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ABSTRACT

Fluorescent lamps are widely used in the office environ-
ment and in common desktop scanners. These lamps
are characterized by the nearly monochromatic emis-
sion lines present in their radiant spectrum. Due to
the presence of spectral lines special care is required
in the computation of tristimulus values under these
illuminants. Accurate computation of the tristimulus
values can be performed digitally by modeling the ra-
diance as the sum of a continuous spectrum emitted
by the phosphors and weighted impulses correspond-
ing to the emission lines[2, 14, 3]. This paper considers
a scheme for estimating the continuous spectrum and
the strengths of the impulses from measurements of
the spectrum with band limited sensors. The impact
of noise in measured data on the accuracy of the final
color computation is also considered.

1. INTRODUCTION

Color is normally specified in terms of tristimulus val-
ues. The CIE XYZ tristimulus values for a reflectance
r(A) under a viewing illuminant I(\) are given by
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where {m;()), i = 1,2,3} are the CIE XYZ color
matching functions[1] [11].

The integral in Eqn. (1) is usually approximated by
a summation and tristimulus values are computed dig-
itally by multiplying sampled spectra with CIE color
matching functions over the visible spectrum and sum-
ming the result. For band limited spectra the sampling
interval is important in determining the accuracy of
this computation[7]. Fluorescent lamp spectra are not
band limited and thus present a special problem. It has
been shown that [2, 14] color values under a fluorescent
illuminant, I(\), can be computed more accurately by

using a decomposition of the spectrum
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where ¢()\) is the smooth and continuous (band limited)
spectrum emitted by the phosphors, {A1, A2... \;} are
the locations of the g spectral peaks and ay is the
strength of the spectral line at wavelength A\x emitted
by the vapor in the lamp (typically mercury).

The smooth spectrum can be represented by its
samples at 10 nm increments thus yielding a represen-
tation of the whole spectrum in terms of these sam-
ples along with the strengths {a}{_; and the locations
{Ak}i_, of the spectral peaks. The purpose of this re-
search is to estimate the parameters of the above model
based on measurements of the spectral radiance.

2. ESTIMATION OF MODEL
PARAMETERS

The measurement process can be modeled as yielding
samples of

y(A) = IA)xh(N) +n(A)
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where h(A) is the instrument impulse response, n(\)
is the measurement noise, * denotes the convolution
operation and g(A) = ¢(A) * h(X). The instrument im-
pulse response h()) is typically low pass in nature with
a passband that ensures the Nyquist criterion is met
by the samples.

The problem of estimating [(A) from y(A) is an ill-
posed problem. However, a priori information about
the nature of the different functions and their band-
widths can be used to formulate the estimation as a



signal restoration problem. The instrument impulse re-
sponse is analogous to an optical aperture and will be
a smooth function with limited support in wavelength.
It is also known a priori that ¢(\) can be sampled
at 10 nm increments|7]. Hence c¢()\) and consequently
g(A) = ¢(A\) xh()) are band limited to 1/20 cycles/nm.

The peculiar nature of the signal due to the mix of
continuous and discrete components does not allow a
direct formulation of the problem as a one step restora-
tion even if the instrument impulse response h(A) is
known. A minimum mean squared error (MMSE) esti-
mation scheme would not only require additional knowl-
edge of signal and noise statistics but would also require
an extremely fine sampling to achieve the desired reso-
lution for the spectral peaks. The consequent increase
in the dimensionality of the problem would make it a
highly underdetermined estimation problem. An alter-
native would be to use the method of projections onto
convex sets(POCS). The set of signals having the struc-
ture of Eqn. 2 is a convex set but the problem cannot
be cast as a single step restoration using POCS since
the set does not lie in the Hilbert space of square in-
tegrable functions on account of the continuous delta
functions. In spite of these limitations the following
multistep procedure can be used to estimate the model
parameters:

