
Temporal Probabilistic Logic ProgramsAlex DekhtyarUniversity of Marylanddekhtyar@cs.umd.edu Michael I. DekhtyarTver State UniversityMichael.Dekhtyar@tversu.ruV.S. SubrahmanianUniversity of Marylandvs@cs.umd.eduAugust 13, 1999AbstractThere are many applications where the precise time at which an event willoccur (or has occurred) is uncertain. Temporal probabilistic logic programs(TPLPs) allow a programmer to express knowledge about such events. Inthis paper, we develop a model theory, �xpoint theory, and proof theory forTPLPs, and show that the �xpoint theory may be used to enumerate con-sequences of a TPLP in a sound and complete manner. Likewise the prooftheory provides a sound and complete inference system. Last, but not least,we provide complexity results for TPLPs, showing in particular, that reason-able classes of TPLPs have polynomial data complexity.1 IntroductionThere are a vast number of applications where uncertainty and time are indeliblyintertwined. For example, the US Postal Service (USPS) as well as most commercialshippers have detailed statistics on how long shipments take to reach their desti-nations. Likewise, we are working on a Viennese historical land deed applicationwhere the precise time at which certain properties passed from one owner to anotheris also highly uncertain. Historical radio carbon dating methods are yet anothersource of uncertainty, providing approximate information about when a piece wascreated.Logical reasoning in situations involving temporal uncertainty is de�nitely im-portant. For example, an individual querying the USPS express mail tracking sys-tem may want to know when he can expect his package to be delivered today |he may then choose to stay home during the period when the probability of deliv-ery seems very high, and leave a note authorizing the delivery o�cial to leave thepackage by the door at other times.In this paper, we propose the concept of a Temporal Probabilistic Logic Pro-gram (or TPLP for short). We de�ne the syntax of TPLPs and provide a formalmodel theoretic and �xpoint semantics that are shown to coincide. We then developpolynomial time bottom-up, sound and complete �xpoint computation algorithms.Then we present a \brute force" sound and complete proof procedure. Though thisprocedure is ine�cient, it is transparent and easy to understand. Subsequently,a more sophisticated proof procedure that manipulates succinct representations of1



temporal-probabilistic information had been developed, but is omitted from thispaper due to space restrictions.2 Temporal Probabilistic Programs: SyntaxLet L be a language generated by �nitely many constant and predicate symbols.We assume that L has no ordinary function symbols, but it may contain annota-tion function symbols for a �xed family of functions. Annotation function symbolsare split into two disjoint sets of probabilistic annotated functions and temporalannotated functions. If p is an n-ary predicate symbol and a1; : : : ; an are eitherconstants or variables, then p(a1; : : : ; an) is called a simple event atom. When allthe ai's are constants, p(a1; : : : ; an) is said to be ground. We use BL to denote theset of ground simple event atoms. A calendar � is any initial segment of the set ofnatural numbers: � = f1; : : : ; tmaxg for some tmax. We will denote such calendar� = [1; tmax].De�nition 1 Let A1; : : :Ak all be simple event atoms. Then A1 ^ : : : ^ Ak andA1 _ : : :_Ak are called compound event atoms. Simple event atoms and compoundevent atoms are both event atoms.De�nition 2 A probabilistic annotation function fp of arity n is a total functionfp : [0; 1]n �! [0; 1].A temporal annotation function ft of arity n is a total function ft : �n �! �We assume that associated with each annotation function is a body of termi-nating software code implementing that function.We also assume that all variable symbols from L are partitioned into threeclasses. We call one class object variables and this class contains the regular �rstorder logic variable symbols. The second and third classes of variable symbols,probabilistic annotation variables and temporal annotation variables will containvariable symbols that range over the interval [0; 1] and over calendar � respectively.These variables can appear only inside annotation items, which are de�ned below:De�nition 3 An annotation item � based on a set of constants Ĉ, a set of vari-ables V̂ and a set of annotation functions F̂ is either (a) a constant � 2 Ĉ; (b) avariable v 2 V̂ ; or (c) an expression of the form f(�1; : : : ; �k) where �1; : : : ; �k areall annotation items based on hĈ; V̂ ; F̂i and f 2 F̂ is a k-ary function symbol.In this paper, we consider two types of annotation items: probabilistic annotationitems and temporal annotation items. Both are de�ned below.De�nition 4 A probabilistic annotation item � is an annotation item based on theset of constants in the [0; 1] interval, and on the sets of probabilistic annotationvariables and probabilistic annotation functions of L.A temporal annotation item � is an annotation atom based on the set of allconstants from � , and on the sets of temporal annotation variables and temporalannotation functions from L.De�nition 5 A temporal constraint c = c(y; y1; : : : ; yk) with independent variablesy1; : : : yk and dependent variable y is one of the following:� Let � be a temporal annotation item with y1; : : :yk being its only variablesymbols. Then y op � where op 2 f=; <;>;�;�; 6=g is a temporal constraint.



