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ABSTRACT 
 
Motion Vector Field (MVF) represents motion characteristics in 
video sequences, and has been widely used and been proved to 
be effective in sports video analysis.  However, in tennis video 
analysis, MVF-based methods are seldom utilized for the reasons 
that (i) the players' true motion is not accurately represented by 
the extracted motion vector, due to the deformation caused by 
the diagonal shooting of the camera, and (ii) the motion vector's 
magnitude is not prominent enough and is prone to be disturbed 
by noises.  In this paper, a pinhole camera modeling of motion 
vector field is proposed to revise the deformed motion vector.  In 
this modeling, a foreground object mask is adopted and global 
motion compensation is incorporated as the pre-processing steps.  
Evaluation of the proposed modeling using four hours of tennis 
videos shows very encouraging results. 
 

1. INTRODUCTION 
 
As one of the most salient visual characteristics, motion is cru-
cial for content-based sport video analysis.  The motion vector 
extracted from compressed video bit-stream reflects the dis-
placement of a macro block, and the collective set of all motion 
vectors in a video frame is called Motion Vector Field (MVF).  
Most of current motion features used in sports video analysis are 
based on MVF.  Duan et al. [1] give a comprehensive summari-
zation of MVF-based mid-level representation as well as corre-
sponding implementations on various sports games.  Also based 
on MVF, Ma [2] calculates the motion energy spectrum for 
video retrieval, and a motion energy redistribution function is 
proposed in [3] for motion events recognition.  It is shown that 
the MVF-based analysis methods have the advantage of efficient 
computation and effectual performance for most generic applica-
tions. 

However, MVF-based methods are seldom utilized in tennis 
video analysis.  Conventional methods mainly focus on detecting 
and tracking of players or balls in the image sequence [4] [5], as 
well as incorporating with human gesture and behavior analysis 
[6].  Although these computer vision related methods may pro-
vide more elaborate annotation of tennis game, they result in 
complicated implementation, inflexible utilization and non-
trivial limitation.  With our investigation, two main reasons baf-
fle the MVF utilization in tennis video.  Firstly, because the 
shooting camera is diagonal but not perpendicular to the court 

plane, MVF can not correctly represent the players' true motion, 
especially the motion in the vertical direction.  The magnitude of 
motion vector is reduced and the orientation is distorted, and the 
deformation is particularly evident for the player at the top half 
court.  Secondly, the court with homologous color may introduce 
random noises when estimating motion vectors.  Furthermore, 
the players' motion is not prominent enough, and thus the esti-
mated players' motion vectors are often unreliable.  To utilize 
MVF in tennis analysis, two issues must be resolved: (i) revise 
the motion vectors according to players' actual motion, and (ii) 
reduce the estimation noises. 

In this paper, a Pinhole camera Modeling of Motion Vector 
Field (PMoMVF) for tennis video analysis is proposed to revise 
the original motion vectors.  To reduce the noises introduced by 
motion estimation or slight camera panning, foreground object 
mask and global motion compensation are incorporated as pre-
processing steps.  In order to verify the proposed pinhole model-
ing, classification of players' basic actions in tennis video is 
carried out by generating the temporal motion curves, which 
have been successfully used in previous work [3].  Experimental 
results on recorded tennis videos demonstrate the effectiveness 
and efficiency of the proposed modeling. 

The rest of this paper is organized as follows.  Section 2 
will present the motion vector transformation by utilizing the 
pinhole camera model.  Section 3 will describe how to improve 
the reliability of the transformation by using foreground object 
mask and global motion compensation.  In Section 4, the appli-
cation of the PMoMVF for classifying tennis players' basic ac-
tions will be introduced.  Experiments and discussion will be 
given in Section 5.  Finally, Section 6 presents the conclusion 
and future works. 
 

