Temporal Probabilistic Logic Programs

Alex Dekhtyar Michael I. Dekhtyar
University of Maryland Tver State University
dekhtyar@cs.umd.edu Michael. Dekhtyar@tversu.ru

V.S. Subrahmanian
University of Maryland

vs@cs.umd.edu

August 13, 1999

Abstract

There are many applications where the precise time at which an event will
occur (or has occurred) is uncertain. Temporal probabilistic logic programs
(TPLPs) allow a programmer to express knowledge about such events. In
this paper, we develop a model theory, fixpoint theory, and proof theory for
TPLPs, and show that the fixpoint theory may be used to enumerate con-
sequences of a TPLP in a sound and complete manner. Likewise the proof
theory provides a sound and complete inference system. Last, but not least,
we provide complexity results for TPLPs, showing in particular, that reason-
able classes of TPLPs have polynomial data complexity.

1 Introduction

There are a vast number of applications where uncertainty and time are indelibly
intertwined. For example, the US Postal Service (USPS) as well as most commercial
shippers have detailed statistics on how long shipments take to reach their desti-
nations. Likewise, we are working on a Viennese historical land deed application
where the precise time at which certain properties passed from one owner to another
is also highly uncertain. Historical radio carbon dating methods are yet another
source of uncertainty, providing approximate information about when a piece was
created.

Logical reasoning in situations involving temporal uncertainty is definitely im-
portant. For example, an individual querying the USPS express mail tracking sys-
tem may want to know when he can expect his package to be delivered today —
he may then choose to stay home during the period when the probability of deliv-
ery seems very high, and leave a note authorizing the delivery official to leave the
package by the door at other times.

In this paper, we propose the concept of a Temporal Probabilistic Logic Pro-
gram (or TPLP for short). We define the syntax of TPLPs and provide a formal
model theoretic and fixpoint semantics that are shown to coincide. We then develop
polynomial time bottom-up, sound and complete fixpoint computation algorithms.
Then we present a “brute force” sound and complete proof procedure. Though this
procedure 1is inefficient, it is transparent and easy to understand. Subsequently,
a more sophisticated proof procedure that manipulates succinct representations of

temporal-probabilistic information had been developed, but is omitted from this
paper due to space restrictions.

2 Temporal Probabilistic Programs: Syntax

Let L be a language generated by finitely many constant and predicate symbols.
We assume that L has no ordinary function symbols, but it may contain annota-
tion function symbols for a fixed family of functions. Annotation function symbols
are split into two disjoint sets of probabilistic annotated functions and temporal

annotated functions. If p is an n-ary predicate symbol and ay,...,a, are either
constants or variables, then p(ay,...,a,) is called a simple event atom. When all
the a;’s are constants, p(ay, ..., ay) is said to be ground. We use Br to denote the
set of ground simple event atoms. A calendar 7 is any initial segment of the set of
natural numbers: 7 = {1,... {pax} for some t.x. We will denote such calendar
7 =1, tmax]-

Definition 1 Let Aq,...Ap all be simple event atoms. Then Ay A ... AN Ag and
Ay V...V Ay are called compound event atoms. Simple event atoms and compound
event atoms are both event atoms.

Definition 2 A probabilistic annotation funclion f, of arity n is a total function
fp : [Oa 1]n - [Oa 1]

A temporal annotation function f; of arity n is a total function f; : 77 — 7

We assume that associated with each annotation function is a body of termi-
nating software code implementing that function.

We also assume that all variable symbols from L are partitioned into three
classes. We call one class object variables and this class contains the regular first
order logic variable symbols. The second and third classes of variable symbols,
probabilistic annotation variables and temporal annotation variables will contain
variable symbols that range over the interval [0, 1] and over calendar 7 respectively.
These variables can appear only inside annotation items, which are defined below:

Definition 3 An annotation item é based on a set of constants C’, a set of vari-
ables V and a set of annotation functions F is either (a) a constant « € C, (b) a
variable v € V; or (c) an expression of the form f(81,...,6;) where §;,..., 6 are
all annotation items based on (C’, v, f} and f € F is a k-ary function symbol.

In this paper, we consider two types of annotation items: probabilistic annotation
items and temporal annotation items. Both are defined below.

Definition 4 A probabilistic annotation tlem § is an annotation item based on the
set of constants in the [0, 1] interval, and on the sets of probabilistic annotation
variables and probabilistic annotation functions of L.

A temporal annotation item 6 is an annotation atom based on the set of all
constants from 7, and on the sets of temporal annotation variables and temporal
annotation functions from L.

Definition 5 A temporal constraint ¢ = ¢(y, y1, ..., yr) with independent variables
Y1, ...y and dependent variable y is one of the following:

e Let A be a temporal annotation item with yq, ...y, being its only variable
symbols. Then y op A where op € {=, <, >, <, >, #} is a temporal constraint.

e Let Ay and As be temporal annotation items that contain only variables
Y1,---Yr. Then y: Ay ~ Ag is a temporal constraint.

e Let ¢; and ¢5 be temporal constraints with the same dependent variable. Then
¢1 A cg, ¢1 Vg and —ey are temporal constraints.

