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ABSTRACT e Few and semantically meaningful parameters for ini-

tialization: The algorithm’s parameters should be easy
to understand for non-experts and the delivered re-
sults should be predictable, when changing the algo-
rithm’s parameters.

This paper introduces an algorithm for fast and sub-
pixel precise detection of small, compact image primitives
("blobs”). The algorithm is based on differential geom-
etry and incorporates a complete scale-space description.
Hence, blobs of arbitrary size can be extracted by just ad- e In addition, an important aspect of a blob detection al-

justing the scale parameter. In addition to center point and gorithm is the capability of extracting geometric and
boundary of a blob, also a number of attributes are extracted. radiometric attributes to allow for a subsequent clas-
These describe the specific blob characteristics in more de- sification of blobs.

tail and, thus, allow for a subsequent classification of blobs.
Several examples on real images illustrate the performancel_zl Related Work
of the proposed algorithm.
The huge number of approaches developed so far can roughly

1 INTRODUCTION be grouped into following categories:

Matched filters / template matchin@hese approaches are
1.1. Motivation and Requirements quite robust against noise and they are fast in case of few

transformation parameters between template and search im-
The extraction of small, compact, bright or dark images age (e.g., only translation and rotation). Yet they become
primitiveS is one of the basic tasks of low-level Components |ess app“cable When Shape deformations appear or param_
of an image understanding system. For some applicationseters of higher order transformations must be determined.
these so-called "blobs” are already the desired objects toQriginally, the results are delivered with pixel precision, al-

extract (eyes, particles, fiducial marks, etc.). In other sys-though extensions to refine the results have been developed.

tems, blobs are used as input for higher level reasoning aI-W hed d iorBlob v ch ed b
gorithms, e.g., for facade interpretation or car detection in atershed detectiorBlobs are usually characterized by a

aerial images. To accommodate the huge variety of applica-qUite homogeneou_s interior and are surrounded by an bound-
tions, it is clear that a blob detection algorithm must fulfill ary edge. Such kind O_f structures can be_ extracted by so-
a number of general requirements, most notably: palled watershed algorithms. 'I_'hese algprlthms assume the
image to be "grayvalue mountains” and simulate the process
| of rain falling onto the mountains, running down the moun-
tain range and accumulating in valleys and basins. This pro-
cess is repeated until all basins are filled and only the water-
sheds between different basins remain. A complementary
e Accuracy: Many applications—especially in vision glgorith.m focus_sipg on t_he d?rect extraction of watersheds
metrology—need highly accurate results in sub-pixel in Subpixel precision is given in [1]. In order to extract both
resolution. dark blobs and bright blobs, watersheds are typically ex-
tracted from the gradient amplitude image. The raining and
e Scalability: The algorithm should be scalable so that accumulation process can be implemented very efficiently
primitives of different size can be extracted. so that these algorithms can also cope with near real-time re-
guirements. In practise, however, the bottleneck of these al-
e Speed: The algorithm should be applicable also to gorithms is the inherent noise sensitiveness which leads typ-
(near-)real-time processing. ically to oversegmented results. To overcome this, it would

¢ Reliability / noise insensitiveness: Clearly, a low-leve
vision algorithm should be in some way robust against
under- and oversegmentation due to noise.



be helpful to incorporate information about shape and size 2. BLOB DETECTION
of the dﬁ_shl_red_prrl]mlg\l/e? Intpblthe process of watershed de'Our blob detection approach consists of two major steps.
tection. Thise is hardly feasible. The first step comprises the extraction of potential center

Structure tensor analysis followed by hypothesis testing ofPOINts of blobs in subpixel precision (Sect. 2.1). The sec-
gradient directions This method extracts blobs by detect- ©nd step outlined in Sect. 2.2 consists of reconstructing the
ing distinct points and analyzing their circularity (see [2] Poundary around a given point. Finally, various geometric
for details and [3] for improvements of the structure ten- and radiometric attributes are calculated (Sect. 2.3).