2. MOTION VECTOR TRANSFORMATION 
 
Diagonal shooting camera in tennis game is usually placed right 
above the vertical symmetrical axis of the tennis court, thus the 
court in rectangle becomes an isosceles trapezoid, as shown in 
Fig. 1.  The players' movements in tennis video are also distorted 
and the motion vector estimated from video sequence cannot 
correctly reflect the true motion.  As illustrated in the left part of 
Fig. 1, a motion vector can be denoted as the displacement from 
a given point p1 in current frame to its corresponding point q1 in 
the next frame.  If the player is watched moving from p1 to q1 in 
video frame, the real movement in tennis court should be from p2 
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to q2.  Not only the motion's magnitude is reduced in video 
frame, but also the orientation is distorted.  The distortion of 
vertical motion is especially significant, and there is always 
y1<y2 in Fig.1.  Such deformations make it difficult to analyze 
the players' true motion, for instance, we can hardly tell whether 
the player is taking the net or not, directly depending on the 
vertical projection of the motion vector.  However, this task 
would become feasible if the motion vector can be revised ac-
cording to the true motion in tennis court plane. 

Court  Tennis
True  The   

Y

X

  VideoTennis
 inCourt       

 
Fig. 1. Illustration of the motion vector deformation 

In fact, for point p1 and q1, if the corresponding point p2 and 
q2 can be correctly located in tennis court plane, the transforma-
tion of motion vector is achieved.  Thus the essential problem is 
that for any given point in video frame, how to find the corre-
sponding point in the tennis court plane.  In order to perform this 
task, a pinhole camera modeling is employed in this paper.  As 
illustrated in the top left part of Fig. 2, for a pinhole camera, 
there is 

fulL // =                                        (1) 
where u and f denote the object distance and the camera focus, L 
and l are the lengths of object and image respectively.  Suppos-
ing the horizontal distance between the camera and the bottom 
baseline of tennis court is d, and the height of camera from 
ground is h, with Eq. (1), there are 
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Here W and H denote the width and half height of the true tennis 
court [9], and w1, w2, w3 respectively represent the lengths of the 
bottom baseline, net line and top baseline in the image plane, as 
shown in Fig. 2. 

For any given point p' in the trapezoidal court in image 
plane, the line passing through p' and being parallel with the 
baselines is segmented by p' and the two court sidelines into two 
parts, whose lengths are denoted as wx1 and wx2 respectively.  
The position of p' is uniquely represented by wx1 and wx2.  Sup-
posing p is the corresponding point of p' in the true tennis court 
plane, and p is uniquely represented by x1, x2, y, which denote 
the distances between p and the sidelines and bottom baseline 
respectively, as illustrated in Fig. 2.  The relations between (x1, 
x2, y) and (wx1, wx2) are 
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With Eq. (2), parameters d and h can be solved, thus for a given 
point in video frame, the position of the corresponding point in 
the true tennis court plane can be directly calculated through Eq. 

(3).  With the point transformation functions, the two end points 
of motion vector are transformed to the true tennis court plane 
first, and then the new motion vector is calculated by taking the 
difference between two transformed end points. 

In most of the video shots of a tennis game, the shooting 
camera is usually appropriately placed and our assumption is 
approximately justified.  With the robust line detection algorithm 
proposed in [7], the exact position of the trapezoidal court in 
tennis video, including the lengths of the borders and the coordi-
nates of the corners, can be obtained through averaging the line 
detection results in several beginning frames of the game shot.  
When the position information of the trapezoidal tennis court is 
obtained, all motion vectors in Player Active Area are trans-
formed to the true tennis court plane in experiments. The Player 
Active Area is defined as a larger isosceles trapezoid covering 
the tennis court in the image plane, as the trapezoid in dash-dot 
line shown in Fig. 2. 
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Fig. 2. Pinhole camera modeling based transformation 

 
3. FOREGROUND OBJECT MASK 

 
In tennis game, the court with homologous color often causes 
random noises in motion vector estimation when using the 
block-matching algorithm.  And the players in tennis video are 
relatively small in proportion to the whole image frame, thus 
these random noises can not be neglected since they will inter-
fere the estimation of the players' motion vectors in practice.  A 
straightforward solution to obtain more reliable players' move-
ment is to take into account of motion vectors in players' areas, 
which usually are foreground objects in tennis video, and discard 
all others.  Besides, the shooting camera sometimes may slightly 
pan with the moving players, and will introduce additional 
global motion component to the estimated motion vectors.  The 
proposed camera modeling can still hold valid if we can com-
pensate the global motion component to characterize the players' 
true movements more accurately. 