� Let �1 and �2 be temporal annotation items that contain only variablesy1; : : : yk. Then y : �1 � �2 is a temporal constraint.� Let c1 and c2 be temporal constraints with the same dependent variable. Thenc1 ^ c2, c1 _ c2 and :c1 are temporal constraints.A temporal constraint c is called ground if it contains no independent variables.We will slightly abuse notation and sometimes write t instead of constraintsy = t and y : t � t.De�nition 6 Let c = c(y) be a ground temporal constraint. The solution set of c,denoted sol(c) is de�ned as follows:1. c is atomic. sol(c) is determined by the following table:Case sol(C) Case sol(C)y � t fx 2 � jx � tg y 6= t fx 2 � jx 6= tgy < t fx 2 � jx < tg y > t fx 2 � jx > tgy = t ftg y : t � t0 fx 2 � jx � t ^ x � t0g2. If c = c1 ^ c2, c1 _ c2 or :c1 then sol(c) is de�ned as sol(c1) \ sol(c2),sol(c1) [ sol(c2) and � � sol(c1) respectively.We can expand the de�nition of a solution set to non-ground temporal con-straints by postulating that the solution of a constraint is a mapping from groundsubstitutions to sets of timepoints which has to agree with the solution sets forground temporal constraints.De�nition 7 Let c = c(y; y1; : : :yk) be a (non-ground) temporal constraint. Wede�ne sol(c(y; y1; : : : ; yk)) as a function sol(c) : �k �! 2� such that (8(a1; : : :ak) 2�k)(sol(c)(a1; : : : ; ak) = sol(c(y; a1; : : : ; ak)).De�nition 8 A probabilistic weight function w associated with a subset T of calen-dar � is a function w : T �! [0; 1].If c = c(y; y1; : : : ; yk) is a temporal constraint, a generalized probabilistic weightfunction !c is de�ned as a function that takes as arguments (i) a substitution �a =(a1; : : : ; ak) of values for y1; : : : yk and (ii) a timepoint t 2 � and returns a numberbetween 0 and 1. We only require that if !c(�a; t) 6= 0, then t 2 sol(c(t; a1; : : : ; ak)).The intuition underlying the above de�nition is as follows. Consider a constraintc = c(y; y1; : : : ; yk) and let �a be a vector of k time points. and let � = [y1; : : : ; yk]=�a.Then c� determines a set of time points, viz. those that make c true by making anassignment to the dependent variable y. A probabilistic weight function assigns aprobability to each time point in this set.Example 1 For instance, consider the temporal constraint c = c(y; y1; y2) of theform 2 � y ^ y � y1 ^ y1 � y2 ^ y2 � 4. When we set y1 = y2 = 4, i.e. �a = (4; 4),this constraint determines the set of time points f2; 3; 4g. A probabilistic weightfunction !c(�a; t) may associate the respective values 1; 1; 0:5 with these time points.We will use probabilistic weight functions as follows. Now suppose we considera formula A, and suppose we want to say that A is true with probability !c(�a; t)at any time t which is a solution of c. Then this means that A is true with 100%probability at times 2 and 3 and 50% probability at time 4.



Notice that if temporal constraint c is ground then any generalized probabilisticweight function !c is reduced to a simple probabilistic weight function de�ned onsol(c). In this case, as no independent variables are present in c, we will write !c(y)and not distinguish between it and the simple weight function.Let c(y; y1; : : : ; yk) be a temporal constraint such that (8(a1; : : : ; ak) 2 �k)(jsol(c(y; a1; : : : ; ak))j = 1). We will denote by ] the generalized probabilistic weightfunction !c, such that !c(t; a1; : : :ak) = 1 i� t = sol(c)(a1; : : : ; ak). This de�nes ]to be a universal identity weight function.Also, we will sometimes specify the weight function in the form of a set fv1; : : : ; vkgof values. We can do this when we know that the jsol(c)j = k. For example, ifc(y) = y : 3 � 5, a weight function !c can be represented as f0:5; 1; 0g. This willmean !c(3) = 0:5; !c(4) = 1; !c(5) = 0.De�nition 9 A temporal probabilistic annotation is a quadruple hc; l; u; !ci wherec is a temporal constraint, l and u are probabilistic annotation items and !c is ageneralized probabilistic weight function.De�nition 10 Let F = A1 � : : : � Ak be an event atom (� 2 f_;^g) and � =hc; l; u; !ci be a tp-annotation. Then F : � is a tp-annotated basic formula or justan annotated basic formula.Intuitively when F is ground, F : hc; l; u; !ci represents the fact that the eventsdescribed by F happened at a point in sol(c) with a probability in the interval[l; u] and that the probability that these events occured at a particular timepointt 2 sol(c) is given by the weight function !c.De�nition 11 Let A : �; F1 : �1; : : :Fm : �m be tp-annotated basic formulas, A 2BL. Then A : � � F1 : �1^ : : :^Fm : �m is called a temporal probabilistic clauseor a tp-clause.De�nition 12 A temporal probabilistic program (tp-program ) is a �nite set oftp-clauses. If P is a tp-program, we let ground(P ) denote the set of all groundinstances of rules of P .Example 2 Let � = [0; : : :30]. Consider the following ground tp-program:arrived(Item,P lace): [y : 3 � 5;0:5;0:8;f0:5;0:3;0:2g] �sent(Item,P lace): [y = 1; 0:9;1; ]]:arrived(Item,P lace): [y : 6 � 8;0:2;0:4;f0:75;0;0:25g] �sent(Item,P lace): [y = 1; 0:9;1; ]]:arrived(Item,paris): [y : 3 � 4;0:5;0:9;f0:6;0:4g] �sent(Item,paris): [y = 1;0:95;1; ]]^express mail(Item): [y = 1; 1;1; ]]:sent(shoes,rome): [y = 1;1;1; ]] � :sent(letter,paris): [y = 1; 1;1; ]] � :express mail(letter,paris): [y = 1;1;1; ]] � :This program represents a small part of a deductive database of some companythat deals with projected arrivals of the packages shipped by the company. Firsttwo rules of the program provide the information on the probability distribution ofthe arrival time of an arbitrary package sent to any place. The third rule gives someextra information about the arrival time of packages sent to Paris via express-mail.Three facts about shipments complete this simple program.



