms in the body, as atoms that did not
occur before in the ALP (cases 1-2 above).

3.2 Deletion of if-rules
Let update U be the deletion of p ← B ∈ P (B possibly true).
We will assume that B is different from a p∗ atom, namely an atom
introduced in case 1 in section 3.1. Revising 〈P,A, I〉 by U gives
U (〈P,A, I〉)=〈P ′,A, I〉, obtained as follows: P ′ = P −{p← B}.

3.3 Addition of integrity constraints
Let update U be the addition of C ⇒ D. Let AU be the set of
all atoms occurring in C, D but not in the vocabulary of 〈P,A, I〉.
Revising 〈P,A, I〉 by U gives U (〈P,A, I〉)=〈P,A′, I ′〉, obtained as
follows:

• I ′ = I ∪ {C ⇒ D};
• A′ = A ∪AU .

3.4 Deletion of integrity constraints
Let update U be the deletion of C ⇒ D ∈ I . Revising 〈P,A, I〉
by U gives U (〈P,A, I〉)=〈P,A, I ′〉, obtained as follows: I ′ = I −
{C ⇒ D}.

3.5 Multiple updates
Here we define the effect of multiple updates upon an initially given
ALP 〈P,A, I〉. Let the sequence of updates be U1, . . . , Un, with n >
1. Then, U1, . . . , Un applied to 〈P,A, I〉 gives

Un◦Un−1◦. . .◦U1(〈P,A, I〉) = Un(Un−1(. . . (U1(〈P,A, I〉)))).
Later, in section 5.2, we will allow empty updates to occur in se-
quences of updates. An empty update stands for no update at all.

4 AN ILLUSTRATIVE EXAMPLE
In this section we illustrate the application of LIFF and its relation-
ship to IFF via a concrete example. The example also illustrates the
potential saving in re-computation, for example, compared to ”back-
tracking” to an appropriate place in the search space.

Given the ALP 〈P,A, I〉 with
P : p← r, q ← s, r ← t, m← ¬a
A: a, n, s, t
I: s ∧m⇒ n

and a query p ∧ q, IFF may derive the following sequence of goals
(where, with an abuse of notation, I will stand for s ∧m⇒ n):

p ∧ q ∧ I
by unfolding p with CompA(P ):
r ∧ q ∧ I
by unfolding q with CompA(P ):
r ∧ s ∧ I
by unfolding r with CompA(P ):

t ∧ s ∧ I
by propagation with s ∧m⇒ n ∈ I:
t ∧ s ∧ (m⇒ n) ∧ I
by unfolding m with CompA(P ):
t ∧ s ∧ (¬a⇒ n) ∧ I
by negation elimination and splitting:
[t ∧ s ∧ a ∧ I] ∨ [t ∧ s ∧ n ∧ I]

From the final goal in this derivation, IFF would extract the explana-
tions {t, s, a} (from the first disjunct) and {t, s, n} (from the second
disjunct) for the given query.

Given the same 〈P,A, I〉 and query, the analogous LIFF deriva-
tion would consist of the following sequence of goals with labels. La-
bels are formally given in definition 1. A label {〈X1; Y1〉, . . . 〈Xn; Yn〉}
associated with a literal conjunct or an implication Z in a goal, intu-
itively indicates that “if Xi is updated, then Z should be replaced by
Yi”. In the simplest case, each Xi is an atom or an integrity constraint
and each Yi is an atom or an implication or ∅, standing for empty. For
ease of reading where the label of a conjunct does not change from
one goal to the next in the sequence we do not repeat the label.