Actually, technologies of foreground object segmentation 
and global motion compensation have been widely used in ob-
ject-based video coding, and can be used to resolve the men-
tioned problems.  To locate players' areas and compensate global 
motion component, the fast algorithm proposed in [8] is adopted 
in this paper.  The global motion between two images is repre-
sented by the six parameter affine model, whose parameters can 
be estimated using the Gauss-Newton or the Levenberg-
Marquadet iterative calculation.  In each iteration step, pixels of 
foreground object will be excluded by using the residual-block 
based outlier rejection, as well as the global motion is re-
estimated.  Finally the Foreground Object Mask (FOM) and 
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Global Motion Component (GMC) can be obtained simultane-
ously.  Fig. 3 illustrates an example, where the two players' areas 
in the left original image could be coarsely located in the right 
image with FOM.  The threshold controlling the outlier rejection 
is experientially set to 10% in experiments. More details could 
be found in [8]. 

The obtained FOM has the same dimension with that of the 
original MVF, and can be denoted as 

( )jifFOM ,=                                   (4) 

where fi,j is either 0 or 1.  Value 0 denotes the macro-block (i,j) 
is estimated as the background and value 1 denotes it is part of 
the foreground object.  Similarly, the GMC is denoted as 

( )jigGMC ,=                                   (5) 

where gi,j denotes the estimated global motion component for 
macro-block (i,j) to be compensated. 

 

         
(a)                                                 (b)  

Fig. 3. Original image (a) with foreground object mask (b) 
 

4. CLASSIFICATION OF PLAYER'S BASIC 
ACTIONS 

 
In this section, the classification of players' basic actions based 
on the proposed PMoMVF is introduced.  Firstly, the flowchart 
of PMoMVF is illustrated in Fig.4.  For one game related shot 
(G-shot), which can be extracted from the tennis video by using 
color based selection algorithm [4], the original MVF is ex-
tracted as input of the system.  As Fig.4 shows, the PMoMVF 
consists of two stages.  In the P (Pre-processing) stage, FOM 
and GMC are obtained through global motion estimation and 
performed on the original MVF as 

FOMGMCMVFMVFP ⊗⊕= )()(                  (6) 
where ⊕  indicates the matrix addition and ⊗ indicates the en-
try-by-entry product of matrix.  In the T (Transformation) stage, 
with the court line detected in G-shot, corresponding transforma-
tion functions are set up following the methods proposed in Sec-
tion 2.   

 
Fig. 4. Illustration of the flowchart of PMoMVF 

Two player's basic actions are classified in this paper: net 
game and baseline game.  Net game is that the player moves into 
the forecourt and toward the net to hit volleys. Baseline game is 
that the player hits the ball from near the baseline, against the net 
game.  In this paper, the MVF-based method [3] for sports event 
classification is utilized to classify player's basic actions.  As 
described in [3], the energy redistribution function is imple-
mented on the input MVF first, and then convolution with 
weight templates is performed as filtering for certain motion 
pattern.  In experiments, the horizontal and vertical motion fil-
ters are employed to generate two temporal motion curves.  Then 
these curves as features are used to classify player's actions by 
Hidden Markov Models. 
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Fig. 5. Comparison of temporal motion curves of vertical and 
horizontal motion filters based on different MVFs 

With the detected net line, the obtained MVF is divided 
into two parts, for classifying the basic actions of players in top 
half court and bottom half court respectively.  In experiments, 
the two temporal motion curves are calculated for comparison 
based on (i) the original MVF, (ii) the transformed MVF only 
using T stage (following the dot-line arrow in Fig. 4) and (iii) the 
transformed MVF with the whole PMoMVF.  Fig. 5 shows an 
example of the two temporal motion curves of net game in the 
top half court.  The X axis denotes the frame number and the Y 
axis denotes the calculated motion response value.  Positive 
value on vertical motion curve means movement to bottom in the 
image plane, and movement to right for the horizontal motion 
curve.  From frame 1 to 80, the player runs to take the net from 
the left end of the baseline toward the right end of net, then from 
frame 81 to 134, the player walks back from the net to the right 
end of the baseline.  As shown in Fig. 5 (a), both curves are quite 
noisy, and the vertical motion curve is too irregular to character-
ize the net game.  In Fig. 5 (b), the responses of horizontal and 
vertical motion filters are both enlarged, and the segment repre-
senting the net approach is more evident, however, the noises are 
still prominent.  Fig. 5 (c) gives the best result relatively, with 
more clear motion trend and less noise.   
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5. EXPERIMENTS 
 