3 Temporal Probabilistic Programs: Model The-ory and Fixpoint Semantics3.1 Model TheoryIn this section we introduce the model theory of tp-programs.De�nition 13 (Thread) A thread is a function th : BL ! 2� .Intuitively, a thread th contains information about the times when each eventoccurs. It speci�es one possible way events could occur in time. If for some groundevent atom A, th(A) = ;, we interpret it as meaning that the event associated withA does not occur in thread th at all. The notion of TP-world below says that wemay not know which of several possible threads actually describes the occurrenceof events over time.De�nition 14 A TP-world M is a pair M = hTH; pi where TH = fthg is aset of threads and p : TH ! [0; 1] is a probability distribution function such thatPth2TH p(th) � 1 1.Here, TH represents a set of possible ways events could occur, while p speci�esthe probability of each thread. Given a TP-worldM , we may specify the probabilityof a formula via the following de�nition.De�nition 15 Suppose M = hTH; pi is a TP-world and A 2 BL. The probabilitypM (A; t) that the event denoted by A occurred at time t according to the TP-modelM is de�ned as follows: pM (A; t) = Xth2TH;th(A)3t p(th):If F = A1 ^ : : : ^ Ak and G = A1 _ : : : _ Ak are ground compound event atoms,then pM(F; t) and pM (G; t) are de�nable as:pM (F; t) = Xth2TH;th(A1)3t;:::;th(Ak)3t p(th):pM (G; t) = Xth2TH;(9i2f1;:::kg)(th(Ai)3t) p(th):The above de�nition speci�es the probability of a formula being true at a givenpoint in time. We can extend this to de�ne the probability that a formula is trueat some (possibly more than one) time point in a solution of a ground temporalconstraint c.De�nition 16 If M = hTH; pi is a TP-world, F = A1^: : :^Ak and G = A1_: : :_Ak are event atoms, and c = c(y) is a ground temporal constraint, then pM (F; c) isde�ned as: pM (F; c) = Xth2TH;th(A1)\:::\th(Ak)\sol(c)6=; p(th):pM (G; c) = Xth2TH;(9i2f1;:::kg)(th(Ai)\sol(c)6=;) p(th):1If the sum is equal to 1 we can talk about a complete distribution, otherwise the distributionis incomplete.



We are now in position to de�ne satisfaction for ground formulas.De�nition 17 (Satisfaction) Let M = hTH; pi be a TP-world.� M j= F : [c; l; u; !c], where c = c(y) i�{ pM (F; c) 2 [l; u]{ (8t 2 sol(c))pM (F; t) 2 [!c(t) � l; !c(t) � u].� M j= F1 : �1 ^ : : :^ Fk i� 8i 2 f1; : : :kgM j= Fi : �i.� M j= F : � � F1 : �1^: : :^Fk i� eitherM j= F : � orM 6j= F1 : �1^: : :^Fk.A TP-world M is called a model of a tp-program P (M j= P ) i� (8r 2 P )(M j=r). A tp-program P is consistent if it has a model.As usual we say that F : � is a consequence of P (P j= F : �) i� for everymodel M of P , it is the case that M j= F : �.Example 3 Picking up from where we left o� in Example 2, consider the followingTP-world M which consists of two tp-threads th1 and th2, de�ned as follows:th1(sent(letter,paris)) = f1; 3; 7gth1(express mail(letter,paris)) = f1; 7gth1(arrived(letter, paris)) = f3; 6; 8gth2(sent(letter,paris)) = f1gth2(express mail(letter,paris)) = f1gth2(arrived(letter, paris)) = f4gThe probability distribution p is: p(th1) = 0:6 and p(th2) = 0:4.The �rst thread states that three letters had been sent to Paris on dates 1, 3and 7, two of them (on dates 1 and 7) had been sent via express mail, and thatthe letters arrived in Paris on dates 3, 6 and 8 respectively. The second thread hasinformation that only one letter to Paris had been sent (on date 1),via express-mailand arrived to Paris on date 4.We see that according to M, the probability that the letter arrived in Paris ondate 3 is 0:6 and the probability that it arrived on date 4 is 0:4.3.2 Fixpoint SemanticsWe now provide a �xpoint procedure to compute the semantics of tp-programs.The �xpoint procedure maps certain structures called tp-interpretations to tp-interpretations | in order to de�ne tp-interpretations, we need to de�ne someintermediate structures called tp-piles and tp-sets below.De�nition 18 Let F be a ground event atom, t 2 � be a timepoint and [l; u] �[0; 1]. Then the quadruple (F; t; l; u) is called a tp-tuple.A collection (multiset) of tp-tuples is called a TP-pile. If R is a TP-pile we willuse R[F; t] to denote the set f(F; t; ; ) 2 Rg. If for each pair F; t the size of R[F; t]is at most 1, then we call R a TP-set.Intuitively, each tp-tuple contains information about the probability of an eventassociated with F (which can be compound) at timepoint t. A TP-pile is an ar-bitrary collection of such information. In a TP-pile there may be two or moretp-tuples that have information about the probability of some event F at sometime t.