p : {} ∧ q : {} ∧ I : {〈I; ∅〉}
by unfolding p with CompA(P ):
r : {〈p; p〉} ∧ q ∧ I
by unfolding q with CompA(P ):
r ∧ s : {〈q; q〉} ∧ I
by unfolding r with CompA(P ):
t : {〈p; p〉, 〈r; r : {〈p; p〉}〉} ∧ s ∧ I
by propagation (with s ∧m⇒ n ∈ I):
t ∧ s ∧ (m⇒ n) : {〈q; ∅〉, 〈I; ∅〉} ∧ I
by unfolding m with CompA(P ):
t ∧ s ∧ (¬a⇒ n) : label ∧ I
where label is {〈q; ∅〉, 〈I; ∅〉, 〈m; (m⇒ n) :{〈q; ∅〉, 〈I; ∅〉}〉}
by negation elimination and splitting:
[t ∧ s ∧ a : label ∧ I] ∨ [t ∧ s ∧ n : label ∧ I]

Suppose at this stage of the derivation there is an update (addition or
deletion) to the definition of p. If we were to simply “backtrack” to
where the definition of p was used the first time we would go back to
the very first goal of the derivation, namely p∧ q∧ I and, effectively,
start all over again. But using the labels of LIFF we would simply
rewrite the last goal of the derivation as [p ∧ s ∧ a] ∨ [p ∧ s ∧ n]
(for ease of reading we have dropped the labels here) thus in effect,
saving the work done in the application of 4 out of the 6 inferences.

5 THE LIFF PROOF PROCEDURE
Definition 1 A label (for an atom or implication) is a set

{〈X1; Y1〉, . . . , 〈Xn; Yn〉}

n ≥ 0, with each Xi an atom or an integrity constraint and each Yi
either
• empty: ∅, or
• an atom (possibly with a label), or
• an implication (possibly with a label),
and Xi 6= Xj for all i 6= j.
Note that labels can be empty (i.e. if n = 0). Each 〈Xi; Yi〉 in a
label for Z indicates that Z should be replaced by Yi if any update is
made upon Xi. In effect, this label identifies the components that have
contributed to the derivation of Z. We impose that all Xi are different
so that there is no ambiguity as to what Z has to be replaced with
when Xi is updated.

We will refer to labeled atoms/implications simply as
atoms/implications. Moreover, the terminology of goals and
simple goals will carry through in the presence of labels.



5.1 LIFF inference rules
Given an ALP 〈P,A, I〉 and an initial query Q, we will define LIFF
derivations for Q in terms of sequences of goals, G1, . . . , Gn, such
that G1 = Q : {} ∧ I∗, where (A1 ∧ . . . ∧ Ak) : l (k > 1) stands
for A1 : l ∧ . . . ∧ Ak : l 3, I∗ = {i : 〈i; ∅〉|i ∈ I}, and each Gi+1

is obtained from the previous goal Gi either by enforcing an update
(see section 5.2) or by application of one of the inference rules below.

Unfolding an atomic conjunct: given p ↔ D1 ∨ . . . ∨ Dn in
compA(P ) and an atom p : l which is a conjunct of a simple
goal in Gi,
then Gi+1 is Gi with p : l replaced by (D1 ∨ . . . ∨ Dn) : l′,
where l′ = l if 〈p; S〉 ∈ l, for some S, and l′ = l ∪ {〈p; p : l〉}
otherwise.

Unfolding an atom in the conditions of an implication: given
p ↔ D1 ∨ . . . ∨ Dn in compA(P ) and an implication
[L1 ∧ . . . ∧ Li ∧ . . . ∧ Lm ⇒ A] : l which is a conjunct of a
simple goal of Gi with Li = p,
then Gi+1 is Gi with the implication replaced by the conjunction
[L1 ∧ . . . ∧D1 ∧ . . . ∧ Lm ⇒ A] : l′ ∧ . . .∧
[L1 ∧ . . . ∧Dn ∧ . . . ∧ Lm ⇒ A] : l′,
where l′ = l if 〈p; S〉 ∈ l, for some S, and l′ = l ∪ {〈p; L1∧
. . . ∧ Lm ⇒ A : l〉} otherwise.

