
TOOLBOX OF IMAGE PROCESSING USING THE PYTHON LANGUAGE

Alexandre G. Silva1, Roberto de A. Lotufo1, Rubens C. Machado2, Andŕe V. Sáude1,2

1DCA–FEEC, University of Campinas, P. O. Box 6101, 13083-970, Campinas, SP, Brazil
{alexgs,lotufo,andrevit }@dca.fee.unicamp.br

2Renato Archer Research Center, P. O. Box 6162, 13089-120, Campinas, SP, Brazil
rubens.machado@cenpra.gov.br

ABSTRACT

This work consists in the study, development and imple-
mentation of a toolbox for image processing using thePython
language and theNumerical Pythonpackage. This set has
“open source” distribution and is adequate for multidimen-
sional mathematical processing. Python is a modern and
well projected language, interpreted, “very-high-level”, ob-
ject oriented and extremely portable, apart from being suit-
able for rapid application development (RAD). The system
is generated using the methodology of theAdessoproject
for construction of scientific software. This environment is
useful in education, research and development of final ap-
plications.

1. INTRODUCTION

A generic computational tool for image processing usually
offers two levels of programming: a script interpreted lan-
guage serving as interface to a high performance library nor-
mally written inC or Fortran. There are several appropriate
tools for image processing nowadays, considering easiness
of use and performance.

Our intention is to congregate the positive features of
platforms such asMATLAB[3] and on-line image process-
ing courses such as the Digital Image Processing (DIP) us-
ing Khoros [8, 4] into a freely available open system. In
this sense, there is the effort associated to development of
the Adessoproject [7] that consists in an environment of
authoring scientific software. Adesso is strongly based on
XML [10] technologies and has support for automatic gener-
ation of documentation and code interface of computational
libraries. Its current stage of development, it supportMAT-
LAB andTcl/Tk [1] platforms. This work has also extended
Adesso to provide support forPython[6].

Recently, thePythonlanguage is having a great growth,
specially in the academic community. It is a sufficiently
modern scripting language, with refined concepts of object
orientation. In addition, there is theNumericalpackage [2]

This work was supported by FAPESP, Brazil, process 00/13671-0.

that presents a set of modules which can be easily incorpo-
rated toPython. These modules were projected under the
strong influence of the basic functions ofMATLAB. Python,
as well as theNumericalpackage, simplify the program-
ming in two levels through a well-defined modular form.
This association guarantees efficient multidimensional ma-
trix computation that is essential for image processing. In
this way, the use ofPython, associated to this numeric pack-
age, is becoming a very attractive solution for image pro-
cessing.

The following sections introduce the adopted program-
ming model, the tools used in this work, and explain the
development of the image processing toolbox. Finally, the
contents of the toolbox is commented.

2. PROGRAMMING MODEL

Prechelt [5] proposed a study to compare the performance
of several programming languages. Whilescripting (or in-
terpreted) languages have simplified programming that al-
lows rapid prototyping, compiled languages generate faster
codes but demand considerably more developing time. In
this section, we want to illustrate that an efficient multi-
dimensional image processing program can be written in
scriptinglanguages, using the matrix support of Python and
MATLAB.

Let us consider an example to compute the MSE (Mean
Square Error) between two color images. The adopted equa-
tion is

MSE =
1

NhNw

Nh−1∑
i=0

Nw−1∑
j=0

2∑
k=0

[
(f1(i, j, k)− f2(i, j, k))2

]

wheref1 andf2 are the input images, in the RGB model,
with dimensionsNhxNwx3.

We define two forms of implementation of this equa-
tion according to the way of the pixels are scanned:(i) ex-
plicit where loops are used;(ii) implicit where the loops
are intrinsic from the matrix operators. Figure 1 illustrates
the algorithms in question. Table 1 shows the results of the

0-7803-7750-8/03/$17.00 ©2003 IEEE. ICIP 2003

MSE = 0

 For all j between 0 and width(f1)−1 do:
 For all k between 0 and 2 do:
 MSE = MSE + (f1[i,j,k] − f2[i,j,k])^2
MSE = MSE / (height(f1)*width(f1))

Implicit scan:

MSE = sum(MSE) / (height(f1)*width(f1))

For all i between 0 and height(f1)−1 do:

Output: MSE value
Input: images f1 e f2 (same dimensions)

Explicit scan:

MSE = (ravel(f1) − ravel(f2))^2

Fig. 1. Algorithms of explicit and implicit scan for the cal-
culation of the MSE.