A TP-set R is complete i� (8F )(8t)(R[F; t] 6= ;). On non-complete TP-sets, wede�ne a completion operation compl as follows: compl(R) = R[f(F; t; 0; 1)jR[F; t] =;g. Clearly for each TP-set R there is a uniquely de�ned completion of it. There-fore without loss of generality from now on we will consider only completeTP-sets. We de�ne the satisfaction by such sets as follows:De�nition 19 Let R be a TP-set and F : [c; l; u; !c] be an event atom where c =c(y; y1; : : : ; yk) is a temporal constraint.� R satis�es F : [c; l; u; !c] (R j= F : [c; l; u; !c]) i� for all �a = (a1; : : : ; ak) 2 �ksuch that sol(c)(�a) 6= ; and for all t 2 sol(c)(�a) there exists such interval[lt; ut] that{ (F; t; lt; ut) 2 R{ [lt; ut] � [!c(�a; t) � l; !c(�a; t) � u]� R j= F1 : [c1; l1; u1; !c1 ]^ : : :^Fn : [cn; ln; un; !cn ] i� (8i 2 f1; : : :ng)R j= Fi :[ci; li; ui; !ci]� R j= F : [c; l; u; !]  � F1 : [c1; l1; u1; !1] ^ : : : ^ Fn : [cn; ln; un; !n] i� R j=F : [c; l; u; !c] or R 6j= F1 : [c1; l1; u1; !c1] ^ : : :^Fn : [cn; ln; un; !cn]� R satis�es a tp-program P (R j= P ) i� R satis�es every clause in P .A TP-interpretation is a TP-set that satis�es certain simple axioms. It will turn outthat these axioms are exactly \right" from the point of view of making our �xpointprocedure compute the notion of logical consequence associated with tp-programs.De�nition 20 A TP-set R is called a TP-interpretation i� the following conditionshold:� Conjunctive ignorance.(8F = A1^: : :^Ak; G = B1^: : :^Bm)(8t 2 � )((F; t; l1; u1) 2 R^(G; t; l2; u2) 2R)) (R j= (F ^G) : [t;max(0; l1 + l2 � 1);min(u1; u2); ]])� Disjunctive ignorance.(8F = A1_: : :_Ak; G = B1_: : :_Bm)(8t 2 � )((F; t; l1; u1) 2 R^(G; t; l2; u2) 2R)) (R j= (F _G) : [t;max(l1; l2);min(1; u1 + u2); ]])If nothing is known about the relationship between the events, then the intervals[max(0; l1 + l2 � 1);min(u1; u2)] and [max(l1; l2);min(1; u1 + u2)] represent theintervals in which the probability of conjunction and disjunction (respectively) oftwo events with probability intervals [l1; u1] and [l2; u2] will lie, if nothing is knownabout the relationship between the events.In order to de�ne a �xpoint operator, we �rst de�ne an intermediate operatorT �P which when applied to a TP-interpretation produces a TP-pile. The operatorTP corrects the result of T �P to make it a TP � interpretation. In the de�nition ofT �P we will employ the � notation de�ned below to \split" a compound event atom.De�nition 21 Let F = F1 � : : : � Fn, G = G1 � : : : � Gk (k > 0), H = H1 � : : : �Hm (m > 0) where � 2 f^;_g. We write G�H = F i�:(a) fG1; : : : ; Gkg [ fH1; : : : ;Hmg = fF1; : : : ; Fng and(b) fG1; : : : ; Gkg \ fH1; : : : ;Hmg = ;.De�nition 22 Let P be a tp-program.



