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Abstract
Objective: Recovering tissue deformation during robotic-assisted minimally invasive surgery (MIS) is an important step
towards motion compensation and stabilization. This article presents a practical strategy for dense 3D depth recovery and
temporal motion tracking for deformable surfaces.
Methods: The method combines image rectification with constrained disparity registration for reliable depth estimation. The
accuracy and practical value of the technique are validated using a tissue phantom with known 3D geometry and motion
characteristics and in vivo data.
Results: Results from the phantom model correctly follow the motion trend indicated from the ground truth provided by CT
scanning, and regression analysis shows the intrinsic accuracy that can be achieved with the proposed technique. Results
applied to in vivo robotic-assisted MIS data are also provided, indicating the practical value of the proposed method.
Conclusion: The proposed method presents a practical strategy for dense depth recovery of surface structure in robotic-
assisted MIS that incorporates stereo vision. Results on phantom and in vivo data indicate the quality of the method and
also highlight the importance of further considering the effects of specular highlights.

Keywords: Robotic surgery, minimally invasive surgery, motion compensation, stereo vision, image rectification, image
registration, dense 3D depth recovery

Introduction

With recent advances in robotic-assisted minimally

invasive surgery (MIS), it is now possible to

perform closed-chest cardiothoracic surgery on a

beating heart to minimize patient trauma and

certain side effects of cardiopulmonary bypass. For

robotic-assisted MIS, dexterity is enhanced by

microprocessor-controlled mechanical wrists, which

allow motion scaling for reducing gross hand move-

ments and the performance of micro-scale tasks

that are otherwise not possible. Thus far, two com-

mercial master–slave manipulators are available [1].

They are specifically designed for MIS cardiac

surgery but are increasingly being used in a variety

of other surgical procedures. Both systems improve

the ergonomics of laparoscopic surgery and provide

high dexterity, precision, and 3D visualization of

the operating field. One of the significant challenges

of beating heart surgery is the destabilization

introduced by cardiac and respiratory motions,

severely affecting precise instrument–tissue inter-

actions and the execution of complex grafts. Mecha-

nical stabilizers [2] permit off-pump procedures by

locally stabilizing the target area while the rest of

the heart supports blood circulation. Despite

this, residual motion remains, which complicates

delicate tasks such as small vessel anastomosis.

These problems are compounded with the reduced

access to the internal anatomy inherent in MIS,

which imposes difficulties on target localization and

on the use of tactile feedback to actively constrain

surgical actions.

Thus far, a number of techniques have been

proposed for resolving intraoperative tissue

deformation, and Trejos et al. [3] investigated the

feasibility of providing motion compensation by ana-

lyzing the performance of a suture simulation task

with motion compensation support. Intraoperative

medical imaging techniques potentially offer precise

information about soft tissue morphology and
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structure, but they introduce significant challenges to

instrument design, integration, and computational

cost. Magnetic resonance imaging (MRI)-compatible

robots require non-ferromagnetic components suit-

able for use within a high-strength magnetic field

and represent an emerging field of research [4].

Currently, a more practical alternative is to use

optical-based techniques to infer surface deformation

in real-time. In animal experiments, Nakamura et al.

[5] used a high-speed camera to track a fiducial

marker on the epicardial surface. The trajectory

changes of the markers were used to identify the

frequencies due to cardiac and respiration motions

by using an autoregressive model. Similarly, Ginhoux

et al. [6] used a high-speed camera to track four

LEDs mounted on the epicardial surface in both

phantom model and animal experiments. Hoff

et al. [7] recovered the motion of a beating heart in

a porcine study, where two dual-axis accelerometer

sensors were sutured to the outer heart wall.

Thrakal et al. [2] used a fiber-optic displacement

sensor to measure the motion of a rat’s chest for

motion modeling with weighted time series. A

region-based, reduced-affine tracking model was

used by Gröger et al. [8] in robotic-assisted MIS

heart surgery for computing the local motion of the

epicardial surface. The sensitivity of the method to

features created at the boundaries of specular reflec-

tions was reduced by pre-processing. Although these

techniques demonstrate the feasibility of providing

motion compensation, they generally do not consider

detailed 3D deformation. Furthermore, in practical

surgical procedures, it is not desirable to introduce

additional tracking equipment such as a laser range

finder or place fiducial markers on the anatomical

regions of interest.