Propagation: given an atom p : l and an implication [L1 ∧ . . . ∧
Li∧ . . .∧Lm ⇒ A] : l′ with Li = p, both conjuncts of the same
simple goal in Gi,
then, if the implication [L1∧ . . .Li−1∧Li+1∧ . . .∧Lm ⇒ A] :
{〈q; ∅〉|〈q; r〉∈ l ∪ l′} is not already a conjunct of the simple
goal, then Gi+1 is Gi with the new implication conjoined to the
simple goal.

Negation elimination: given an implication not A1 ∧ . . . ∧
not Am ⇒ A : l which is a conjunct of a simple goal in Gi,
then Gi+1 is Gi with the implication replaced by the disjunction
[A ∨A1 ∨ . . . ∨Am] : l. 4

Logical simplification replaces:

• [B : l ∨ C : l′] ∧ E : l′′ by
[B : l ∧ E : l′′] ∨ [C : l′ ∧ E : l′′] (splitting)

• B : l ∧B : l by B : l

• B : l ∨B : l by B : l

• not A : l, where A is an atom, by (A⇒ false) : l

Note that we are not including some simplification steps present in
IFF, e.g. A ∧ false ≡ false and A ∨ false ≡ A. Such simplifica-
tion steps only affect the “efficiency” of IFF, rather than its correct-
ness. We leave these steps out in LIFF because it simplifies the labels
while allowing us to incorporate updates and revise the goals when
necessary (e.g. revising A ∧ false, if what led to false is updated).
For similar reasons we also do not include a simplification step for
“merging” identical conjuncts which have different labels.

Note that for goals in LIFF derivations to be guaranteed to be dis-
junctions of simple goals, it is sufficient that every step of unfolding
and negation elimination is followed by a step of splitting. We will
assume this is the case in all derivations.
3 In the sequel, (D1 ∨ . . . ∨Dn) : l will similarly stand for D1 : l ∨ . . . ∨

Dn : l.
4 In [3], negation elimination is defined as follows: not A1 ∧ Rest ⇒ A is

replaced by Rest ⇒ A ∨ A1. Operationally, our definition (ignoring the
labels) is equivalent to the one in [3].

5.2 LIFF derivations

In LIFF derivations, the application of inference rules (as given in
section 5.1) is interleaved with the assimilation of updates within the
ALP (as given in section 3) and the application of these updates to
goals, defined as follows:

Definition 2 Given a goal G and an update U , the updated goal wrt
G and U is a goal G′ obtained as follows:

• if U is the addition or deletion of an if-rule p ← B, then G′ is G
where every conjunct with 〈p; Q〉 in its label is replaced by Q;

• if U is the deletion of an integrity constraint X then G′ is G where
every conjunct with label containing 〈X; Q〉 is replaced by Q (Q
will be ∅ in all such cases);

• if U is the addition of an integrity constraint i then G′ is G with
an added conjunct i : {〈i; ∅〉}.

In all cases, any resulting conjunct which is ∅ is deleted.

Definition 3 Given a query Q, an ALP 〈P,A, I〉, and a sequence of
updates U1, . . . , Un, n > 0, a LIFF derivation is a sequence

(G1, U1, R1, ALP1), . . . , (Gn, Un, Rn, ALPn)

where, for each 1 ≤ i ≤ n,

• Gi is a goal
• Ui is an update (possibly empty)
• Ri is empty or (an instance of) an inference rule applied to a sim-

ple goal in Gi which does not have false as a conjunct
• exactly one of Ui and Ri is non-empty
• ALPi is an ALP

and G1 = Q : {} ∧ I∗ (where I∗ is defined in section 5.1),
ALP1=〈P,A, I〉, and, for each 1 < i ≤ n,

• if Ri−1 is non-empty then

– Gi is obtained from Gi−1 by applying Ri−1

– ALPi=ALPi−1

• if Ui−1 is non-empty then

– Gi is the updated goal wrt Gi−1 and Ui−1

– ALPi=Ui−1(ALPi−1).