� Let F = A be an atom of BL. Let t 2 �T �P (R)(A; t) = f(A; t; l; u)j(9r 2 ground(P ))(r = A : [c; l0; u0; !c] � Body;R j= Body;t 2 sol(c) and [l; u] = [!c(t) � l0; !c(t) � u0])g� Let F = A1 ^ : : :^Ak.T �P (R)(F; t) = f(F; t; l; u)j(9H;G)(F � H � G; (H; t; l1; u1); (G; t; l2; u2) 2 Rand [l; u] = [max(0; l1 + l2 � 1);min(u1; u2)])g� Let F = A1 _ : : :_Ak.T �P (R)(F; t) = f(F; t; l; u)j(9H;G)(F � H � G; (H; t; l1; u1); (G; t; l2; u2) 2 Rand [l; u] = [max(l1; l2);min(1; u1 + u2)])gWemay now extend the de�nition of T �P to map tp-interpretations to tp-interpretations.De�nition 23 Let P be a tp-program. We de�ne operator TP as follows: TP (R)(F; t) =(F; t; l; u), where [l; u] = \f[l0; u0]j(F; t; l0; u0) 2 T �P (R)(F; t)g.In order to describe the �xpoint procedure based on the operators describedabove, we need to introduce an ordering on TP-interpretations, and prove that TPoperator is monotonic w.r.t. this order.De�nition 24 Let R and S be two TP-sets. We say that R � S i� for every Fand t 2 � if (F; t; l; u) 2 R and (F; t; l0; u0) 2 S then [l; u] � [l0; u0]:The following statement shows that the set RBL of all TP-interpretations forthe formulas constructed out of atoms of BL forms a complete lattice.Lemma 1 hRBL ;�i is a complete lattice. 2The following result states that out TP operator is monotonic.Theorem 1 Let R � S and let P be a TP-program. Then TP (R) � TP (S).The following de�nition speci�es how we might iteratively apply the TP operator.De�nition 25 Let P be a tp-program.� T 0P = ? = compl(;)� T i+1P = TP (T iP )� T �P = \i��(T iP )The following theorem is important. It shows that TP has a least �xpoint, lfp(TP ),and that this least �xpoint precisely captures the model-theoretic notion of logicalconsequence associated with tp-programs. Thus, iterative application of the TPoperator yields all ground event atoms that are logical consequences of P .Theorem 2 1. R j= P i� TP (R) � R2. lfp(TP ) j= P3. (8F )(P j= F : [c; l; u; !c], where c = c(y; y1; : : : yk) i�(8�a 2 �k)(sol(c)(�a) 6= ;) ) (8t 2 sol(c)(�a))(9lt; ut)((F; t; lt; ut) 2 lfp(TP ) ^[lt; ut] � [!c(�a; t) � l; !c(�a; t) � u]))).2The bottom element of the lattice, representing total lack of knowledge will be the TP-set? = f(F; t;0; 1)g for all t 2 � and all ground event atoms F . The top element of the lattice,representing absolute contradictory knowledge will be the TP-set > = f(F; t;1; 0)g.



4 Fixpoint Computation and Entailment Problem(Ground Case)In this section, we develop algorithms and associated complexity results for compu-tation of the �xpoint of a ground tp-program, checking its consistency, and queryanswering. To simplify time bounds, we assume that elementary problems such aschecking "t 2 sol(c)" and computing !c(�a; t) can be done in constant time3 , andenumeration of sol(c) can be done in time linear w.r.t. jsol(c)j:For any TP-set (TP-interpretation) R, let atoms(R) = f(A; t; l; u) 2 R;A is asimple event atomg. Let P be a ground tp-program over the set of ground simpleevent atoms fA1; :::; ANg and the calendar � = [0; tmax]. Let us denote lfp(TP ) byRP . The following lemma shows that RP can be easily de�ned by atoms(RP ):Lemma 2 For all t 2 � and all ground compound event atoms F� if F = A1 ^ : : :^Ak and for each 1 � i � k (Ai; t; li; ui) 2 atoms(RP ) then(F; t; l; u) 2 RP ; for l = l1 + : : :+ lk + 1� k and u = minfu1; : : : ; ukg;� if F = A1 _ : : :_Ak. and for each 1 � i � k (Ai; t; li; ui) 2 atoms(RP ) then(F; t; l; u) 2 RP ; for l = maxfl1; : : : ; lkg and u = minf1; u1 + : : :+ ukg:This lemma allows to propose an e�cient algorithm to construct atoms(RP ) forthe ground case. This algorithm will also check the consistency of tp-programs. LetP be a ground tp-program over the set BL = fA1; :::; ANg and let fF1; :::; Fsg be theset of all compound event atoms included in clauses of P: Algorithm LFP-atoms.Input: a ground tp-program P .Output: atoms(RP ).BEGIN (algorithm)1. OLD := ;; NEW := ;;2. FOR i = 1 TO N DOFOR EACH t 2 � DONEW := NEW [ f(Ai; t; 0; 1)g;3. FOR j = 1 TO s DOFOR EACH t 2 � DONEW := NEW [ f(Fj; t;0; 1)g;4. WHILE OLD 6= NEW DOBEGINOLD := NEW ;5. FOR EACH r = A : [c; l; u; !c] Body 2 P such that OLD j= Body DO6. FOR EACH t 2 sol(c) DOBEGINLET (A;t; l0; u0) 2 NEW ;l1 := max(l0; !c(t) � l);u1 := min(u0; !c(t) � u);IF u1 < l1 THEN RETURN ;;NEW := (NEW n f(A; t; l; u)g) [ f(A; t; l1; u1)g;P := P n frgEND;3We do this to make our complexity results independent of issues such as the implementation ofthe !c functions. We can then factor the complexity of computing!(�a; t) back into our complexityestimate if needed. It should be noted that for ground programs, on which we are concentratingin this section the assumption that !c(t) can be computed in constant time quite reasonable.