Four hours recorded live tennis videos are used in experiments 
to validate the performance of the proposed PMoMVF in tennis 
video analysis.  The experimental video data are collected from 
the matches of A. Agassi and P. Sampras at US Open 2002 
(Video1), and R. Federer and M. Philippoussis at Wimbledon 
2003 (Video2).  As ground truth, the G-shot containing net game 
segment is labeled with Net game Shot (NS), otherwise it is la-
beled with Baseline game Shot (BS), for the two players respec-
tively.  The detail information of the selected video data is listed 
as follows. 

Table 1.  Information of the experimental video data 
Top half Bottom half Video #Shot #G-shot 

#NS #BS #NS #BS 
Video1 881 316 58 258 230 86 
Video2 624 271 100 171 114 157 
� 1505 587 158 429 344 243 

For player in certain half court, two HMMs for the net-
game segment and baseline-game segment in G-shot are respec-
tively built, and they are then circularly connected to construct a 
higher-level HMM, which represents the transition between net-
game and baseline-game within a G-shot.  The transition prob-
abilities to the two sub-HMMs are both set to 0.5.  Half of the 
experimental data are selected randomly as training data, and 
each G-shot in training set is further divided into net-game seg-
ments and baseline-game segments.  In recognition, all G-shots 
with net-game segment detected are considered as NS, and oth-
ers are BS. 

For comparison, experiments are performed based on the 
original MVF, the transformed MVF by only using the T stage, 
and the transformed MVF with the whole PMoMVF respec-
tively, and results are listed in Table 2.  When using the original 
MVF, the vertical motion response between net-game and base-
line-game can not be effectively distinguished, as shown in Fig. 
5 (a), and many of the baseline games are misclassified into net 
games.  Furthermore, performance for player in top half court is 
greatly lower than that of the player in bottom half, for that the 
deformation of motion vector in top half is more evident.  With 
the transformed MVF by only using T stage, performances are 
improved notably, especially for the net-game classification of 
the player in top half court, whose precision and recall ratios are 
both doubled.  Finally, the transformed MVF with the whole 
PMoMVF gives more encouraging results, which could be ac-
cepted in practical applications. 

Table 2. Experimental results based on the original MVF, the 
transformed MVF by only using the T stage, and the trans-
formed MVF with the whole PMoMVF 

Top Half Court Bottom Half Court MVF Shot 
Pre.(%) Rec.(%) Pre.(%) Rec.(%) 

NS 30.91 37.78 64.55 67.78 Original 
BS 70.53 63.81 47.75 44.17 
NS 61.11 73.33 85.06 82.22 Using 

T Stage BS 87.50 80.00 74.60 78.33 
NS 80.00 66.67 90.85 82.78 Using 

PMoMVF BS 86.67 92.86 77.21 87.50 

Sometimes the block-based estimation of original MVF has 
unavoidable mistakes and errors, under which the misclassified 
results are unable to be corrected even by the PMoMVF.  How-
ever, experimental results indicate that in most conditions of 

tennis videos, the PMoMVF can properly revise the deformed 
MVF as well as reduce the noises, thus enable those MVF-based 
methods to be feasible in tennis video analysis. 
 

6. CONCLUSION 
 
A Pinhole camera Modeling of Motion Vector Field for content 
based tennis video analysis is proposed in this paper.  In this 
modeling, the original deformed motion vectors are revised ac-
cording to players' true motion, and the foreground object mask 
and global motion compensation are incorporated as preprocess-
ing steps for noise reduction.  Experiments on classification of 
players' basic actions show very encouraging results.  The future 
works include: (i) make some steps more robust in setting up the 
model, such as the location of court lines, and (ii) try more ap-
plications in tennis analysis with the PMoMVF. 
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