Time Time
MATLAB 6 (implicit) 0, 038s Java (explicit) 0, 198s
C (explicit) 0, 051s Python (explicit) 4, 473s
Python (implicit) 0, 136s MATLAB 6 (explicit) 14, 628s

Table 1. Comparison of average times (Sun Ultra 60) for
the calculation of the MSE between two256x256 colorful
images.

implementation of the MSE in different languages in terms
of speed performance. Note that when an program can be
expressed in matrix computation, these languages can pro-
vide a comparable computational efficiency (or better) when
compared with a standard C program without optimization.
This is the case when we compare the speed of the MAT-
LAB1 implicit code solution with the non-optimized C code.

As an initial exercise in image processing class, we sug-
gest to implement the synthetic generation of simple 2-D
images such as to create a chessboard like arrangement of
pixels. The idea is to explore the many ways one can code
the exercises using implicit matrix operations. Normally
five or more conceptually different solutions are possible.
One of the most general approaches is to create two matri-
ces ofx andy indices and compute the image pixels values
as a mathematical expression of the indices. To create the
chessboard image, the following equation can be used:

z(x, y) = (x(i, j) + y(i, j)) % 2

wherex(i, j) = i+1 ey(i, j) = j +1, for ∀i ∈ [0, N−
1] e ∀j ∈ [0,M − 1]. Figure 2 illustrates this operation.
In this case, the operators “+” (sum) and “%” (remaining
portion of the integer division) must belong to the language
and perform the calculation pixel by pixel. Matricesx and
y can be efficiently constructed in Python2, and in MAT-
LAB3. The same methodology can be used to synthesize
other images such as ramps, ellipses, sinoidal, among others
examples.

1New MATLAB version 6.5 uses JIT compiler and is better in explicit
processing. These times had probably changed.

2Numeric.indices
3meshgrid

(1 . . . 1
...

. . .
...

N . . . N

+

1 . . . M
...

. . .
...

1 . . . M

)
% 2 =

0 1 . . .
1 0 . . .
...

...
. . .

xNxM yNxM zNxM

Fig. 2. Example of generation of a chessboard image using
matrix manipulations.

3. DEVELOPMENT ENVIRONMENT

3.1. Python language

Python associated with the Numerical package is a generic
language, extremely portable and efficient enough for im-
age processing. Python has the flexibility of Perl, associ-
ated with the numerical power and ease of use of MAT-
LAB, but available as an open source environment. The
source code is generally small when compared to compiled
languages by several reasons: high-level data types and op-
erations, no type declarations (dynamic typing), automatic
memory management, and command blocks marked by in-
dentation. In C/C++, equivalent data structures and func-
tionalities with the same optimization would cost consider-
able more programming time. There is also a great native
set of libraries implemented in C/C++ (built-in), for Python,
that practically discard the process of compilation / correc-
tion / re-compilation (except for API extensions of the lan-
guage). These characteristics generate a high productivity
gain.

The images are displayed using theTkinter module, a
default Python graphical user interface (GUI) with the func-
tionalities of the packageTk [1], but there are many other
options to choose from, such aswxPython, PyGTK, PyQt,
...). For graph plotting, we chooseGnuplot [9]. Figure 3
shows a script with its output displays.

3.2. Adesso system

The Python image processing toolbox is built using the Ades-
so authoring system [7], that is an environment to design
scientific components. The essential information of a tool-
box is stored in a XML database. Code, documentation and
packaging are generated automatically using the Adesso style
sheet processing. The Adesso methodology allows easiness
of maintenance and management of the information, con-
sistency in the user interface, flexibility in the presentation
based on designed style sheets, greater immunity to errors,
among other characteristics. Figure 4 shows a block dia-
gram of the Adesso automatic transformation process.