7. FOR j = 1 TO s DO8. FOR EACH t 2 � DOBEGINLET Fj = Bj1 � : : : � Bjk AND FOR EACH 1 � p � k (Bjp; t; ljp; ujp) 2 NEWIF � = ^ THEN BEGINl := lj1 + : : :+ ljk + 1� k; u := minfuj1; : : : ; ujkg ENDELSE BEGIN f� = _gl := maxflj1; : : : ; ljkg; u := minf1; uj1 + : : :+ ujkg END;NEW := (NEW n f(Fj; t; ; )g) [ f(Fj; t; l; u)gEND;END;9. RETURN atoms(NEW )END.The following theorem shows that algorithm LFP-atoms is a correct way of check-ing P for inconsistency and (if P is consistent) of computing the least �xpoint ofTP for simple event atoms. It also establishes the polynomial time complexity ofthe algorithm. The proof of this result uses lemma 2.Theorem 3 Let P be any ground tp-program and let P contain m clauses. Let jP jbe the size of P (under some standard encoding). Then Algorithm LFP-atomsreturns ; i� P is inconsistent. If P is consistent then it computes atoms(RP ) intime O(m � jP j � tmax):Now we consider the entailment problem: given a tp-program P and a groundquery G, check whether P j= G. Our queries will be conjunctions of annotated basicformulas of the form F : [c; l; u; !c] where F is ground. One way to answer suchqueries is to add F to the list of compound events fF1; :::; Fsg of P , run algorithmLFP-atoms, and after it terminates check the values (F; t; l; u) for all t 2 sol(c). Abetter way, however, is to use a preprocessing step on which algorithm LFP-atomsis run once to obtain atoms(RP ), and then to answer to queries using the followingsimple algorithm.Algorithm Simple query.Input: set atoms(RP ) and a simple query F : [c; l; u; !c].Output: "YES" if P j= F : [c; l; u; !c], otherwise "NO".BEGIN (algorithm)LET F = B1 � : : : � BkFOR EACH t 2 sol(c) DOBEGIN LET FOR EACH 1 � p � k (Bp; t; lp; up) 2 atoms(RP );IF � = ^ THEN BEGINL := l1 + : : :+ lk + 1� k; U := minfu1; : : : ; ukg ENDELSE BEGIN f� = _gL := maxfl1; : : : ; lkg; U := minf1; u1 + : : :+ ukg END;IF (L < l � !c(t)) OR (U > u � !c(t))THEN RETURN "NO"ENDRETURN "YES"END.The following theorem shows that after polynomial time preprocessing, the entail-ment problem can be solved in linear time.Theorem 4 (1) Algorithm Simple query gives a correct answer to any simplequery of the form F : [c; l; u; !c] in time O(jF j+ jsol(c)j):



(2) There exists an algorithm which given the set atoms(RP ) answers to anyquery G of the form F1 : [c1; l1; u1; !1] ^ ::: ^ Fn[cn; ln; un; !n] in time linear of(jGj+Pni=1 jsol(ci)j ).5 Proof ProcedureBelow we present a basic proof procedure for temporal probabilistic programs. Itis quite ine�cient, because it requires the resolution to be always performed forthe event atoms annotated by single timepoints, which means that more complextemporal constraints are forcefully \broken down". Nevertheless, this procedure isquite easy to understand and serves as a starting point for a more e�cient andsophiscitated proof procedure which had also been developed. Unfortunately, thespace limitaions disallow us to include the second proof procedure here.5.1 Uni�cationIf � is either ^ or _, then we say that two event atomsA1�: : :�Ak and B1�: : :�Bm areuni�able i� there is a substitution � such that fA1�; : : : ; Ak�g = fB1�; : : : ; Bm�g.This notion of uni�cation was introduced in [23] and it was proved that though mostgeneral uni�ers are not necessarily unique, a corresponding notion of a maximallygeneral uni�er (max-gu) exists. For space reasons, we do not go into details of thishere.5.2 A Basic (Ine�cient) Proof ProcedureIn this section, we describe how we can expand a tp-program P into a programcalled its closure. This closure may then be used to de�ne a resolution based proofprocedure.De�nition 26 (Explosions) Let F : [c; l; u; !c] be a ground formula. The ex-plosion of F : [c; l; u; !c], denoted E(F : [c; l; u; !c]), is de�ned as fF : [t; !c(t) �l; !c(t) � u; ]]jt 2 sol(c)g. The exploded basic formula for F : [c; l; u; !c], denotedEF (F : [c; l; u; !c]), is Vt2sol(c) F : [t; !c(t) � l; !c(t) � u; ]].Let r = F : [c; l; u; !c]  � Body be a tp-clause. Then the explosion of r, denotedE(r), is de�ned as fF : [t; !c(c; t) � l; !c(c; t) � u; ]] � Bodyjt 2 sol(c)g.If P is a tp-program, then the explosion of P , denoted E(P ), is de�ned as fE(r)jr 2PgThe explosion operation explicitly enumerates the probabilities of an event at alltime points associated with a constraint. (As this set of time points can potentiallybe very large, we use the term explosion to describe this operation). Using this, wecan now de�ne the timepoint-based closure of program P .De�nition 27 (Timepoint-based Closure) Let P be a tp-program.�REDUN (P ) = E(P ) [ fF : [t; 0; 1; ]] � jF 2 BL; t 2 �g� We de�ne the closure of P (denoted TCL(P )) iteratively:1. TCL0(P ) = REDUN (P )2. To construct TCLi+1(P ) given TCLi(P ) apply the following rules to all pos-sible pairs of elements of TCLi(P ) :