A temporal constraint ¢ is called ground if it contains no independent variables.

We will slightly abuse notation and sometimes write ¢ instead of constraints
y=tandy:t~t.

Definition 6 Let ¢ = ¢(y) be a ground temporal constraint. The solution set of ¢,

denoted sol(e) is defined as follows:

1. ¢ is atomic. sol(c) is determined by the following table:

Case | sol(C) Case s0l(C)
y<t|{zerz<t} y#t {eerlz #1}

y<t | {zer|s<t} y>t {z € 7|z >t}

y=1 | {t} y:t~t [{zerjs>tArs <t}

2. If ¢ = ¢1 ANea, €1 Veg or —eq then sol(c) is defined as sol(cy) N sol(ez),
sol(c1) U sol(ca) and T — sol(cy) respectively.

We can expand the definition of a solution set to non-ground temporal con-
straints by postulating that the solution of a constraint is a mapping from ground
substitutions to sets of timepoints which has to agree with the solution sets for
ground temporal constraints.

Definition 7 Let ¢ = ¢(y,y1,...yx) be a (non-ground) temporal constraint. We
define sol(c(y,y1,...,yr)) as a function sol(c) : 7% — 27 such that (V(ai,...a;) €
™) (sol(c)(ay, ..., ar) = sol(c(y,ar, ..., ar)).

Definition 8 A probabilistic weight function w associated with a subset T of calen-
dar 7 is a function w: T — [0, 1].

Ife=e(y,y1, ..., yx) is a temporal constraint, a generalized probabilistic weight
function w. is defined as a function that takes as arguments (i) a substitution a =
(ar,...,ap) of values for y1,...yx and (ii) a timepoint t € 7 and returns a number
between 0 and 1. We only require that if w.(a,t) # 0, then t € sol(e(t,a1,...,ax)).

The intuition underlying the above definition is as follows. Consider a constraint
ec=cy,y1,-..,yx) and let @ be a vector of k time points. and let = [yy, ..., yz]/a.
Then cf determines a set of time points, viz. those that make ¢ true by making an
assignment to the dependent variable y. A probabilistic weight function assigns a
probability to each time point in this set.

Example 1 For instance, consider the temporal constraint ¢ = c(y,y1,y2) of the
form2<yAy<uyi Ay1 <ya Aya < 4. When we set y1 = y2 =4, i.e. a = (4,4),
this constraint determines the sel of time poinis {2,3,4}. A probabilistic weight
function we(a,t) may associate the respective values 1,1,0.5 with these time points.

We will use probabilistic weight functions as follows. Now suppose we consider
a formula A, and suppose we want to say that A is true with probability w.(a,t)
at any time t which is a solution of c. Then this means that A is true with 100%
probability at times 2 and 3 and 50% probability at time 4.

Notice that if temporal constraint ¢ is ground then any generalized probabilistic
weight function w,. is reduced to a simple probabilistic weight function defined on
sol(¢). In this case, as no independent variables are present in ¢, we will write w,(y)
and not distinguish between it and the simple weight function.

Let ¢(y,y1, ..., yr) be a temporal constraint such that (V(ay, ..., a;) € 7%)
(Isol(c(y, a1, ...,ax))| = 1). We will denote by f the generalized probabilistic weight
function w,, such that w(¢,ay,...ax) = 1 iff ¢t = sol(¢)(ay,...,a;). This defines §
to be a universal identity weight function.

Also, we will sometimes specify the weight function in the form of aset {vy,... vg}
of values. We can do this when we know that the |sol(¢)| = k. For example, if
e(y) =y : 3 ~ 5, a weight function w, can be represented as {0.5,1,0}. This will
mean w.(3) = 0.5,w.(4) = 1,w.(5) = 0.

Definition 9 A temporal probabilistic annotation is ¢ quadruple {c,l, u,w.) where
¢ 15 a temporal constraint, | and u are probabilistic annotation items and w. is a
generalized probabilistic weight function.

Definition 10 Let F' = Ay * ...+ Ay be an event atom (x € {V,A}) and p =
(e, u,we) be a tp-annotation. Then F @ p is a tp-annotated basic formula or just
an annotated basic formula.

Intuitively when F'is ground, F' : {¢, [, u,w.) represents the fact that the events
described by F happened at a point in sol(¢) with a probability in the interval
[[,u] and that the probability that these events occured at a particular timepoint
t € sol(c) is given by the weight function we.

Definition 11 Let A : p, Iy @ py, ... Foy @ py be tp-annotated basic formulas, A €
Br. Then A:p+— Fy i pn A...ANFp iy 15 called a temporal probabilistic clause
or a tp-clause.

Definition 12 A temporal probabilistic program (tp-program) is a finite set of
tp-clauses. If P is a tp-program, we let ground(P) denote the set of all ground
mstances of rules of P.