The end goal and end ALP in a LIFF derivation

(G1, U1, R1, ALP1), . . . , (Gn, Un, Rn, ALPn)

are G and ALP , respectively, such that:

• if Rn is non-empty then

– G is obtained from Gn by applying Rn

– ALP=ALPn

• if Un is non-empty then

– G is the updated goal wrt Gn and Un

– ALP=Un(ALPn).

We will refer to a LIFF derivation whose updates are all empty as a
static LIFF derivation.



5.3 Successful LIFF derivations and extracted
answers

Here we formalise the notion of answer extraction for LIFF, by adapt-
ing the notion of answer extraction for IFF to take labels into account.

Given a LIFF derivation for a query Q, ALP 〈P,A, I〉 and a given
sequence of updates, let G be the end goal of the derivation. Let D
be a disjunct of G:

• if no inference rule can be applied to D, then D is called conclu-
sive;

• if false : l is a conjunct in D, then D is called failed;
• if D is conclusive and not failed then it is called successful.

Then, the derivation is successful iff there exists a successful disjunct
D in G. An answer extracted from a successful LIFF-derivation
wrt a query Q, an ALP and a sequence of updates is the set of all
abducible atoms, without labels, in a successful disjunct D in the
end goal of the derivation.

6 SOUNDNESS OF THE LIFF PROOF
PROCEDURE

Theorem 1 (Soundness) Let E be an answer extracted from a suc-
cessful LIFF-derivation wrt Q, 〈P,A, I〉and a sequence of updates.
Let 〈P ′,A′, I ′〉 be the ALP resulting after the sequence of updates.
Then E is an explanation for Q, wrt 〈P ′,A′, I ′〉.
The proof of this theorem relies upon the following lemmas and the
correctness of the IFF proof procedure.

Lemma 1 Every non-static LIFF derivation wrt Q, 〈P,A, I〉,
U1, . . . , Um, with end goal G and end ALP 〈P ′,A′, I ′〉, can be
mapped onto a static LIFF derivation wrt Q, 〈P ′,A′, I ′〉, ending
at (a simplified version of) G.

Lemma 2 Every static LIFF derivation wrt Q, 〈P,A, I〉, can be
mapped onto an IFF derivation wrt Q.

7 CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a dynamic abductive logic program-
ming proof procedure, called LIFF, which modifies the existing proof
procedure IFF by adding labels to goals. The labels keep track of de-
pendencies amongst the atoms and implications in goals and between
these and the logic program. By keeping track of these dependencies,
after updating the ALP, LIFF can keep parts of the reasoning that
have not been affected by the updates and determine how best to re-
place those parts that have been affected. It thus allows reasoning in
dynamic environments and contexts without having to discard earlier
reasoning when changes occur. We have considered updates consist-
ing of addition and deletion of if-rules and integrity constraints.

LIFF is particularly good at saving earlier reasoning effort when
the definitions of relatively lower level atoms are modified. This kind
of update is particularly prominent in the case when we use abduc-
tive logic programming and agent-based techniques for information
integration [19]. In such an application the higher level atoms are
user-level and auxiliary atoms, and the lower level atoms are related
to information sources. Changes in various aspects of the informa-
tion sources, for example content or availability, amount to updating
these lower level atoms.

Our work on LIFF shares the same objectives as that of [4]. How-
ever whereas we adapt IFF for abductive logic programming, they
adapt conventional SLDNF for ordinary logic programs. We also

share some of the objectives of [15, 16]. In their work on specula-
tive computation they allow reasoning to proceed with default values
for specific facts and then accommodate updates which replace the
default values, attempting to keep some of the earlier computation.
They, however, use SLD derivation for Horn theories (no negation
in rules and no integrity constraints). They also keep a form of de-
pendency, but it is at a much coarser level compared to ours, as the
dependency information is for the whole goal, rather than for the
individual conjuncts in goals, thus allowing fewer savings in compu-
tations.

