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ABSTRACT

This paper introduces an algorithm for fast and sub-
pixel precise detection of small, compact image primitives
(”blobs”). The algorithm is based on differential geom-
etry and incorporates a complete scale-space description.
Hence, blobs of arbitrary size can be extracted by just ad-
justing the scale parameter. In addition to center point and
boundary of a blob, also a number of attributes are extracted.
These describe the specific blob characteristics in more de-
tail and, thus, allow for a subsequent classification of blobs.
Several examples on real images illustrate the performance
of the proposed algorithm.

1. INTRODUCTION

1.1. Motivation and Requirements

The extraction of small, compact, bright or dark images
primitives is one of the basic tasks of low-level components
of an image understanding system. For some applications,
these so-called ”blobs” are already the desired objects to
extract (eyes, particles, fiducial marks, etc.). In other sys-
tems, blobs are used as input for higher level reasoning al-
gorithms, e.g., for facade interpretation or car detection in
aerial images. To accommodate the huge variety of applica-
tions, it is clear that a blob detection algorithm must fulfill
a number of general requirements, most notably:

• Reliability / noise insensitiveness: Clearly, a low-level
vision algorithm should be in some way robust against
under- and oversegmentation due to noise.

• Accuracy: Many applications—especially in vision
metrology—need highly accurate results in sub-pixel
resolution.

• Scalability: The algorithm should be scalable so that
primitives of different size can be extracted.

• Speed: The algorithm should be applicable also to
(near-)real-time processing.

• Few and semantically meaningful parameters for ini-
tialization: The algorithm’s parameters should be easy
to understand for non-experts and the delivered re-
sults should be predictable, when changing the algo-
rithm’s parameters.

• In addition, an important aspect of a blob detection al-
gorithm is the capability of extracting geometric and
radiometric attributes to allow for a subsequent clas-
sification of blobs.

1.2. Related Work

The huge number of approaches developed so far can roughly
be grouped into following categories:

Matched filters / template matching: These approaches are
quite robust against noise and they are fast in case of few
transformation parameters between template and search im-
age (e.g., only translation and rotation). Yet they become
less applicable when shape deformations appear or param-
eters of higher order transformations must be determined.
Originally, the results are delivered with pixel precision, al-
though extensions to refine the results have been developed.

Watershed detection: Blobs are usually characterized by a
quite homogeneous interior and are surrounded by an bound-
ary edge. Such kind of structures can be extracted by so-
called watershed algorithms. These algorithms assume the
image to be ”grayvalue mountains” and simulate the process
of rain falling onto the mountains, running down the moun-
tain range and accumulating in valleys and basins. This pro-
cess is repeated until all basins are filled and only the water-
sheds between different basins remain. A complementary
algorithm focussing on the direct extraction of watersheds
in subpixel precision is given in [1]. In order to extract both
dark blobs and bright blobs, watersheds are typically ex-
tracted from the gradient amplitude image. The raining and
accumulation process can be implemented very efficiently
so that these algorithms can also cope with near real-time re-
quirements. In practise, however, the bottleneck of these al-
gorithms is the inherent noise sensitiveness which leads typ-
ically to oversegmented results. To overcome this, it would



be helpful to incorporate information about shape and size
of the desired primitives into the process of watershed de-
tection. Thise is hardly feasible.

Structure tensor analysis followed by hypothesis testing of
gradient directions: This method extracts blobs by detect-
ing distinct points and analyzing their circularity (see [2]
for details and [3] for improvements of the structure ten-
sor). In a first step, potential interest points are detected by
analyzing and thresholding the eigenvalues of the structure
tensor in a similar way as the classical Harris-Operator. The
second step consists of calculating the gradient directions
in the local neighborhood of a candidate point and estimat-
ing the common intersection point of all gradients assuming
circularity. Finally, a hypothesis test on the intersection’s
accuracy, i.e. the deviation of the gradient directions from
the intersection point, decides about acceptance or rejection
of the candidate point. This method combines several ad-
vantages: It can be implemented efficiently using recursive
filters with noise suppression embedded; it delivers subpixel
precise results for blob center points; and it needs only a
few parameters to initialize. Yet, the disadvantage of this
method is its limitation in extracting circular structures only.
The algorithm fails as soon as the gradients do not intersect
in a common point, e.g. in the case of ellipses.

Blob detection through scale-space analysis: The blob de-
tection scheme described in [5] can be interpreted as an
extension of the above method over different (Gaussian)
scales. Instead of detecting features at a single scale, the
complete scale space representation is analyzed for local
maxima, i.e. the optimum scale. After detection of a blob
center its subpixel-precise position is calculated using the
same gradient intersection scheme as above. However, the
optimum scale for localization is again introduced as free
parameter to estimate. That particular scale, which mini-
mizes the deviation of the gradients from their estimated in-
tersection point, is regarded as the optimum scale for local-
izing the blob. From a theoretical point of view, this scheme
is the most advanced one. The main drawbacks are the com-
putational load necessary for analyzing multiple scales and
the restriction to circular structures. Hence, the applicability
in practise is limited to some extend.