Example 2 Let 7 =[0,...30]. Consider the following ground tp-program:

arrived(Item,Place): [y : 3 ~ 5,0.5,0.8,{0.5,0.3,0.2}] —
sent(Item,Place): [y = 1,0.9,1, 1].

arrived(Item,Place): [y : 6 ~ 8,0.2,0.4,{0.75,0,0.25}] «—
sent(Item,Place): [y = 1,0.9,1, 1].

arrived(Item,paris): [y : 3~ 4,0.5,0.9,{0.6,0.4}] —
sent(Item,paris): [y = 1,0.95,1, {]A
express_mail(Item): [y = 1,1,1,4].

sent(shoes,rome): [y = 1,1,1,f] «— .

sent(letter,paris): [y = 1,1,1,1] «— .

express_mail(letter,paris): [y = 1,1,1,1] — .

This program represents a small part of a deductive database of some company
that deals with projected arrivals of the packages shipped by the company. First
two rules of the program provide the information on the probability distribution of
the arrival time of an arbitrary package sent to any place. The third rule gives some
extra information about the arrival time of packages sent to Paris via express-mail.
Three facts about shipments complete this simple program.

3 Temporal Probabilistic Programs: Model The-
ory and Fixpoint Semantics

3.1 Model Theory

In this section we introduce the model theory of tp-programs.
Definition 13 (Thread) A thread is a function th : By, — 27.

Intuitively, a thread th contains information about the times when each event
occurs. It specifies one possible way events could occur in time. If for some ground
event atom A, th(A) = 0, we interpret it as meaning that the event associated with
A does not occur in thread th at all. The notion of TP-world below says that we
may not know which of several possible threads actually describes the occurrence
of events over time.

Definition 14 A TP-world M is a pair M = (TH,p) where TH = {th} is «
set of threads and p : TH — [0,1] is a probability distribution funclion such that

ZtheTH p(th) <1 h

Here, T'H represents a set of possible ways events could occur, while p specifies
the probability of each thread. Given a TP-world M, we may specify the probability
of a formula via the following definition.

Definition 15 Suppose M = (T'H,p) is a TP-world and A € Br. The probability
pa (A1) that the event denoted by A occurred at time t according to the TP-model
M is defined as follows:

pu(A)= > plth).

theTH,th(A)3t

IfF=AN...NAy and G = A1V ...V A are ground compound event atoms,
then par(F,t) and ppr(G,1) are definable as:

pu(F) = > p(th).

theTH,th(A1)3t,...,th(Ax)3t

pu(Gt) = > p(th).

theTH (3ie{1,..k})(th(A;)3t)

The above definition specifies the probability of a formula being true at a given
point in time. We can extend this to define the probability that a formula is true
at some (possibly more than one) time point in a solution of a ground temporal
constraint c.

Definition 16 If M = (TH,p) is « TP-world, F = Ay A.. NAp and G = A V...V
Ap are event atoms, and ¢ = c(y) is a ground temporal constraint, then par(F,c) is
defined as:

pu(F,c) = > p(th).

theTH,th(A1)N...0th(Ar)Nsol(c)Z0

pu(Ge) = > p(th).

theTH, (3ie {1, k})(th(A)Nsol(c)20)

1If the sum is equal to 1 we can talk about a complete distribution, otherwise the distribution
is tncomplete.

We are now in position to define satisfaction for ground formulas.

Definition 17 (Satisfaction) Let M = (T'H,p) be a TP-world.
o M EF :[e,l u,w], where ¢ = c(y) iff
— pu(Fye) €[, u]
— (Yt € sol(e))pa (F,t) € [we(t) - Liwe(t) - u.
e MEF A AFyiftVie{l,...k}M = F; @ py.
e MEF :pu—F N . AF,iff either M = F :por M = Fy - jn AL AFg.

A TP-world M is called a model of a tp-program P (M |= P)iff (¥r € P)(M |
r). A tp-program P is consistent if it has a model.

As usual we say that F : p is a consequence of P (P = F : p) iff for every
model M of P, il is the case that M |= F : p.

Example 3 Picking up from where we left off in Example 2, consider the following
TP-world M which consists of two tp-threads thy and ths, defined as follows:
thy(sent(letter,paris)) = {1,3,7}

thy(express_mail(letter,paris)) = {1,7}
thy(arrived(letter, paris)) = {3,6,8}
tha(sent(letter,paris)) = {1}
tha(express_mail(letter,paris)) = {1}

tha(arrived(letter, paris)) = {4}
The probability distribution p is: p(thy) = 0.6 and p(thy) = 0.4.

The first thread states that three letters had been sent to Paris on dates 1, 3
and 7, two of them (on dates 1 and 7) had been sent via express mail, and that
the letters arrived in Paris on dates 3, 6 and 8 respectively. The second thread has
information that only one letter to Paris had been sent (on date 1),via express-mail
and arrived to Paris on date 4.

We see that according to M, the probability that the letter arrived in Paris on
date 3 15 0.6 and the probability that it arrived on date 4 15 0.4.

3.2 Fixpoint Semantics

We now provide a fixpoint procedure to compute the semantics of tp-programs.
The fixpoint procedure maps certain structures called tp-interpretations to tp-
interpretations — in order to define tp-interpretations, we need to define some
intermediate structures called tp-piles and tp-sets below.

Definition 18 Let F' be a ground event atom, t € 7 be a timepoint and [l,u] C
[0,1]. Then the quadruple (F,t,1,u) is called a tp-tuple.