sor). In a first step, potential interest points are detected by

analyzing and thresholding the eigenvalues of the structure2.1. Extraction of Center Points

tensor in a similar way as the classical Harris-Operator. The The extraction of blob center points is based on differen-
second step consists of calculating the gradient directionstial geometric considerations. A rectangle of lengtiidth

in the local neighborhood of a candidate point and estimat-w (w < 1), and homogeneous area, i.e. constant contrast
ing the common intersection point of all gradients assuming h, serves as basic primitive. Because of limited image res-
circularity. Finally, a hypothesis test on the intersection’s olution and the considerable amount of smoothing usually
accuracy, i.e. the deviation of the gradient directions from mandatory to suppress noise, an approach trying to extract
the intersection point, decides about acceptance or rejectiorand group the rectangle’s lateral edges would not lead to
of the candidate point. This method combines several ad-satisfactory results. Under these conditions, a much more
vantages: It can be implemented efficiently using recursive salient feature is the rectangle’s center point that becomes
filters with noise suppression embedded,; it delivers subpixela local extremum under sufficient amount of smoothing.
precise results for blob center points; and it needs only aHence, the goal of the algorithm is first to find the center
few parameters to initialize. Yet, the disadvantage of this points and then to reconstruct the rectangle boundary.
method is its limitation in extracting circular structures only. Let us for a moment assume the rectangle’s orientation
The algorithm fails as soon as the gradients do not intersecto be known, i.e., the rectangle can be oriented along the
in a common point, e.g. in the case of ellipses. coordinate axes, y. Then the model functiof. for a rect-

. angle with normalized contrast = 1 is given by
Blob detection through scale-space analysitie blob de-
tection scheme described in [5] can be interpreted as an Jr(w,y) =1 for |z| S Landly| < w;
extension of the above method over different (Gaussian) fr(z,y) =0 otherwise
scales. Instead of detecting features at a single scale, th@nd the response, after convolving f, with a Gaussian
complete scale space representation is analyzed for locagmoothing kernej, becomes
maxima, i.e. the optimum scale. After detection of a blob ro(z,y,l,w) =
center its subpixel-precise position is calculated using the (g, (z +1) — go(z — 1)) (90 (y + W) — go(y — w))
same gradlent intersection scheme as above. However, th%ecause of the infinite support regiongQ,f it follows that

optimum scale for localization is again introduced as free ;. ‘reaches the desired distinct extremum at the rectangle’s
parameter to estimate. That particular scale, which mini- oonter point(z = 0,y = 0) for all & > 0. Another con-

mizes the deviation of the gradients from their estimated in- 4 sion is that the 2D function.. results from a convolu-
tersection point, is regarded as the optimum scale for local-ion of two separable functions: the Gaussian functign

izing the blob. From a theoretical point of view, this scheme 4.4 the rectangle functioffi, that can be generated from
is the most advanced one. The main drawbacks are the COMgvo 1D bar-shaped functions (in the same way as the con-

putational load necessary for analyzing multiple scales and,entional mean filter). Consequently, is separable into
the restriction to circular structures. Hence, the applicability o 1D functionsu (x,1) andv, (y, w), which are equiva-
g b g bl 1

in practise is limited to some extend. lent with the two profiles along both coordinate axes. What
Our work described in the sequel is mainly inspired by is more, also the rectangle’s center point can be extracted
the classical work of Lindeberg [4, 5] and the high preci- purely fromu, andv, if some requirements are met:
sion line extraction algorithm of Steger [6, 7]. Our approach (1) According to [6], center points of bar-shaped profiles
attempts to keep simplicity, effectiveness, and precision of of width p and smoothed witly, can be reliably extracted
the Foerstner method [2] while extending it to more generic by determining the curvature maximum along the profile as
structures. On the other side we base the scheme on a scaleng as the restriction > p//3 is satisfied. Thus, for a
space description to integrate scalability. Though, having rectangle with different side lengths, either a smoothing pa-
the computational costs in mind, we refrain from searching rametero corresponding t@ = max (I, w) or two different
the best scale automatically but let the user set the detectiorparameters; ando,, should be chosen. Sub-pixel precision
scale. Furthermore, various blob attributes are calculated tas achieved by computing the curvature maximum using a
allow for a subsequent classification of blobs. second order polynomial expanded into a Taylor series.