With the use of a stereoscopic laparoscope for

robotic-assisted MIS cardiac surgery, the feasibility

of recovering the 3D structure of the operating field

based on computer vision techniques has also been

investigated. Mourgues et al. [9] used a correlation-

based computational stereo algorithm in combination

with a learning process to remove the laparoscopic

instruments and to build a model of the epicardial

surface. The method was later used as a part of an

image-based guidance framework [10]. Lau et al.

[11] used a spline surface representation in an

iterative registration framework to track the motion

of the disparity map in an animal experiment. Pre-

viously, monocular shading was used to infer surface

shape in less interactive endoscope diagnostic pro-

cedures for tumor detection [12]. Deligianni et al.

[13] also used a linear shape-from-shading method

to infer pq surface shape for registering endoscopic

video to prior tomographic data. Although the

recovery of the depth of a 3D scene based on different

visual cues is one of the classic problems of computer

vision, dense disparity measurement for deformable

structure with high specularity is a difficult task. For

monocular techniques based on shading, the

complex reflectance functions of the wet tissue

render the conventionally imposed constraints

error-prone. In the stereoscopic case, the homo-

genous textures and view-dependent appearance

of surfaces limit the discriminatory capabilities of

similarity metrics used by computational stereo

algorithms. Furthermore, with the view of the scene

limited by the laparoscope trocar and the continuous

deformation of the tissue, linking multi-view con-

straints spatially and temporally is difficult with

conventional methods.

The purpose of this article is to present a robust

dense 3D depth recovery method with a stereoscopic

laparoscope for motion stabilization. By calibrating

the cameras prior to image acquisition, the epipolar

constraint can be imposed through image rectifica-

tion to limit the search space for stereo correspon-

dence. A hierarchical multi-resolution registration

algorithm imposing inherent smoothness on the

recovered disparity is used to resolve the resulting

1D matching problem. The accuracy and practical

value of the technique are validated using a silicone

tissue phantom with known 3D geometry and

motion characteristics. Example results of the tech-

nique applied to in vivo robotic-assisted MIS data

are also provided.

Methods

The proposed method consists of the following

steps: calibration of the stereo laparoscope using a

well known photogrammetry-based method with a

planar calibration object; image rectification to

restrict the search space for stereo correspondence

to a 1D image scanline; and registration of stereo

images to recover a dense disparity map and thus,

by triangulation, a dense 3D reconstruction of the

soft tissue in the operating field. In the following

sections each step is discussed in more detail.

Stereo camera model and calibration

One of the first steps towards depth recovery is to

compute both the intrinsic and extrinsic camera par-

ameters of the stereoscopic laparoscope. In this

study, the standard pinhole model is assumed, and

the projection of a 3D world point M ¼

½X Y Z 1�T to the image point m ¼ ½x y 1�T is

described up to a scale factor s by a matrix multipli-

cation in homogeneous coordinates as sm ¼ PM.

The camera projection matrix P can be decomposed

into an upper triangular matrix K describing the

internal optics of the camera, a rotation matrix R,

and translation vector t representing the camera’s
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position and orientation with respect to a world coor-

dinate system. The camera projection matrix can

thus be defined as:

Pk ¼ Kk½Rk j �Rktk� (1)

Without a loss of generality, the camera matrices

for the stereoscopic laparoscope can be canonically

represented by the following equations by taking

the left camera’s optical center to coincide with the

origin of the world coordinate system and the left

optical axis to be collinear with the world Z axis:

PL ¼ KL½I j 0� and PR ¼ KR½R j �Rt� (2)

In practice, laparoscope cameras can deviate con-

siderably from the ideal perspective projection and

induce a high level of distortion. We consider hence-

forth the lens distortion model proposed by Hekkila

et al. [14] by using the first three terms of the radial

distortion, kk1, k
k
2, and kk3, and two tangential distor-

tion terms, pk1 and pk2, to correct ideally projected

points to the observed image points.