1. Use limited “spatial” extent of h(A) to obtain an
estimate

g\ = y(A\) = g(N)

where h()) is assumed to be close to zero outside
the interval (—A, A).
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2. Use band limited extrapolation [8] to estimate
dg(A\) = g(\) for A e UL (N — A, N\ +A)

3. Use estimate, g(A) of ¢(A\) * h(\) to obtain an
estimate of u(A) = Y7_; ai h(A — Ag)

a(A) =y(A) = g(A) = u(N)

4. Model h()\) as a zero mean Gaussian! and es-
timate the variance & and amplitude parameters
(i ’s) from 4(N) ~ >°1_; ax h(A—Ay) using non-
linear least squares. Thus obtain an estimate for

. * 2
h(A)viz., h(A) = —5= exp(—£),

5. Deconvolve §(A) ~ ¢()\) * h(\) using h()) to ob-
tain estimate é(\) ~ c(A).

n [10] a triangular instrument impulse response is assumed
for restoration of smooth spectra sampled at rates much lower
than the 2nm or less sampling used in accurate spectraradiome-
ters. Trials with measured data at 2 nm are better matched with
a Gaussian.

The “spatial” extent A of the instrument impulse
response can be estimated conservatively by a visual
examination of the measured spectra. This step is
unnecessary if one can make test measurements with
a clear mercury lamp in which the continuous back-
ground due to the phosphors is absent. It is noted that
clear mercury lamps are commercially available. Such
an experiment will also yield better estimates of the
impulse response h(\).

In its raw form the nonlinear least squares problem
of step 4 is multidimensional with a large number of lo-
cal minima. However, using the well known solution to
the linear least squares problem, it is readily reduced to
a minimization involving the variance, &, alone. Once
the optimal variance has been determined the optimal
amplitude parameters are immediately known from the
linear least squares solution.

Fig. 1 shows the radiant spectrum of a “standard
daylight” mercury vapor fluorescent lamp measured us-
ing a spectroradiometer with a 2nm sampling interval.
Fig. 2 shows the decomposition of the same illuminant
obtained by the above procedure. For this experiment
A was set to 10nm and the bandwidth for the band lim-
ited extrapolation in step 2 was computed from the fact
that a 10nm sampling rate is sufficient for representing
g(A). For the spectral peak locations {A1,A2... A\g}
the known locations of spectral emission lines of mer-
cury vapor at 404.7nm, 435.8nm and 546.1nm and at
577.8nm[9, pp. 213] 2 were used. A reconstruction of
y(\) formed from the estimated decomposition using
the estimated h(A) is indistinguishable from the origi-
nal y(\) on the scale of the graph.

3. ESTIMATION ACCURACY AND
EFFECT OF NOISE

For investigating the performance of the estimation
scheme in the presence of noise the measurement pro-
cess was simulated using a “standard daylight” mer-
cury vapor fluorescent lamp spectrum given in [11].
The tabulated radiance data was in the form of 10
nm samples of the continuous spectrum emitted by the
phosphors and strengths of the emission lines of Mer-
cury in the visible region. To simulate the measurement
process the continuous part was interpolated to 2 nm
and digitally convolved with a Gaussian to get the mea-
sured data. White Gaussian noise at the desired signal
to noise ratio (SNR) was added to the measured data
and the resulting samples were used in the estimation
scheme. The procedure was repeated for different SNR,
values.

2The line at 577.8nm is actually a doublet at 577.0 and
579.0nm
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Figure 1: Fluorescent Illuminant Spectrum measured
at 2 nm.
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Figure 2: Decomposition of Spectrum in Fig. 1

The band limited extrapolation of steps 1 and 2 per-
forms poorly if the available data is noisy. A restora-
tion/extrapolation scheme using the method of projec-
tions onto convex sets (POCS) [4, 5] was therefore used
instead of the band limited extrapolation in steps 1 and
2. Known constraints on the signal were used to set up
the projections onto convex sets (positivity, band lim-
itedness, noise variance, outliers [6, 13] ).