Our work described in the sequel is mainly inspired by
the classical work of Lindeberg [4, 5] and the high preci-
sion line extraction algorithm of Steger [6, 7]. Our approach
attempts to keep simplicity, effectiveness, and precision of
the Foerstner method [2] while extending it to more generic
structures. On the other side we base the scheme on a scale
space description to integrate scalability. Though, having
the computational costs in mind, we refrain from searching
the best scale automatically but let the user set the detection
scale. Furthermore, various blob attributes are calculated to
allow for a subsequent classification of blobs.

2. BLOB DETECTION

Our blob detection approach consists of two major steps.
The first step comprises the extraction of potential center
points of blobs in subpixel precision (Sect. 2.1). The sec-
ond step outlined in Sect. 2.2 consists of reconstructing the
boundary around a given point. Finally, various geometric
and radiometric attributes are calculated (Sect. 2.3).

2.1. Extraction of Center Points
The extraction of blob center points is based on differen-
tial geometric considerations. A rectangle of lengthl, width
w (w < l), and homogeneous area, i.e. constant contrast
h, serves as basic primitive. Because of limited image res-
olution and the considerable amount of smoothing usually
mandatory to suppress noise, an approach trying to extract
and group the rectangle’s lateral edges would not lead to
satisfactory results. Under these conditions, a much more
salient feature is the rectangle’s center point that becomes
a local extremum under sufficient amount of smoothing.
Hence, the goal of the algorithm is first to find the center
points and then to reconstruct the rectangle boundary.

Let us for a moment assume the rectangle’s orientation
to be known, i.e., the rectangle can be oriented along the
coordinate axesx, y. Then the model functionfr for a rect-
angle with normalized contrasth = 1 is given by

fr(x, y) = 1 for |x| ≤ l and|y| ≤ w;
fr(x, y) = 0 otherwise

and the responserσ after convolvingfr with a Gaussian
smoothing kernelgσ becomes

rσ(x, y, l, w) =
(gσ(x + l)− gσ(x− l))(gσ(y + w)− gσ(y − w))

Because of the infinite support region ofgσ it follows that
rσ reaches the desired distinct extremum at the rectangle’s
center point(x = 0, y = 0) for all σ > 0. Another con-
clusion is that the 2D functionrσ results from a convolu-
tion of two separable functions: the Gaussian functiongσ

and the rectangle functionfr that can be generated from
two 1D bar-shaped functions (in the same way as the con-
ventional mean filter). Consequently,rσ is separable into
two 1D functionsuσ(x, l) andvσ(y, w), which are equiva-
lent with the two profiles along both coordinate axes. What
is more, also the rectangle’s center point can be extracted
purely fromuσ andvσ if some requirements are met:
(1) According to [6], center points of bar-shaped profiles
of width p and smoothed withgσ can be reliably extracted
by determining the curvature maximum along the profile as
long as the restrictionσ ≥ p/

√
3 is satisfied. Thus, for a

rectangle with different side lengths, either a smoothing pa-
rameterσ corresponding top = max(l, w) or two different
parametersσl andσw should be chosen. Sub-pixel precision
is achieved by computing the curvature maximum using a
second order polynomial expanded into a Taylor series.



(2) The curvature maximum must fall into the pixel under
investigation, i.e.(x, y) ∈ | ± 0.5| × | ± 0.5|.
(3) The rectangle’s center point is correctly reconstructed
from the two profile’s curvature maxima only if the maxima
are not biased by different lateral contrast at the rectangle
sides. To overcome this limitation, the bias must be esti-
mated from image information and compensated. For this
we adapted the algorithm described in [6].

The last question left open is how to find the rectangle’s
orientation before separating the analysis along and across
the rectangle. The orientation can be determined by calcu-
lating the eigenvectors from the Hessian MatrixH (not to
be confused with the structure tensor)

H(x, y) =
rxx rxy

ryx ryy
  

with the second partial derivativesrxx; ryy; rxy = ryx;

and selecting the eigenvector(ex, ey) corresponding to the
larger absolute eigenvalueλe (λe < 0 for bright blobs,
λe > 0 for dark blobs). This eigenvector points along the
directionor of the rectangle’s shorter side. Since it is desir-
able to determineor in a way consistent with the extraction
of the curvature maximum of the profilevσw , the partial
derivatives are estimated by convolving the image function
with derivatives ofgσ using the same smoothing parameter
σw as for analyzingvσw .