A collection (multiset) of tp-tuples is called a TP-pile. If R is a TP-pile we will
use R[F,t] to denote the set {(F,t,-,-) € R}. If for each pair F,t the size of R[F,1]
s at most 1, then we call R a TP-set.

Intuitively, each tp-tuple contains information about the probability of an event
associated with F' (which can be compound) at timepoint . A TP-pile is an ar-
bitrary collection of such information. In a TP-pile there may be two or more
tp-tuples that have information about the probability of some event F' at some
time 2.

A TP-set R is complete iff (VF)(V¢)(R[F,t] # §). On non-complete TP-sets, we
define a completion operation compl as follows: compl(R) = RU{(F,t,0, 1)|R[F,t] =
0}. Clearly for each TP-set R there is a uniquely defined completion of it. There-
fore without loss of generality from now on we will consider only complete
TP-sets. We define the satisfaction by such sets as follows:

Definition 19 Let R be a TP-set and I : [¢,],u,w.] be an evenl atom where ¢ =
(Y, Y1, ..., Yr) is a temporal constraint.

o R satisfies F: [e,l,u,w.] (R F :[c,l,u,w.])iff for alla = (ay,...,a;) € 7
such that sol(c)(a) # O and for all t € sol(c)(a) there exists such interval
[lt, Ut] that

- (Fataltaut) € R
- [lta ut] g [wc(é,t) : lawC(éat) : U]

e REF) :[er, 1, ur,we JA . A Fy t en, ln, tin,we, | I (Vi€ {1,...nR|E F; :

[cia lia Ui, wcz]

e REF :[c,Lu,w] «— Fy :[er, i, ur,wi] Ao A Fy e, ln, un,we] E R E
Fle,Lu,w] or RIEF:[er, L u,we,] A oAyt [eny b, tn, we,]

o R satisfies a tp-program P (R |= P)iff R satisfies every clause in P.

A TP-interpretation is a TP-set that satisfies certain simple axioms. It will turn out
that these axioms are exactly “right” from the point of view of making our fixpoint
procedure compute the notion of logical consequence associated with tp-programs.

Definition 20 A T'P-set R s called a TP-interpretation iff the following conditions
hold:

o Conjunctive ignorance.
(VF = AN AAR, G = BiA. . ABy) (Yt € T)((F,t, 11, u1) € RA(G,t, 15, us) €
R)= (RE (FAG):[t,max(0,l; +la — 1), min(uy, us),t])

e Disjunctive ignorance.
(VF = A1V.. VA, G = B1V.. VB,)Yt € T)((F,t,l1,u1) € RA(G,t,l5,us) €
R)= (RE (FVG):[t,max(ly,l2), min(1l,u; + us),f])

If nothing is known about the relationship between the cvents, then the intervals
[max(0,{; + {2 — 1), min(uy, u2)] and [maz(l1,{2), min(1l, u; + us)] represent the
intervals in which the probability of conjunction and disjunction (respectively) of
two events with probability intervals [l1, u1] and [l2, us] will lie, if nothing is known
about the relationship between the cvents.

In order to define a fixpoint operator, we first define an intermediate operator
T% which when applied to a TP-interpretation produces a TP-pile. The operator
Tp corrects the result of 75 to make it a T'P — interpretation. In the definition of
1% we will employ the @ notation defined below to “split” a compound event atom.

Definition 21 Let F = Fi+ ...« Fp, G =Gr*...«Gy (k> 0), H=Hy*...%
Hpy (m > 0) where x € {A,V}. We write G H = F iff:

(a) {Gy1,...,Gp}U{Hy,....Hp}={F1,..., F,} and

(b) {G1,...,Ge}N{Hy,...,Hpn} = 0.

Definition 22 Let P be a ip-program.

e Let ' = A be an atom of By. Lett €t
TEH(R)(A) ={(A,t, 1, w)|(Tr € ground(P))
(r=A:[c,I',v w;] — Body; R |= Body;
t € sol(c) and [[,u] = [we(t) - I we(t) - ¥'])}
o Let F= A1 AN...NAg.
Tp(R)(F,t) = {(F,t,1,u)|(3H,)
(F =H® G, (H,t, ll, Ul), (G,t, 12, Uz) ER
and [l,u] = [max(0,{; + {2 — 1), min(uy, u2)])}
o Let F=A1 V...V A
Tp(R)(F,t) = {(F,t,1,u)|(3H,)
(F =H® G, (H,t, ll, Ul), (G,t, 12, Uz) ER
and [l,u] = [max({y,l2), min(1, vy + u2)])}
We may now extend the definition of T to map tp-interpretations to tp-interpretations.
Definition 23 Let P be a tp-program. We define operator Tp as follows: Tp(R)(F,t) =
(Pt L u), where [[u] = 0{[l',«]|(F, ¢, I, u") € T (R)(F,1)}.

In order to describe the fixpoint procedure based on the operators described
above, we need to introduce an ordering on TP-interpretations, and prove that Tp
operator is monotonic w.r.t. this order.

Definition 24 Let R and S be two T'P-sets. We say that R < S iff for every F
and t € T if (F,t,L,u) € R and (F,t,I',u') € S then [l,u] D [l',u].