The XML files of the Adesso system form a database
containing algorithms and their descriptions, input and out-
put parameters and their descriptions, examples, equations
(in LATEX notation), tests, function dependency list, among

>>> import Numeric
>>> from ia636 import *
>>> f = iaread(’cameraman.pgm’)
>>> (g,a) = iasobel(f)
>>> iashow(f)
>>> iashow(Numeric.log(g+1))
>>>
>>> h = ialog((200,300), (100,150), 20)
>>> iashow(h)
>>> iaplot(h[99])

Fig. 3. Typical script to show images and plotting graphics.

other fields. The following style sheets were implemented
to expand the Adesso capabilities to deal with the Python
language:

Code generation.This style sheet produces three main out-
puts: functionswith on-line documentation;demon-
strationsandlessonsused to illustrate several numeric
or graphical outputs, step by step; andtest suitesthat
are examples that check if the functions are imple-
mented correctly.

Wrapper generation. This style sheet generates the inter-
face code between Python and libraries in C/C++ lan-
guage. This makes the C/C++ libraries already in
Adesso available in Python. This is one of the most
benefits of using Adesso in the development of tool-
boxes. This automatic code generation avoid the com-
mon use of copy and paste to create such interfaces
manually.

Setup generation.This style sheet generates the ”setup.py”
file with compilation and installation rules.

Documentation generation.This style sheet creates the doc-
umentation and the illustrations, such as numerical
outputs, images, graphics, and equations. These illus-
trations are actually generated during the document
creation by invoking Python to execute the script ex-
amples. This feature guarantees that the illustrations
in the documentation reflects the toolbox version. This
is the ”wysiwyg” equivalent for software documenta-
tion. An example of a typical HTML function docu-
mentation is shown in Figure 5.

C code
C/Python API
C/MATLAB API
C/Tcl API
Makefile

......

.....

MATLAB code
Tcl code
Demonstrations
Testsuites
Setup

Python code

. LaTeX. PDF. HTML

Processor
Algorithms
Documentation

.. of Styles

XML Database

Stylesheets

Fig. 4. Block diagram of the Adesso information transfor-
mation.

4. RESULTS

The image processing toolbox is calledia636 as a ref-
erence to the code of the computer vision graduate course
taught at the Faculty of Electrical and Computer Engineer-
ing, UNICAMP. The last version of the toolbox can be seen
at http://marahu.dca.fee.unicamp.br/course/ia636.html . Its
current stage of development contains the following:

Lessonshave been implemented to:(i) illustrate the gen-
eration of different images;(ii) illustrate the contrast trans-
form function;(iii) illustrate histogram equalization;(iv) il-
lustrate the template matching technique;(v) illustrate the
decomposition of the image in primitive 2-D waves;(vi)
compute the Discrete Fourier Transfor spectrum of simple
synthetic images;(vii) compute the kernel matrix for the
DFT; (viii) illustrate the scale property of the DFT;(ix) il-
lustrate the convolution theorem;(x) illustrate the Hotelling
Transform;(xi) illustrate the inverse filtering for restoration;
(xii) illustrate the interpolation of magnified images;(xiii)
illustrate the Otsu automatic thresholding selection method.

Severalfunctionsdivided in the following topics have
been implemented:(i) image creation: low-pass Butter-
worth frequency filter; circle; impulses; cossenoidal 2-D;
Gaussian 2-D; Laplacian of Gaussian; vertical bands of in-
creasing gray values; rectangle;(ii) image information and
manipulation: image cropping to find the minimum rect-
angle; linear index conversion from double subscripts and
vice-versa; 2-D matrices index creation; image negation;
normalization of the pixel values between the specified range;
insertion of a frame around an image; cutting a rectangle
out of an image; image replication until reaching a new size;
(iii) image I/O: image reading and writing;(iv) contrast ma-
nipulation: intensity image transform; color map;(v) color
processing: RGB to HSV color model conversion and vice-
versa; true color RGB to index and color map conversion;
RGB to YCbCr color model conversion and vice-versa;(vi)
geometric manipulations: affine transform; 2-D rigid body
geometric transformation and scaling; image resizing; peri-
odic translation;(vii) image transformation: Discrete Cos-

Fig. 5. HTML documentation generated automatically.

sine Transform; Discrete Fourier Transform; Haar Wavelet
Transform; Hadamard Transform; and respective inverses;
shifting zero-frequency component to the center of spec-
trum; conjugate symmetry checking;(viii) image filtering:
Laplacian of Gaussian filter; contours of binary images; 2-
D convolution and periodic convolution; Sobel edge detec-
tion; variance filter;(ix) automatic thresholding techniques:
thresholding by Otsu;(x) measurements: color and gray-
scale image histograms; labeling; reconstruction of a con-
nect component; MSE, PSNR and Pearson correlation be-
tween two images;(xi) halftoning approximation: ordered
Dither; Floyd-Steinberd error diffusion;(xii) visualization:
optical Fourier Spectrum display from DFT data; isolines
of a gray-scale image; display labeled images by assigning
a random color for each label; plotting a function or a sur-
face; image display.