For robotic-assisted MIS, the stereo cameras are

usually pre-calibrated during the preparation of the

robotic system and then remain unchanged during

the surgical procedure. Off-line photogrammetry-

based calibration by using objects with known geo-

metry is therefore sufficient [15]. In this study, the

intrinsic and extrinsic parameters of the cameras

were derived by using a planar calibration grid

shown in Figure 1 and a closed form solution

linking constraints from the homography between

the calibration and image planes as proposed by

Zhang [16]. Following the initial estimate computed

from a minimum of five different views, the para-

meters were refined subject to the mean squared

error between the measured image points mk
i and

the re-projected world points Mi. By parameterizing

the rotation matrix R to reduce the number of

unknowns as a vector of three parameters r using

the Rodrigues formula, the minimization criteria for

a set of n images with m grid points can be written as:

Xn
i¼1

Xm
j¼1

kmk
ij �m(Kk, rki , t

k
i , k

k
1, k

k
2, k

k
3, p

k
1, p

k
2,Mj)k

2

(3)

The optimization problem formulated previously

is non-linear, and the Levenberg–Marquardt algor-

ithm was used to derive the aforementioned para-

meters iteratively (further resources and an

implementation of this calibration method using gra-

dient descent minimization are available online at

www.caltech.edu/bouget/calib). After each camera

has been calibrated, the relative pose of the two

cameras is then introduced such that the following

equation is minimized. This allows the use of the sol-

ution derived for each individual camera as the initial

solution for the Levenberg–Marquardt algorithm.
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The minimization process in Equation (4) refines

the intrinsic parameters of each camera and deter-

mines the relative extrinsic parameters of the stereo

laparoscope. The number of variables for each view

of the calibration object is reduced because only the

extrinsic parameters of the reference camera change

and the relative extrinsics are used to determine the

projection to the other camera.

Image rectification

The projections of a 3D world point in the left and

right image planes are geometrically related through

the epipolar geometry, which imposes an inherent

constraint on the respective image locations of the

projected points [17]. Any 3D point in the scene M

defines a plane E with the two camera centers CL

and CR intersecting the images at two corresponding

epipolar lines bL and bR as shown in Figure 2. Points

lying on an epipolar line in one image must also be on

the matching epipolar line in the other image, which

means that the search space for finding correspond-

ing points in the stereo pair is reduced from 2D to

1D. Image rectification is the process of transforming

a stereo image pair based on the known epipolar geo-

metry to horizontally align corresponding epipolar

lines with image scanlines. Once images are rectified

Figure 1. An image of the planar calibration grid used for estimat-

ing the camera parameters. The stereo endoscope was kept static

while the calibration object was shown in several arbitrary positions

in front of the cameras. [Color version available online]
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in this form, it is possible to implement stereo-

matching algorithms taking advantage of the epipolar

constraint in a more efficient manner.

For common robotic MIS settings, the cameras are

slightly verged to permit both positive and negative

disparities so as to enhance the overall 3D depth

perception. To ease the fusion of the stereo images

for the observer, the stereo cameras are generally

in near-vertical alignment. This arrangement,

however, may not be perfect in practice and therefore

image rectification is necessary. To alleviate this

problem, a rectification process for fully calibrated

cameras [18] is applied to the stereo image pairs

before dense correspondence is sought. After the rec-

tifying transformations, the intrinsic parameter

matrices of the two rectified cameras must be the

same by definition. Without changing the centers of

the cameras, the new projection matrices can be

defined through the same rotation matrix such that

PL
r ¼ Kr ½Rr j 0� and PR

r ¼ Kr ½Rr j �Rrt� (5)

In the aforementioned equation, Rr may be

computed by assuming that the new image planes

are parallel to the baseline. As the camera centers

remain unchanged, so does the optical ray through

each image point. The original and rectified camera

matrices can therefore be written as:

Pk ¼ ½Qk j qk� and Pk
r ¼ ½Qk

r j q
k
r � (6)

Subsequently, the rectifying transformations used

to map standard image points onto the rectified

image plane can be computed from the original and

rectified camera matrices through the following pair

of equations by using lk to denote scale:

TL ¼ lLQL
r (Q

L)�1 and TR ¼ lRQR
r (Q

R)�1 (7)

This method does not directly minimize the distor-

tion or resampling effects caused by the transform-

ations [19]. However, in the context of the current

work, the warping introduced previously is inherently

small because of the fully calibrated set-up and the

general settings of the stereoscopic laparoscope

cameras as shown in Figure 3.