The following statement shows that the set Rp, of all TP-interpretations for
the formulas constructed out of atoms of By, forms a complete lattice.

Lemma 1 (Rp,,<) is a complete lattice. ?

The following result states that out Tp operator is monotonic.
Theorem 1 Let R < S and let P be a TP-program. Then Tp(R) < Tp(S).

The following definition specifies how we might iteratively apply the Tp operator.
Definition 25 Let P be a ip-program.

o Tp = — = compl(l)

o Tp" = Tp(T})

o Tp = Nica(Tp)
The following theorem is important. It shows that Tp has a least fixpoint, { fp(Tp),
and that this least fixpoint precisely captures the model-theoretic notion of logical

consequence assoclated with tp-programs. Thus, iterative application of the Tp
operator yields all ground event atoms that are logical consequences of P.

Theorem 2 1. REPIf Tp(R) <R

2. 1fp(Tp) E P

3. V)P EF :[e,l,u,w], where ¢ = ¢(y,y1,...yx) iff
(Va € *)(sol(c)(@) # 0) = (Vt € sol(c)(a))(3y, u)((F,t, b, ur) € Lfp(Tp) A
[l wd] € [wel@, 1) - Lwe(a,) -u)))).

2The bottom element of the lattice, representing total lack of knowledge will be the TP-set

— = {(#,,0,1)} for all ¢ € 7 and all ground event atoms F'. The top element of the lattice,
representing absolute contradictory knowledge will be the TP-set T = {(F,¢,1,0)}.

4 Fixpoint Computation and Entailment Problem
(Ground Case)

In this section, we develop algorithms and associated complexity results for compu-
tation of the fixpoint of a ground tp-program, checking its consistency, and query
answering. To simplify time bounds, we assume that elementary problems such as
checking "t € sol(c)” and computing w.(a,t) can be done in constant time® | and
enumeration of sol(¢) can be done in time linear w.r.t. |sol(c)|.

For any TP-set (TP-interpretation) R, let atoms(R) = {(A,t,l,u) € R, Ais a
simple event atom}. Let P be a ground tp-program over the set of ground simple
event atoms {A1, ..., Axy} and the calendar 7 = [0, {max]. Let us denote {fp(Tp) by
Rp. The following lemma shows that Rp can be easily defined by atoms(Rp).

Lemma 2 For allt € 7 and all ground compound event atoms F

o if F=A1 N...ANA and for each 1 < i<k (A;,t,1;,u;) € atoms(Rp) then
(Fot,Lbu)ye Rp, forl=0U+...+lz+1—k and u=min{uy, ..., u};

o if F=A1V... VA and foreach 1 <i<k (A;,t,;,u;) € atoms(Rp) then
(F.t,l,u) € Rp, for l = max{ly,..., [z} and v = min{l,u; + ...+ up}.

This lemma allows to propose an efficient algorithm to construct atoms(Rp) for
the ground case. This algorithm will also check the consistency of tp-programs. Let
P be a ground tp-program over the set By, = { Ay, ..., Ay} and let {Fy, ..., F} be the
set of all compound event atoms included in clauses of P. Algorithm LFP-atoms.
Input: a ground tp-program P.

Output: atoms(Rp).
BEGIN (algorithm)

1. OLD :=0; NEW := 0
2. FOR:=1TO N DO

FOR EACH t € r DO

NEW := NEW U {(A:,,0,1)};
3. FOR 3 =1TO s DO

FOR EACH t € r DO

NEW := NEW U {(F},,0,1)};
4. WHILE OLD # NEW DO

BEGIN

OLD := NEW;

5. FOREACH r = A : [¢,], u,w.] — Body € P such that OLD |= Body DO

6. FOR EACTH t € sol(c) DO

BEGIN

LET (A, 4,0, u') € NEW;

L= max(l', we(t) x 1);

wr := min(u’, we(t) * u);

IF wy < Iy THEN RETURN ¢;

NEW = (NEW\{(A,,,w)}) U{(A, ¢, 11, u1)};
P:=P\{r}

END;

3We do this to make our complexity results independent of issues such as the implementation of
the w. functions. We can then factor the complexity of computing w(a, t) back into our complexity
estimate if needed. It should be noted that for ground programs, on which we are concentrating
in this section the assumption that wc(t) can be computed in constant time quite reasonable.

7. FOR y =1 TO s DO
8. FOR EACH t € r DO
BEGIN
LET Fj = Bl ...+ B. AND FOR EACH 1 <p <k (B}, 1,1}, u)) € NEW
IF + = A THEN BEGIN
l'=U0+... 40 +1—k w:=min{u],...,u.} END
ELSE BEGIN {x =V}
U:i=max{{{,...,}; v :=min{l,u] + ...+ ul} END;
NEW i= (NEW \{(Fy,1, -,) U{(Fy. t,1, u))
END;
END;
9. RETURN atoms(NEW)
END.
The following theorem shows that algorithm LEP-atoms is a correct way of check-
ing P for inconsistency and (if P is consistent) of computing the least fixpoint of
Tp for simple event atoms. It also establishes the polynomial time complexity of
the algorithm. The proof of this result uses lemma 2.