We have described LIFF and a soundness result for propositional
abductive logic programs. Work is currently in progress for the pred-
icate case, catering for the additional inference rules of factoring,
case analysis and equality rewriting. Completeness results are sub-
ject of future work. It would also be worth exploring how this work
scales up to substantial applications that would require large knowl-
edge bases and frequent updates.

REFERENCES
[1] C. E. Alchourron, P. Gardenfors, and D. Makinson, ‘On the logic of the-

ory change: Partial meet functions for contraction and revision’, Jour-
nal of Symbolic Logic, 50, 510–530, (1985).

[2] K. L. Clark, ‘Negation as Failure’, in Logic and Data Bases, 293–322,
Plenum Press, (1978).

[3] T. H. Fung and R. A. Kowalski, ‘The IFF proof procedure for abductive
logic programming’, Journal of Logic Programming, 33(2), 151–165,
(1997).

[4] H. Hayashi, ‘Replanning in robotics by dynamic SLDNF’, in Proc.
Workshop on Scheduling and Planning meet Real-time Monitoring in
a Dynamic and Uncertain World, (1999).

[5] H. Hayashi, K. Cho, and A. Ohsuga, ‘Integrating planning, action ex-
ecution, knowledge updates and plan modifications via logic program-
ming’, in Proc. ICLP, volume 2401 of LNCS. Springer-Verlag, (2002).

[6] A. C. Kakas, R. A. Kowalski, and F. Toni, ‘The role of abduction in
logic programming’, in Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 5, 235–324, Oxford University Press,
(1998).

[7] A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni, ‘The KGP
model of agency’, in Proc. ECAI, pp. 33–37. IOS Press, (2004).

[8] R. A. Kowalski and F. Sadri, ‘From logic programming towards multi-
agent systems’, Annals of Mathematics and Artificial Intelligence,
25(3/4), 391–419, (1999).

[9] K. Kunen, ‘Negation in logic programming’, in Journal of Logic Pro-
gramming, volume 4, pp. 289–308, (1987).

[10] P. Mancarella, F. Sadri, G. Terreni, and F. Toni, ‘Planning partially for
situated agents’, in CLIMA V, pp. 230–248, (2004).

[11] F. Sadri and F. Toni, ‘Abduction with negation as failure for active
and reactive rules’, in Proc. AI*IA, number 1792 in LNAI, pp. 49–60.
Springer-Verlag, (2000).

[12] F. Sadri and F. Toni, ‘Interleaving belief revision and reasoning: pre-
liminary report’, in Proc. CILC, (2005).

[13] F. Sadri, F. Toni, and P. Torroni, ‘An abductive logic programming
architecture for negotiating agents’, in Proc. JELIA, volume 2424 of
LNCS, pp. 419–431. Springer-Verlag, (2002).

[14] F. Sadri, F. Toni, and P. Torroni, ‘Dialogues for negotiation: agent va-
rieties and dialogue sequences’, in Proc. ATAL, volume 2333 of LNAI,
pp. 405–421. Springer-Verlag, (2002).

[15] K. Satoh, K. Inoue, K. Iwanuma, and C Sakama, ‘Speculative computa-
tion by abduction under incomplete communication environments’, in
Proc. ICMAS, pp. 263–270, (2000).

[16] K. Satoh and K. Yamamoto, ‘Speculative computation with multi-agent
belief revision’, in Proc. AAMAS, pp. 897–904, (2002).

[17] F. Toni, ‘Automated information management via abductive logic
agents’, Journal of Telematics and Informatics, 18(1), 89–104, (2001).

[18] F. Toni and K. Stathis, ‘Access-as-you-need: a computational logic
framework for flexible resource access in artificial societies’, in Proc.
ESAW, LNAI, pp. 126–140. Springer-Verlag, (2002).

[19] I. Xanthakos, Semantic Integration of Information by Abduction, Ph.D.
dissertation, Imperial College London, 2003.