(2) The curvature maximum must fall into the pixel under information at the center point have been determined. From
investigation, i.e(z,y) € | £0.5] x | £0.5]. these attributes the elliptical shape of the blob can be recon-
(3) The rectangle’s center point is correctly reconstructed structed. However, please note that this information stems
from the two profile’s curvature maxima only if the maxima from two different scales. Many applications, however, rely
are not biased by different lateral contrast at the rectangleon attributes that refer to one single scale. Hence, we extract
sides. To overcome this limitation, the bias must be esti- the blob boundary also at the smaller scale:

mated from image information and compensated. For this gjnce the houndary of a rectangle and of all of its smoothed
we adapted the al_gorlthm desc_rlbed in [6_]' ,_versions is always convex, an appropriate model function
The last question left open is how to find the rectangle’s for the boundary is given by the radius-angle funciin)
X ; s SWith d being the distance from the blob center to the bound-
thg rectang!e. The orientation can be 'determlned by calcu—ary ands the corresponding angle. To reconstruct this func-
lating the eigenvectors from the Hessian Maifix(not to tion, we define search lines at certain angle intervals and ex-
be confused with the structure tensor) tract the maximum grayvalue gradient along the each line.
H(z,y) = Finally, the points determined this way are linked into the
boundary polygori(¢) (see Figs. 1 b and c).
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with the second partial derivatives,; ryy,; ey = Tya;

and selecting the eigenvect@r,, e,) corresponding to the 2.3. Extraction of Blob Attributes

larger absolute eigenvaluk, (\. < 0 for bright blobs, From the features thus attained, a number of additional geo-
Ae > 0 for dark blobs). This eigenvector points along the metric and radiometric blob attributes are calculated, which
directiono, of the rectangle’s shorter side. Since it is desir- help to further select and classify the blobs.

able to determine; in gway consistent \.Nith the extragtion Geometric attributes are derived from the boundary poly-
of the curvature maximum of the profile, , the partial gon

derivatives are estimated by convolving the image function

with derivatives ofy, using the same smoothing parameter ~ ® Boundary length

o, as for analyzing,, . e Blob area

The algorithm for center point extraction can be sum- o Geometric moments: center points, and higher order

marized as follows (see also Fig. 1 a) for illustration): moments

1. Initialization by settingo.,, o, w.r.t. the expected e Parameters of a robustly fitted ellipse (incl. outlier
rectangle dimensions. removal)

2. CalculateH (z,y), (es, ey), ando, usinggs,, .

3. Compute curvature maximum alongusingv,., , an- Please note, that the parameters of the fitted ellipse may dif-
a|yze gradients Ot)a’ to determine bias and remove fer from the Orientation, Iength and width estimated during
it. blob detection. This is the case, for instance, if the under-

4. Compute curvature maximum alomg L usingu lying primitive is not of rectangular or elliptical shape. For
and analyze gradients af,, to determine bias e{nd specific applications these differences are valuable criteria

T, . .
remove it. ' supporting the selection of blobs.

5. Reconstruct rectangle’s center point from both pro- The radiometric attributes are calculated using the (smaller)

files. scales,, since the boundary is extracted at this scale:
e Mean and variance of the grayvalues of the blob inte-
2.2. Boundary reconstruction rior
As a side product of the above algorithm, the blob orienta- ~ ® Mean and variance of the gradient amplitude along
tion, its width and length, as well as curvature and contrast the boundary, i.e. the boundary contrast statistics
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(a) Parameters for extraction (b) Construction of the (c) Blob center and (d) Boundary ap-
of center points (see text) boundary polygoni(¢) boundary polygon proximating ellipse

Fig. 1. Intermediate steps of blob detection.



e Asymmetry of the gradient amplitude wrt. the blob
orientation, i.e., an indicator for strong contrast on
one side and weak contrast on the other side of a blob.

3. RESULTS

Figures 1 c,d and 2 illustrate the application of the blob de-
tection scheme for extracting and classifying car hypotheses
using thermal aerial imagery. Passive / cold cars are im-
aged as dark elongated blobs and are therefore extracted
focussing on eccentrical ellipses with symmetric contras..
Contrarily, active cars are characterized as two adjacent,
more or less circular blobs having different brightness. The
bright spot indicates a vehicle’s warm front while the dark
blob corresponds to the cooler body. Hence, hypotheses fol
this type of cars are extracted by searching for small, near-
circular ellipses with bi-polar contrast. Figure 1 c,d show
the extraction of a passive car and Fig. 2 a) illustrates the
extraction of two active cars. Figure 2 b) finally visualizes
the hypotheses of both active and passive cars for a Iarge
scene. As can be seen from Fig. 2 b), the majority of the g,
hYDOtheseS is correct and Only few cars have been mISSGU(.C) Blob overlayed on image at scaiéj (d) Blob overlayed on original image
Consequently, a high-level module could base its decision and attribute information extracted
which hypotheses are to accept or reject and at which imageFig. 3. Detection of blobs as primitives for facade intepre-
locations additional cars have to be searched for on reliabletation.
input from the low-level module.
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