� Clari�cation rule:If clauses F : [t; l; u; ]]  � Body and F 0 : [t; l0; u0; ]]  � Body0 are inTCLi(P ) and F and F 0 are uni�able via max-gu �, add the clause(F : [t;max(l; l0);min(u; u0); ]] � Body ^Body0)� to TCLi+1(P ).� ^-composition rule:If clauses F : [t; l; u; ]]  � Body and F 0 : [t; l0; u0; ]]  � Body0 are inTCLi(P ), F = A1 ^ : : : ^ Ak and G = B1 ^ : : : ^ Bm (k;m � 1), add theclause(F ^G) : [t;max(0; l + l0 � 1);min(u; u0); ]] � Body ^Body0 to TCLi+1(P ).� _-composition rule:If clauses F : [t; l; u; ]]  � Body and F 0 : [t; l0; u0; ]]  � Body0 are inTCLi(P ), F = A1 _ : : : _ Ak and G = B1 _ : : : _ Bm (k;m � 1), add theclause(F _G) : [t;max(l; l0);min(u+ u0; 1); ]] � Body ^Body0 to TCLi+1(P ).3. TCL(P ) = [i�0TCLi(P ).Lemma 3 For every clause r 2 TCL(P ), P j= r.Note that the syntax of TCL(P ) is somewhat di�erent from the syntax of P , aswe allow the rules in TCL(P ) to have non-atomic heads. However this extensionis supported by our de�nitions of satisfaction on TP-models (def. 17) and TP-sets(def. 19). We are now ready to proceed with the resolution procedure.De�nition 28 A tp-query is an expression of the form 9(H1 : [c1; l1; u1]^ : : :^Hn :[cn; ln; un]).The explosion of a tp-query Q, denoted EF (Q) is an expression of the form: Vni=1 EF (Hi :[c; li; ui; !c])In other words, the explosion of a tp-query is a conjunction of the explosions ofall basic formulas in the query.De�nition 29 Let Q be a query and let EF(Q) = F1 : [t1; l1; u1; ]] ^ : : :Fn :[tn; ln; un; ]]. Let r � G : [t; l; u; ]]  � G1 : �1 ^ : : :Gk : �k 2 TCL(P ) and Gbe uni�able with Fi via max-gu �. Then9((F1 : [t1; l1; u1; ]]^ : : :^Fi�1 : [ti�1; li�1; ui�1; ]]^EF(G1 : �k)^ : : :^EF(Gk : �k)^Fi+1 : [ti+1; li+1; ui+1; ]]^ : : :^ Fn : [tn; ln; un; ]])�)is a tp-resolvent of r and Q i� [l; u] � [li; ui].De�nition 30 Let Q � 9(F1 : �1 ^ : : : ^ Fn : �n) be an initial query, and Pa tp-program. A tp-deduction of Q from P is a sequence < Q1; r1;�1 > : : : <Qs; rs;�s > : : : where, Q1 = EF(Q), for all i � 1 , ri is a renamed version of aclause in TCL(P ), and Qi+1 is a tp-resolvent of Qi and ri via max-gu �i.A tp-refutation of Q from P is a �nite tp-deduction < Q1; r1;�1 > : : : <Qs; rs;�s > where, the tp-resolvent of Qs and rs via �s is the empty query.�1 : : :�r is called the computed answer substitution.The following theorem states that our �rst proof procedure is sound and com-plete.



Theorem 5 [Soundness/Completeness of tp-refutation]1. Let P be a tp-program, and Q be an initial query. If there exists a tp-refutationof Q � 9(F1 : �1 ^ : : : ^ Fn : �n) from P with the answer substitution � thenP j= 8((F1 : �1 ^ : : :^ Fn : �n)�).2. Let P be a consistent tp-program and Q be a query. Then, if P j= Q then thereexists a tp-refutation of Q0 from P .6 Related WorkTo date, there has been no work on temporal probabilistic logic programming thatwe are aware of | hence, we compare our work with work on probabilistic logicprogramming, and with logics of probability and time.In addition to the authors' works, probabilistic logic programs were studiedby Thone et al.[25], and Lakshmanan [17] who showed how di�erent probabilisticdependencies can be encoded into logic programs. Kiessling's group [14, 25] andLukasiewicz [21] made important contributions to bottom up computations of logicprograms. The work reported in this paper may be viewed as an extension of theabove works (as well as [23, 24, 2, 4]) to handle temporal-probabilistic informa-tion. In addition to the model theory, we have developed both bottom up �xpointcomputation algorithms and alternative proof procedures for TPLPs.Lehmann and Shelah [19] and Hart and Sharir [11] were among the �rst tointegrate time and probability. Kanazawa also studied the integration of probabilityand time with a view to developing e�cient planning algorithms [12]. Their maininterest is in how probabilities of facts and events change over time., Haddawy [10]develops a logic for reasoning about actions, probabilities, and time using an intervaltime model. Our framework is di�erent from theirs in that (i) we allow arbitrarydistributions in our syntax, (ii) we provide a �xpoint theory, (iii) we provide andmanipulate constraint based representations of time, and (iv) we provide constraintbased proof procedures and complexity results for the \Horn clause like" fragmentof this logic.Dubois and his colleagues [5] have studied the integration of uncertainty andtime { they extend the well-known possibilistic logic theory to a \timed possibilisticlogic." This logic associates, with each formula of possibilistic logic, a set of timepoints re
ecting the times at which the formula has a given possibilistic truth value.However, this framework is not probabilistic.Last but not least, our use of possible worlds models was inspired by the work ofFagin and Halpern ([7],[9]), in which similar in spirit models had been introducedfor probabilistic nontemporal logics.7 ConclusionsIn this paper, we have de�ned temporal probabilistic (tp-) logic programs that allowus to reason about instantaneous events in a probabilistic environment, We haveprovided a formal syntax and model theory for tp-programs, developed a �xpointtheory that is equivalent to the model theory and developed sound and completebottom up computation procedures for entailment. We also developed a sound andcomplete proof procedure for tp-programs which supports a resolution based queryprocessing for tp-programs.