Stereo correspondence with constrained disparity

registration

Traditional computer vision techniques for dense

stereo correspondence are mainly concerned with

static, rigid objects, and much emphasis is placed

on issues related to occlusion and discontinuity

[20]. Occlusion and object boundaries make stereo

matching a difficult optimization problem, as

disparity is not globally continuous and smooth.

Existing techniques include sliding windows, graph-

cuts, and dynamic programming approaches [21].

Computational stereo methods can also make

explicit assumptions on the shape of the observed

surfaces [22]. This can be necessary to resolve the

underconstrained nature of the matching process,

especially in the presence of homogeneous textures,

which reduce the discriminatory capabilities of the

similarity measure.

For soft tissue, as observed in MIS, the surface is

generally smooth and continuous. Therefore, occlu-

sion and discontinuity may be assumed to be negli-

gible. The difficulty of dense depth recovery is

usually due to the paucity of identifiable landmarks

and the view-dependent properties of the wet

tissue. Explicit geometrical constraints of the defor-

mation model are therefore required to ensure the

overall reliability of the algorithm. In this study, the

free-form registration framework proposed by

Veseer et al. [23] was used as it provides a robust,

fully encapsulated multi-resolution approach based

on piece-wise bilinear maps (PBM). The lattice of

PBM permits non-linear transitions, which are suit-

able for temporally deforming surfaces, and it easily

lends itself to a hierarchical implementation. With

image rectification, the search space for spatial regis-

tration is constrained on scan lines, and the number

of PBM forming the image transformation is

increased, refining the registration of finer structures.

Within this framework, the disparities obtained at

low resolution levels are propagated to higher levels

and used as starting points for the optimization

process. Figure 4 shows the evolution of the PBM

Figure 2. The epipolar geometry between the stereo cameras

reduces the stereo-matching search space to corresponding

epipolar lines.
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grid at the multiple resolution levels and the corre-

sponding disparity map for each resolution.

To cater for surfaces in laparoscope images, which

have reflectance properties dependent on the viewing

position, normalized cross correlation (NCC) was

used as a similarity measure. The NCC of two image

regions IL and IR of dimensions (u, v) is defined as:

P
u,v

(IL(u, v)� �I
L
)(IR(u, v)� �I

R
)

(uv)2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
u,v

(IL(u, v)� �I
L
)2(IR(u, v)� �I

R
)2

r (8)

For deriving disparity values of the soft tissue, the

gradient of the given metric can be computed

directly, which permits the use of fast optimization

algorithms. For this study, the Broyden–Fletcher–

Goldberg–Shano method can be used. This is

a quasi-Newton technique, which uses an esti-

mate of the Hessian to speed up the iterative

process [24].

Temporal correspondence

For deriving detailed motion characteristics of the

deforming surface, the temporal correspondence of

the surface points was obtained. The registration

framework mentioned previously was used without

confining the search space to 1D, because temporal

non-rigid motion does not conform to the epipolar

geometry between time-consecutive images. By

permitting horizontal and vertical displacements of

the PBM control points, the method facilitates the

detection of image changes due to surface defor-

mations, and the NCC provides a metric that is

robust to view dependency.

Figure 3. (a) A standard laparoscopic image as viewed by the surgeon. (b) Rectified image as used by the registration algorithm. The warping

between introduced and rectified image is visibly small. [Color version available online]

Figure 4. Several iterations of the registration algorithm showing the evolving PBM lattice and the resulting depth map image. [Color version

available online]
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To enhance the robustness of the temporal tracking

process, both the left and right images were tem-

porally registered, and the transformation with the

best similarity score was selected. The motion of

the image points can then be tracked temporally in

3D by traversing the collected PBM lattice trans-

formations from the spatial St and temporal Tk
t regis-

tration. This process is necessary for determining

the 3D motion of points on the soft tissue surface,

whose movement is not restricted to the disparity

space determined through stereo correspondence.

Figure 5 shows a schematic diagram of this approach.

Specular highlight correction

Specular highlights in computational stereo have

generally been addressed as a source of error, and

methods to minimize their effects through polariz-

ation and light source adjustment [25] have been

investigated. More recently, a method was proposed

by exploiting the movement of highlights in the epi-

polar plane image formed by a moving camera [26].