Theorem 3 Lel P be any ground tp-program and let P contain m clauses. Let | P|
be the size of P (under some standard encoding). Then Algorithm LFP-atoms
returns O iff P is inconsistent. If P is consistent then it computes atoms(Rp) in
time O(m - |P| - tmaz)-

Now we consider the entailment problem: given a tp-program P and a ground
query G, check whether P = GG. Our queries will be conjunctions of annotated basic
formulas of the form F' : [¢,l,u,w.] where F is ground. One way to answer such
queries is to add F' to the list of compound events {F1, ..., Fs} of P, run algorithm
LFP-atoms, and after it terminates check the values (F,t,/, u) for all t € sol(c). A
better way, however, is to use a preprocessing step on which algorithm LFP-atoms
is run once to obtain atoms(Rp), and then to answer to queries using the following
simple algorithm.

Algorithm Simple query.

Input: set atoms(Rp) and a simple query F : [c,, u, w].
Output: "YES” if P = F : [c,l, u,w.], otherwise "NO”.
BEGIN (algorithm)

LET F =By *...%x By

FOR EACH t € sol(c) DO

BEGIN LETFOREACH1<p<k (Bpt 1y up)€ atoms(Rp);

IF + = A THEN BEGIN
L:=bh+...+l+1—k U:=min{ur,...,ur} END
ELSE BEGIN {x =V}
L:=max{l,...,lx}; U:=min{l,us + ...+ ux} END;
IF (L < 1% we(t)) OR (U > u* we(t))
THEN RETURN ”NO”
END
RETURN ”YES”
END.
The following theorem shows that after polynomial time preprocessing, the entail-
ment problem can be solved in linear time.

Theorem 4 (1) Algorithm Simple query gives a correct answer to any simple
query of the form F :[c,l,u,w.] in time O(|F|+ |sol(e)]).

(2) There exists an algorithm which given the set atoms(Rp) answers to any
query G of the form Fy : [e1, i, ur,wi] A ... A Fplen, bn, un,wn] in time linear of

(1G] + 32y [sol(en)]).

5 Proof Procedure

Below we present a basic proof procedure for temporal probabilistic programs. It
i1s quite inefficient, because it requires the resolution to be always performed for
the event atoms annotated by single timepoints, which means that more complex
temporal constraints are forcefully “broken down”. Nevertheless, this procedure 1s
quite easy to understand and serves as a starting point for a more efficient and
sophiscitated proof procedure which had also been developed. Unfortunately, the
space limitaions disallow us to include the second proof procedure here.

5.1 Unification

If x is either A or V, then we say that two event atoms A1*...x Ay and By*...xB,, are
unifiable iff there is a substitution 6 such that {A10,... A6} = {B16,..., B,,0}.
This notion of unification was introduced in [23] and it was proved that though most
general unifiers are not necessarily unique, a corresponding notion of a mazimally
general unifier (max-gu) exists. For space reasons, we do not go into details of this
here.

5.2 A Basic (Inefficient) Proof Procedure

In this section, we describe how we can expand a tp-program P into a program
called its closure. This closure may then be used to define a resolution based proof
procedure.

Definition 26 (Explosions) Let F : [¢,l,u,w.] be a ground formula. The ex-
plosion of I : [¢,l,u,w.], denoted E(F : [c,l,u,w.]), is defined as {F : [t,w() -
Liwe(t) - u,]|t € sol(e)}. The exploded basic formula for F' : [e,l, u,w,], denoted
Er(F el u,wy), is /\tEsol(c) Foftwe(t) Lwe(t) u,f].

Let r = F : [¢,l,u,w.] — Body be a lp-clause. Then the explosion of r, denoled
E(r), is defined as {F : [t,we(c,t) -l we(e,t) - u,i] — Bodylt € sol(c)}.

If P is a tp-program, then the explosion of P, denoted E(P), is defined as {E(r)|r €
P)

The explosion operation explicitly enumerates the probabilities of an event at all
time points associated with a constraint. (As this set of time points can potentially
be very large, we use the term explosion to describe this operation). Using this, we
can now define the timepoint-based closure of program P.

Definition 27 (Timepoint-based Closure) Let P be a ip-program.
eREDUN(P)=&(P)U{F :[t,0,1,8] — |F € Br;ter}
o We define the closure of P (denoted TCL(P)) iteratively:

1. TCL°(P) = REDUN(P)

2. To construct TCLi+1(P) given TC’Li(P) apply the following rules to all pos-
sible pairs of elements of TCL'(P) :

o Clarification rule:

If clauses F : [t,l,u,8] «— Body and F’' : [{,I',v 4] <« Body are in
TC’Li(P) and F and F’ are unifiable via maz-gu ©, add the clause

(F : [t,max({,!'), min(u, u'),§] — Body A Body')© to TC’LHl(P).

e A-composition rule:

If clauses F : [t,l,u,8] «— Body and F’' : [{,I',v 4] <« Body are in
TCL(P), F = A\ A...ANAy and G = By A ... A By, (k,m > 1), add the
clause

(FAG):[t,max(0,{+ ' — 1), min(u, u'), §] — Body A Body' to TC’LHl(P).
e V-composition rule:

If clauses F : [t,l,u,8] «— Body and F’' : [{,I',v 4] <« Body are in
TCLY(P), F = ALV ..VA; and G = By V ...V By, (k,m > 1), add the
clause

(FVG):[t,max(l,"), min(u + «', 1),] — Body A Body' to TC’LHl(P).