The algorithm for center point extraction can be sum-
marized as follows (see also Fig. 1 a) for illustration):

1. Initialization by settingσw, σl w.r.t. the expected
rectangle dimensions.

2. CalculateH(x, y), (ex, ey), andor usinggσw .
3. Compute curvature maximum alongor usingvσw , an-

alyze gradients ofvσw to determine bias and remove
it.

4. Compute curvature maximum alongor⊥ usinguσl

and analyze gradients ofuσl
to determine bias and

remove it.
5. Reconstruct rectangle’s center point from both pro-

files.

2.2. Boundary reconstruction

As a side product of the above algorithm, the blob orienta-
tion, its width and length, as well as curvature and contrast

(a) Parameters for extraction
of center points (see text)

or

vσ

(ex, ey)uσ

pixel under
investigation

(b) Construction of the
boundary polygond(φ)

search line for
gradient maxima

φ

(c) Blob center and
boundary polygon

(d) Boundary ap-
proximating ellipse

Fig. 1. Intermediate steps of blob detection.

information at the center point have been determined. From
these attributes the elliptical shape of the blob can be recon-
structed. However, please note that this information stems
from two different scales. Many applications, however, rely
on attributes that refer to one single scale. Hence, we extract
the blob boundary also at the smaller scalevσw :

Since the boundary of a rectangle and of all of its smoothed
versions is always convex, an appropriate model function
for the boundary is given by the radius-angle functiond(φ)
with d being the distance from the blob center to the bound-
ary andφ the corresponding angle. To reconstruct this func-
tion, we define search lines at certain angle intervals and ex-
tract the maximum grayvalue gradient along the each line.
Finally, the points determined this way are linked into the
boundary polygond(φ) (see Figs. 1 b and c).

2.3. Extraction of Blob Attributes

From the features thus attained, a number of additional geo-
metric and radiometric blob attributes are calculated, which
help to further select and classify the blobs.

Geometric attributes are derived from the boundary poly-
gon:

• Boundary length

• Blob area

• Geometric moments: center points, and higher order
moments

• Parameters of a robustly fitted ellipse (incl. outlier
removal)

Please note, that the parameters of the fitted ellipse may dif-
fer from the orientation, length and width estimated during
blob detection. This is the case, for instance, if the under-
lying primitive is not of rectangular or elliptical shape. For
specific applications these differences are valuable criteria
supporting the selection of blobs.

The radiometric attributes are calculated using the (smaller)
scaleσw since the boundary is extracted at this scale:

• Mean and variance of the grayvalues of the blob inte-
rior

• Mean and variance of the gradient amplitude along
the boundary, i.e. the boundary contrast statistics



• Asymmetry of the gradient amplitude wrt. the blob
orientation, i.e., an indicator for strong contrast on
one side and weak contrast on the other side of a blob.

3. RESULTS

Figures 1 c,d and 2 illustrate the application of the blob de-
tection scheme for extracting and classifying car hypotheses
using thermal aerial imagery. Passive / cold cars are im-
aged as dark elongated blobs and are therefore extracted by
focussing on eccentrical ellipses with symmetric contrast.
Contrarily, active cars are characterized as two adjacent,
more or less circular blobs having different brightness. The
bright spot indicates a vehicle’s warm front while the dark
blob corresponds to the cooler body. Hence, hypotheses for
this type of cars are extracted by searching for small, near-
circular ellipses with bi-polar contrast. Figure 1 c,d show
the extraction of a passive car and Fig. 2 a) illustrates the
extraction of two active cars. Figure 2 b) finally visualizes
the hypotheses of both active and passive cars for a larger
scene. As can be seen from Fig. 2 b), the majority of the
hypotheses is correct and only few cars have been missed.
Consequently, a high-level module could base its decision
which hypotheses are to accept or reject and at which image
locations additional cars have to be searched for on reliable
input from the low-level module.

The application of our blob detection scheme as a low-
level module for facade interpretation is shown in Fig. 3.
In the left column, the ellipses fitted to the blob boundary
are overlayed onto the smoothed image that corresponds to
scaleσw used for attribute calculation. The right column
visualizes the images at original resolution. In order to ex-
tract the small windows in Figs. 3 a, b) as well as the upper
part of the door in Figs. 3 c,d) two different scales have been
used, and promising hypotheses have been classified using
the blob attribute information.

(a) Detected near-circular blobs:
bright blobs: black (and viceversa)

(b) Hypotheses for active cars (black)
and passive cars (white)

Fig. 2. Detection of hypotheses for cars in airborne thermal
images.

(c) Blob overlayed on image at scaleσw

and attribute information extracted
(d) Blob overlayed on original image

(a) Blobs overlayed on image at scaleσw (b) Blobs overlayed on original image

Fig. 3. Detection of blobs as primitives for facade intepre-
tation.
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