In laparoscopic images, Gröger et al. [27] removed

specularities by using interpolation and iterative

diffusion in a pre-processing step to improve a

motion tracking scheme. For the method proposed

in this article, a simple algorithm for reducing the

effects of large highlights was used, which involved

the following steps: (i) detecting the highlight using

thresholding of the intensity and saturation, (ii) iden-

tifying the control points in the PBM lattice which

have been affected, and (iii) bilinearly interpolating

information from the surrounding control points to

remove errors.

Experimental design and validation

The proposed method was implemented in Cþþ on

a conventional PCmachine (2-GHz Intel Pentium III

processor and 512 MB of main memory with

Windows 2000 operating system). To model the

real stereoscopic laparoscope, a stereo camera rig

was built by using a pair of miniature CMOS and

NTSC standard cameras. Each camera has a physical

diameter of just over 5 mm, and it was therefore poss-

ible to set up a configuration with a small baseline of

just over 5 mm. The described calibration procedure

was employed by using a 5� 7 square grid with a

checked black and white pattern. Corners were

detected through a fully automated procedure,

where image processing, edge detection, and line

fitting are used to locate the calibration grid points

up to sub-pixel accuracy. The pixel re-projection

error after calibration was measured at less than

half a pixel. We also measured the reconstruction

error of the calibration object after triangulation at

an average magnitude of 1 mm. For this study, we

used a least squares triangulation method solved

with the singular value decomposition. For robust-

ness in the presence of noise, triangulation can be

improved by taking into account errors in the

measured coordinates and refining the measure-

ments subject to the epipolar geometry [17].

To assess the accuracy of the proposed algorithm, a

tissue phantom made of silicone rubber and painted

with acrylics was constructed and mounted onto a

fixed solid frame. The surface was coated with sili-

cone rubber mixed with acrylic to give it a specular

finish that looks similar to wet tissue. A tomographic

model of the phantom was scanned with a Siemens

Somaton Volume Zoom four-channel multi-detector

CT scanner with a slice thickness of 0.5 mm and in-

plane resolution of 1 mm. To allow the evaluation of

temporal surface deformation, the model was

scanned at four discrete and reproducible defor-

mation levels controlled by a manual pulley system,

while the solid base remained fixed. Figure 6

illustrates a pair of images captured by the stereo

cameras and cross-sectional images of two different

time frames of the tissue phantom captured by CT

scanning. The corresponding 3D surface plots,

which also indicate the approximate dimensions of

the silicone surface, and the range of applied defor-

mation are shown in Figure 6c and f, respectively.

Results

Figure 7 shows 3D plots of the reconstructed surfaces

at four different levels of deformation as captured by

Figure 5. A schematic illustration of the system for tracking the

temporal 3D motion of a surface point by traversing through the

temporal and spatial registration transformations St and Tk
t .
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CT and the proposed algorithm for dense 3D depth

recovery. The correct trend of surface displacement

is captured by the proposed method, as the magni-

tude and order of the results are in agreement with

the ground truth derived from CT. The variation in

surface shape between the two methods is mostly

due to the reduced resolution of the stereo approach

and the inherent smoothing effect of the PBM regis-

tration algorithm.

Figure 8a–c demonstrate the regression of relative

depth changes over time between the surfaces as

extracted by the two techniques and shown in

Figure 7. It is evident that the overall quality of the

stereo reconstruction is good, but the scatter plots

also show a certain level of deviation. This is to be

expected, as the high-resolution CT reconstruction

contains a level of detail that is beyond the intrinsic

resolution that can be recovered by using binocular

stereo. A further source of error was due to the specu-

lar highlights, which were not explicitly modeled or

removed in the proposed method.

Table I shows the analysis of the regression

between the computed surface motion and the

ground-truth CT data. The calculated correlation

coefficients conform to our observations in

Figure 8, indicating a correct regression trend but

also highlighting the associated deviations in the

results. It is worth noting that the mean error

reported in Table I is scaled up due to the size of

the phantom experiment, which is approximately

five orders of magnitude larger than the in vivo

Figure 6. (a and d) Images from the left camera of the stereo rig. (b and e) Two slices from the CT scan at different levels of surface defor-

mation. (c and f) Corresponding 3D plots of the full phantommodel surface as reconstructed from the CTdata. [Color version available online]

Figure 7. The reconstructed 3D surface for four different levels of

deformation as captured by 3D CT (a) and the proposed depth

recovery method based on combined image rectification and

constrained disparity registration (b). [Color version available online]
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dimensions. It is also worth noting that the standard

deviation of error is heavily influenced by the

inherent smoothness of the PBM registration

algorithm.