3. TCL(P) = U;»o TCL'(P).
Lemma 3 For every clause r € TCL(P), P = r.

Note that the syntax of TCL(P) is somewhat different from the syntax of P, as
we allow the rules in TCL(P) to have non-atomic heads. However this extension
is supported by our definitions of satisfaction on TP-models (def. 17) and TP-sets
(def. 19). We are now ready to proceed with the resolution procedure.

Definition 28 A tp-query is an expression of the form 3(Hy : [e1, i, wa]A. . .AH,
[Cn, lna Un])

The explosion of a tp-query Q, denoted Ex(Q) is an expression of the form: N\;_, Ex(H;
[C, lia uia wC])

In other words, the explosion of a tp-query is a conjunction of the explosions of
all basic formulas in the query.

Definition 29 Let Q be a query and let E£(Q) = F1 : [t L, u, f] A L Py
En,dn,un,d]. Letr = G [t,Lu] — Gy A .Gy 2 pp € TCL(P) and G
be unifiable with F; via maz-gu ©. Then

3((F1 : [tl,ll,ul,ﬁ]/\. CANF [ti—l,li—l,ui—l,ﬁ]/\g}'(Gl :ﬂk)/\. . ./\g]:(Gk Z/Jk)/\

Fi+1 : [ti+1, li_|_1, Uiy 1, ﬁ] AN, [tn, ln, Uy, ﬁ])@)
is a tp-resolvent of r and @ i [I,u] C [I;, u;].

Definition 30 Let @ = 3(F1 : g1 A ... A Fy : pn) be an initial query, and P
a tp-program. A tp-deduction of @) from P is a sequence < @1,71,01 > ... <
Qs,75,05 > ... where, Q1 = E£(Q), for all i > 1 | r; is a renamed version of a
clause in TCL(P), and Q;41 is a tp-resolvent of (); and r; via max-gu ©,.

A tp-refutation of @ from P is a finite tp-deduction < @Q1,71,01 > ... <
Qs,rs,0; > where, the tp-resolvent of @J; and rs; via ©; is the empty query.
©1...0, is called the computed answer substitution.

The following theorem states that our first proof procedure is sound and com-
plete.

Theorem 5 [Soundness/Completeness of tp-refutation]

1. Let P be a tp-program, and @) be an nitial query. If there exists a tp-refutation
of @ = 3A(Fy : i A ATy o py) from P owith the answer substitution © then
PEV((Fy iAo AFy:p,)0).

2. Lel P be a consistent ip-program and Q) be a query. Then, if P |= Q then there
exists a tp-refutation of Q' from P.

6 Related Work

To date, there has been no work on temporal probabilistic logic programming that
we are aware of — hence, we compare our work with work on probabilistic logic
programming, and with logics of probability and time.

In addition to the authors’ works, probabilistic logic programs were studied
by Thone et al.[25], and Lakshmanan [17] who showed how different probabilistic
dependencies can be encoded into logic programs. Kiessling’s group [14, 25] and
Lukasiewicz [21] made important contributions to bottom up computations of logic
programs. The work reported in this paper may be viewed as an extension of the
above works (as well as [23, 24, 2, 4]) to handle temporal-probabilistic informa-
tion. In addition to the model theory, we have developed both bottom up fixpoint
computation algorithms and alternative proof procedures for TPLPs.

Lehmann and Shelah [19] and Hart and Sharir [11] were among the first to
integrate time and probability. Kanazawa also studied the integration of probability
and time with a view to developing efficient planning algorithms [12]. Their main
interest is in how probabilities of facts and events change over time., Haddawy [10]
develops a logic for reasoning about actions, probabilities, and time using an interval
time model. Our framework is different from theirs in that (i) we allow arbitrary
distributions in our syntax, (ii) we provide a fixpoint theory, (iii) we provide and
manipulate constraint based representations of time, and (iv) we provide constraint
based proof procedures and complexity results for the “Horn clause like” fragment
of this logic.

Dubois and his colleagues [5] have studied the integration of uncertainty and
time — they extend the well-known possibilistic logic theory to a “timed possibilistic
logic.” This logic associates, with each formula of possibilistic logic, a set of time
points reflecting the times at which the formula has a given possibilistic truth value.
However, this framework is not probabilistic.

Last but not least, our use of possible worlds models was inspired by the work of
Fagin and Halpern ([7],[9]), in which similar in spirit models had been introduced
for probabilistic nontemporal logics.

7 Conclusions

In this paper, we have defined temporal probabilistic (tp-) logic programs that allow
us to reason about instantaneous events in a probabilistic environment, We have
provided a formal syntax and model theory for tp-programs, developed a fixpoint
theory that is equivalent to the model theory and developed sound and complete
bottom up computation procedures for entailment. We also developed a sound and
complete proof procedure for tp-programs which supports a resolution based query
processing for tp-programs.