AcknowledgmentsThe work of the second author had been partially supported by Russian Fundamen-tal Studies Foundation (Grants 97-01-00973). The other authors were supported bythe Army Research O�ce under Grants DAAH-04-95-10174, DAAH-04-96-10297,and DAAH04-96-1-0398, by the Army Research Laboratory under contract numberDAAL01-97-K0135, by an NSF Young Investigator award IRI-93-57756, and by aTASC/DARPA grant J09301S98061.References[1] M. Baudinet. (1992)A Simple Proof Of The Completeness Of Temporal Logic Pro-gramming, in Intensional Logics and Programming (eds. L.G. del Cerro, M. Pento-nen), pp 51-83, Clarendon Press, 1992.[2] A. Dekhtyar and V.S. Subrahmanian. (1998) Hybrid Probabilistic Logic Programs,accepted to Journal of Logic Programming, Feb. 1999. Early version in Proc. 1997Intl. Conf. on Logic Programming (ed. L. Naish), MIT Press.[3] A. Dekhtyar, R.Ross and V.S. Subrahmanian. (1998) Probabilistic TemporalDatabases, I: Algebra, available as University of Maryland tech report CS-TR-3987[4] M. Dekhtyar, A. Dekhtyar and V.S. Subrahmanian. (1998) Hybrid Probabilistic Pro-grams: Algorithms and Complexity, accepted to Uncertainty in AI'99, extended ver-sion available as University of Maryland tech. report CS-TR-3969.[5] D. Dubois, J. Lang and H. Prade. (1991) Timed Possibilistic Logic, FundamentaInformaticae, XV, pps 211{234.[6] C. Dyreson and R. Snodgrass. (1998) Supporting Valid-Time Indeterminacy, ACMTransactions on Database Systems, Vol. 23, Nr. 1, pps 1|57.[7] R Fagin, J.Halpern, Uncertainty, belief, and probability, Computational Intelligence7, 1991, pp. 160-173[8] R. Fagin,J. Halpern, N. Megiddo, A logic for reasoning about probabilities, Infor-mation and Computation 87:1,2, 1990, pp. 78-128[9] R. Fagin, J. Halpern, Reasoning about knowledge and probability, Journal of theACM 41:2, 1994, pp. 340-367[10] P. Haddawy. (1991) Representing Plans under Uncertainty: A Logic of Time, Chanceand Action, Ph.D. Thesis. Available as University of Illinois Tech. Report UIUCDCS-R-91-1719.[11] S. Hart and M. Sharir. (1986) Probabilistic propositional temporal logic, Informationand Control, 70:97{155.[12] K. Kanazawa. (1991) A Logic and Time Nets for Probabilistic Inference, AAAI-91,pps 360{365.[13] S. Kraus and D. Lehmann. (1988) Knowledge, Belief and Time, Theoretical Com-puter Science 58, pp 155-174.[14] W. Kiessling, H. Thone and U. Guntzer. (1992) Database Support for ProblematicKnowledge, Proc. EDBT-92, pps 421{436, Springer LNCS Vol. 580.[15] V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. ProbView: A FlexibleProbabilistic Database System. ACM Transactions on Database Systems, Vol.22, Nr. 3, pps 419{469, Sep. 1997.[16] V.S. Lakshmanan and F. Sadri. (1994)Modeling Uncertainty in Deductive Databases,Proc. Int. Conf. on Database Expert Systems and Applications, (DEXA'94), Septem-ber 7-9, 1994, Athens, Greece, Lecture Notes in Computer Science, Vol. 856, Springer(1994), pp. 724-733.



[17] V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, Proc. Int.Logic Programming Symp., (ILPS'94), November 1994, Ithaca, NY, MIT Press.[18] V.S. Lakshmanan and N. Shiri. (1997) A Parametric Approach with DeductiveDatabases with Uncertainty, accepted for publication in IEEE Transactions onKnowledge and Data Engineering.[19] D. Lehmann and S. Shelah. (1982) Reasoning about Time and Chance, Informationand Control, 53, pps 165{198.[20] T. Lukasiewicz. (1998) Probabilistic Logic Programming, in Procs. 13th biennial Eu-ropean Conference on Arti�cial Intelligence, pps 388-392, Brighton, UK, August1998.[21] T. Lukasiewicz. (1998) Magic Inference Rules for Probabilistic Deduction under Tax-onomic Knowledge, Proceedings of the 14th Conference on Uncertainty in Arti�cialIntelligence, pps 354-361, Madison, Wisconsin, USA, July 1998.[22] J.W. Lloyd. (1987) Foundations of Logic Programming, Springer.[23] R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, Informa-tion and Computation, 101, 2, pps 150{201, 1993.[24] R. Ng and V.S. Subrahmanian.(1993) A Semantical Framework for Supporting Sub-jective and Conditional Probabilities in Deductive Databases, Journal of Auto-mated Reasoning, 10, 2, pps 191{235, 1993.[25] H. Thone, W. Kiessling and U. Guntzer. (1995) On Cautious Probabilistic Inferenceand Default Detachment, Annals of Operations Research, 55, pps 195{224.