To demonstrate the potential clinical value of

the proposed technique, Figure 9 illustrates the

reconstructed depth map from an in vivo stereoscopic

laparoscope sequence. Both the depth maps and the

associated 3D renditions illustrate the quality of

the reconstruction technique. However, it is also

apparent that specular highlights represent a major

problem for the proposed algorithm, as evident

from the reconstruction errors indicated by the

arrows. In such largely homogeneous regions, specu-

larities influence the registration algorithm by acting

as virtual features, which do not correspond to any

point on the tissue surface. Figure 10 illustrates the

control points identified by the proposed specular

removal method and the resulting reconstruction

after interpolating more reliable information onto

them. It is evident that the large deviation in the

reconstruction is significantly reduced.

Discussion and conclusion

In this article, we have developed a practical strategy

for dense 3D structure recovery and temporal motion

tracking for deformable surfaces. The purpose of the

study is to capture real-time surface deformation

during robotic-assisted MIS procedures such that

effective motion stabilization can be deployed. The

method uses image rectification to simplify the

subsequent free-form disparity registration pro-

cedure. Both phantom validation and in vivo results

demonstrate the potential clinical value of the

technique.

The use of image rectification combined with

stereo-correspondence with constrained disparity

registration has been shown to provide consistent

results in both phantom and in vivo experiments.

The performance of the method, however, is depen-

dent on the handing of specular highlights before

depth reconstruction. This is because in the absence

of sufficient textural information, the virtual features

can cause misleading maxima in the similarity metric.

In this article, we have used a simple filtering method

Figure 8. Scatter plots (a)–(c) illustrate the correlation of the

recovered depth change between different levels of deformation

by the CT and the proposed technique. [Color version available

online]

Table I. Evaluation of the regression between the recovered motion and the ground-truth CTmotion for the scaled-up phantom constructed

for this study.

Motion

element

Regression

coefficient

Correlation

coefficient

Root mean

squared error

of fit (mm)

Mean motion

error (mm)

Standard deviation

of error (mm)

Level 0–1 1.837 0.731 1.131 4.297 1.885

Level 1–2 1.673 0.664 1.078 4.586 1.649

Level 2–3 1.556 0.704 0.732 5.208 1.114
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for removing specularities, and for tissue with smooth

deformation the method is proven to be relatively

effective. However, it should be noted that this

approach effectively reduces the spatial resolution of

the method, and therefore more intuitive handling

of difficult reflection components is necessary. For

robotic-assisted MIS procedures, it is possible to

exploit the restricted lighting configuration imposed

by the laparoscope to filter out these artefacts and

to use their motion to infer further information of

the surface shape.

Further investigation is required to determine

the processing requirements necessary to deploy the

proposed method in a surgical system. The current

algorithm can achieve �0.25 Hz on a standard

2-GHz Intel Pentium III machine. However, this

can be improved significantly by using a parallel

processing architecture or a dedicated GPU imple-

mentation to achieve real-time performance. We are

also performing comprehensive comparative studies

with existing stereo-correspondence algorithms and

investigating suitable techniques to address error

propagation within the proposed system.
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3D reconstruction of the operating field for image overlay

in 3D-endoscopic surgery. IEEE and ACM International

Symposium on Augmented Reality (ISAR 2001), October

2001, New York, NY, USA. IEEE, 2001. pp 191–192.

10. MourguesF,VievilleT,FalkV,Coste-Manière È. Interactive gui-
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27. Gröger M, Ortmaier T, Sepp W, Hirzinger G. Reconstruction

of image structure in presence of specular reflections. In:

Radig B, Florczyk S, editors. Proceedings of the 23rd

DAGM Symposium on Pattern Recognition (DAGM 2001),

September 2001, Munich, Germany. Berlin: Springer; 2001.

pp 53–60.

208 D. Stoyanov et al.