Acknowledgments

The work of the second author had been partially supported by Russian Fundamen-
tal Studies Foundation (Grants 97-01-00973). The other authors were supported by
the Army Research Office under Grants DAAH-04-95-10174, DAAH-04-96-10297,
and DAAHO04-96-1-0398, by the Army Research Laboratory under contract number
DAALO01-97-K0135, by an NSF Young Investigator award TRI-93-57756, and by a
TASC/DARPA grant J09301S98061.

References

(1]

(2]

[11]
[12]
[13]
[14]

[15]

[16]

M. Baudinet. (1992)A Simple Proof Of The Completeness Of Temporal Logic Pro-
gramming, in Intensional Logics and Programming (eds. L.G. del Cerro, M. Pento-
nen), pp 51-83, Clarendon Press, 1992.

A. Dekhtyar and V.S. Subrahmanian. (1998) Hybrid Probabilistic Logic Programs,
accepted to Journal of Logic Programming, Feb. 1999. Early version in Proc. 1997
Intl. Conf. on Logic Programming (ed. L. Naish), MIT Press.

A. Dekhtyar, R.Ross and V.S. Subrahmanian. (1998) Probabilistic Temporal
Databases, I: Algebra, available as University of Maryland tech report CS-TR-3987

M. Dekhtyar, A. Dekhtyar and V.S. Subrahmanian. (1998) Hybrid Probabilistic Pro-
grams: Algorithms and Complexity, accepted to Uncertainty in AI’99, extended ver-
sion available as University of Maryland tech. report CS-TR-3969.

D. Dubois, J. Lang and H. Prade. (1991) Timed Possibilistic Logic, Fundamenta
Informaticae, XV, pps 211-234.

C. Dyreson and R. Snodgrass. (1998) Supporting Valid- Time Indeterminacy, ACM
Transactions on Database Systems, Vol. 23, Nr. 1, pps 1—57.

R Fagin, J.Halpern, Uncertainty, belief, and probability, Computational Intelligence
7,1991, pp. 160-173

R. Fagin,J. Halpern, N. Megiddo, A logic for reasoning about probabilities, Infor-
mation and Computation 87:1,2, 1990, pp. 78-128

R. Fagin, J. Halpern, Reasoning about knowledge and probability, Journal of the
ACM 41:2, 1994, pp. 340-367

P. Haddawy. (1991) Representing Plans under Uncertainty: A Logic of Time, Chance
and Action, Ph.D. Thesis. Available as University of Illinois Tech. Report UITUCDCS-
R-91-1719.

S. Hart and M. Sharir. (1986) Probabilistic propositional temporal logic, Information
and Control, 70:97-155.

K. Kanazawa. (1991) A Logic and Time Nets for Probabilistic Inference, AAAI-91,
pps 360-365.

S. Kraus and D. Lehmann. (1988) Knowledge, Belief and Time, Theoretical Com-
puter Science 58, pp 155-174.

W. Kiessling, H. Thone and U. Guntzer. (1992) Database Support for Problematic
Knowledge, Proc. EDBT-92, pps 421-436, Springer LNCS Vol. 580.

V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. ProbView: A Flexible
Probabilistic Database System. ACM TRANSACTIONS ON DATABASE SYSTEMS, Vol.
22, Nr. 3, pps 419-469, Sep. 1997.

V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases,
Proc. Int. Conf. on Database Expert Systems and Applications, (DEXA’94), Septem-
ber 7-9, 1994, Athens, Greece, Lecture Notes in Computer Science, Vol. 856, Springer
(1994), pp. 724-733.

[17]

[18]

[19]

[20]

V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, Proc. Int.
Logic Programming Symp., (ILPS’94), November 1994, Ithaca, NY, MIT Press.

V.S. Lakshmanan and N. Shiri. (1997) A Parametric Approach with Deductive

Databases with Uncertainty, accepted for publication in IEEE Transactions on
Knowledge and Data Engineering.

D. Lehmann and S. Shelah. (1982) Reasoning about Time and Chance, Information
and Control, 53, pps 165-198.

T. Lukasiewicz. (1998) Probabilistic Logic Programming, in Procs. 13th biennial Eu-
ropean Conference on Artificial Intelligence, pps 388-392, Brighton, UK, August
1998.

T. Lukasiewicz. (1998) Magic Inference Rules for Probabilistic Deduction under Tax-
onomic Knowledge, Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, pps 354-361, Madison, Wisconsin, USA, July 1998.

J.W. Lloyd. (1987) Foundations of Logic Programming, Springer.

R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, INFORMA-
TION AND COMPUTATION, 101, 2, pps 150-201, 1993.

R. Ng and V.S. Subrahmanian.(1993) A Semantical Framework for Supporting Sub-
jective and Conditional Probabilities in Deductive Databases, JOURNAL OF AuUTO-
MATED REASONING, 10, 2, pps 191-235, 1993.

H. Thone, W. Kiessling and U. Guntzer. (1995) On Cautious Probabilistic Inference
and Default Detachment, Annals of Operations Research, 55, pps 195-224.