5. CONCLUSIONS

This paper describes the development of an image process-
ing toolbox for Python using the Numeric package. The
toolbox was developed using Adesso, an authoring system
that helps the creation of such toolboxes. For such, Adesso
was extended to support the Python language in the addi-
tion to MATLAB and Tcl-Tk. The toolbox is intended to

be used as a practical resource in image processing courses.
The Python toolbox is compatible to the equivalent MAT-
LAB ”ia636” image processing toolbox being used and de-
veloped.

6. REFERENCES

[1] B. B. Welch. Pratical Programming in Tcl and Tk.
Prentice Hall PTR, 3rd edition, 1999.

[2] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin and T.
Oliphant.Numerical Python. September 2001.

[3] S. L. Eddins and M. T. Orchard. Using MATLAB and
C in an Image Processing Lab Course. InProceedings
of ICIP-94, pages 515–519, Austin, USA, November
1994.

[4] R. Jordan and R. A. Lotufo. Interactive Digital Im-
agem Processing Course on the World-Wide Web. In
Proceedings of the 1996 International Conference on
Image Processing, pages 433–436, Lausanne, Switzer-
land, September 1996. IEEE Signal Processing Soci-
ety.

[5] L. Prechelt. An Empirical Comparison of Seven Pro-
gramming Languages. Computing Pratices IEEE,
pages 23–29, October 2000.

[6] M. Lutz and D. Ascher.Learning Python. O’Reilly &
Associates, April 1998.

[7] R. C. Machado. Adesso: Ambiente para Desen-
volvimento de Software Científico. Dissertaç̃ao de
Mestrado, Faculdade de Engenharia Elétrica e de
Computaç̃ao - Universidade Estadual de Campinas,
Junho 2002.

[8] J. Rasure, R. Jordán, and R. Lotufo. Teaching Im-
age Processing with KHOROS. InIEEE International
Conference on Image Processing, pages 13–16, 1994.
(kieee94.ps.gz).

[9] T. Williams and C. Kelley. gnuplot, An Interactive
Plotting Program. December 1998.

[10] W3C Recommendation 6 October 2000. Extensible
Markup Language (XML) 1.0. 2000.

	Start Page
	ICIP 2003 Home Page
	Conference Info
	Chairman's Invitation
	Technical Overview
	ICIP 2003 Organizing Committee
	Technical Program Committee
	Conference Statistics
	Call for Papers ICIP 2004

	Sessions
	Monday, 15th September
	MA-S1-Sports Video Analysis
	MA-S2-Redundant Representations for Visual Communicatio ...
	MA-L1-Source/Channel Coding
	MA-L2-Denoising
	MA-L3-Segmentation
	MA-P1-Video Transcoding
	MA-P2-Image Modeling
	MA-P3-Image and Video Analysis (I)
	MA-P4-Mathematical Morphology
	MA-P5-Stereoscopic and 3D Processing
	MA-P6-Image Representation, Rendering and Quality Asses ...
	MA-P7-Authentication, Watermarking and Protection (I)
	MA-P8-Biomedical Image Processing and Document Processi ...
	MP-S1-Distributed Source Coding
	MP-L1-Wavelet and Multiresolution-based Still Image Cod ...
	MP-L2-Face Analysis
	MP-L3-Image Modeling and Representation
	MP-L4-Relevance Feedback and Interactive Retrieval
	MP-P1-Stereoscopic and 3D Coding
	MP-P2-Image and Video Analysis (II)
	MP-P3-Nonlinear, Neural and Fuzzy Processing
	MP-P4-Motion Estimation and Detection (I)
	MP-P5-Multidimensional Segmentation
	MP-P6-Wavelets and Multiresolution Processing
	MP-P7-Biomedical Image Processing
	MP-P8-Video Indexing

	Tuesday, 16th September
	TA-S1-Graph Theory in Image Processing
	TA-L1-Video Coding with Wavelets
	TA-L2-Human Activity Analysis
	TA-L3-Color and Multispectral Image Processing
	TA-L4-Biomedical Image Segmentation and Quantitative An ...
	TA-P1-Coding and Pre/Post Processing of Image and Video
	TA-P2-Still Image Coding
	TA-P3-Mosaic, Image Registration and Fusion
	TA-P4-Motion Estimation and Detection (II)
	TA-P5-Segmentation, Classification
	TA-P6-Authentication, Watermarking and Protection (II)
	TA-P7-Image and Video Database
	TA-P8-Architecture and Hardware
	TP-S1-The Role of Machine Learning in Extracting Semant ...
	TP-S2-Partial Differential Equations and Differential G ...
	TP-L1-Error Resilience (I)
	TP-L2-Image Registration
	TP-L3-Watermarking
	TP-P1-Wavelet-based Video Coding
	TP-P2-Image Formation
	TP-P3-Facial Feature and Fingerprints Analysis
	TP-P4-Interpolation and Spatial Transformations
	TP-P5-Restoration
	TP-P6-Temporal or Texture Segmentation
	TP-P7-Biomedical Image Segmentation
	TP-P8-Multimedia Indexing, Retrieval and Delivery

	Wednesday, 17th September
	WA-S1-Advanced Methods for Motion Estimation
	WA-S2-Processor Architecture for Image and Video Applic ...
	WA-L1-Object Tracking (I)
	WA-L2-Radar imaging
	WA-L3-Image and Video Quality Assessment
	WA-P1-Transform-based Still Image Coding
	WA-P2-Video Networks and Streaming
	WA-P3-Human Activity, Gait and Gaze Analysis
	WA-P4-Denoising and Contrast Enhancement
	WA-P5-Contour-oriented Segmentation
	WA-P6-Error Resilience (II)
	WA-P7-Image Search and Sorting
	WA-P8-Applications (I)
	WP-S1-From Visual Models to Semantic Visual Information ...
	WP-L1-Video Streaming
	WP-L2-Interpolation
	WP-L3-3D Modeling and Synthesis
	WP-L4-Low-level Image Indexing
	WP-P1-Rate-distortion Allocation
	WP-P2-Video Coding
	WP-P3-Face Detection and Recognition
	WP-P4-Object Tracking (II)
	WP-P5-Applications based on Segmentation
	WP-P6-Applications (II)

	Tutorials
	Plenary Sessions
	Special Sessions

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	All papers
	Papers by Topic
	Papers by Sessions
	Table of Contents

	Topics
	1.1: Still Image Coding
	1.2: Video Coding
	1.3: Model-Based Coding
	1.5: Source/Channel Coding
	1.6: Stereoscopic and 3-D Coding
	1.8: Image and Video Networks
	1.9: Error Resilience
	1.10: Video Streaming
	2.1: Linear Filtering and Enhancement
	2.2: Nonlinear Filtering and Enhancement
	2.3: Restoration
	2.4: Multiframe Image Restoration
	2.5: Segmentation
	2.6: Wavelets and Multiresolution Processing
	2.7: Morphological Processing
	2.8: Color and Multispectral Processing
	2.9: Stereoscopic and 3-D Processing
	2.10: Modeling
	2.11: Analysis
	2.12: Interpolation and Spatial Transformations
	2.13: Motion Detection and Estimation
	2.14: Image Sequence Processing
	2.15: Noise Modeling
	2.16: Architectures and Software
	2.17: Neural, Adaptive and Fuzzy Processing
	3.2: Radar Imaging
	3.3: Tomographic Imaging
	3.4: Nuclear and X-Ray Imaging
	3.5: Magnetic Resonance Imaging
	3.8: Optical Imaging
	4.2: Quantization and Halftoning
	4.3: Color Reproduction
	4.4: Image Representation and Rendering
	4.5: Display and Printing Systems
	4.6: Image Quality Assessment
	5.1: Image and Video Databases
	5.2: Image Search and Sorting
	5.3: Video Indexing and Editing
	5.4: Integration of Images and Video with Other Media
	5.5: Content-Based Multimedia
	5.6: Multimedia Applications
	5.7: Authentication and Watermarking
	6.1: Biomedical sciences
	6.3: Geosciences
	6.4: Environment
	6.6: Document processing
	6.7: Other applications

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Andre Vital Saude
	Rubens Campos Machado
	Roberto de Alencar Lotufo
	Alexandre Goncalves Silva