Due to the incomplete nature of the information
available it is not possible to estimate the decomposi-
tion exactly even in the absence of noise. Noise in the
measured spectrum will further degrade the accuracy
of the decomposition.

Fig. 3 and Fig. 4 show the results of the simulations
at 40dB and 30dB respectively. The plots show the
measurements along with the estimated decomposition
for comparison.

While the estimation error can be measured by the
usual metrics of signal restoration such as mean squared
error (MSE) or maximum deviation, the metrics are not
very meaningful in the present context due to the pres-
ence of the distinct continuous and discrete parts with
errors that are ameliorated in the final color computa-
tion. For instance, if during the band limited extrapo-
lation one overestimates g(\) around a spectral peak
the band limited part, é(A), is higher in the neigh-
borhood of the peak but the corresponding value of
the peak strength is lower. When the decomposition is
used to estimate tristimulus values with reflective sur-
faces having smooth (band limited) reflectance spectra
these errors will act in opposite directions reducing the
total error.

The true indicator of the decomposition accuracy is
the error in color perception. The error in the estimates
leads to erroneous tristimulus values which in turn lead
to errors in perceived color. The MSE in the CIE XYZ
tristimulus space and in the perceptually uniform Lab
space (called the AFE error) are therefore considered for
evaluating the performance of the estimation method.

In terms of the fluorescent illuminant model the cal-
culation of tristimulus values in eqn. (1) can be rewrit-
ten as

t = / TN m A+ 3 ama() rOw)
- k=1
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where {¢(Ag +n AN}, are the estimated samples of
¢(\) (the continuous part of I(\)) and Gy, is the esti-

(4)
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Table 1: MSE in CIE XYZ space for the model and for
direct 2nm computation

MSE (dB)
Model 2nm Comp.
SNR (dB) X Y Z X Y Z
50 -73.58 | -69.11 | -58.76 | -56.12 | -56.93 | -38.72
45 -72.25 | -67.02 | -58.72 | -56.28 | -57.34 | -38.74
40 -70.66 | -64.63 | -58.72 | -56.48 | -57.89 | -38.76
35 -68.10 | -61.29 | -58.75 | -56.75 | -58.66 | -38.78
30 -64.86 | -57.31 | -58.64 | -57.11 | -59.73 | -38.82

Table 2: Average AFE errors for the model and for di-
rect 2nm computation
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Figure 3: Decomposition of Fluorescent Illuminant
Spectrum at SNR of 40dB.
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Figure 4: Decomposition of Fluorescent Illuminant
Spectrum at SNR of 30dB.

Avg. AE error

SNR (dB) 50 45 40 35 30
Model 0.937 | 0.964 | 1.022 | 1.161 | 1.457
2nm Comp. | 3.219 | 3.240 | 3.269 | 3.311 | 3.373

mated strength of the peak at Mg, (k =1,2,...q).

For numerically quantifying the performance of this
estimation scheme tristimulus values were computed by
Eqn. 4 using the true values of the parameters for a
set of 64 reflectances from the Munsell chip set. The
computation of tristimuli was repeated using the esti-
mated parameters in Eqn. 4 and directly with the 2 nm
“measured” data. These were used to obtain the mean
squared errors in CIE XYZ space. The CIE XYZ data
was then converted to Lab and CIE Lab AF errors were
computed for each chip and the average AF error and
maximum AFE error was computed for both cases. The
procedure was repeated for different SNR’s. The mean
squared tristimulus errors are tabulated in Table 1; Ta-
ble 2 and Table 3 give the average and maximum AF
errors respectively. The table indicates that the model
performs extremely well with most of the errors in color
perception being below the visual threshold of 2 dB for
the entire SNR range considered. Its performance is
much better than that of the 2 nm computation using
the measured data directly.

4. CONCLUSIONS

A model for fluorescent spectra based on the physics
of these lamps was presented and scheme for estimat-
ing the model parameters from measured data was de-
veloped. The model yields a parsimonious representa-
tion of the fluorescent illuminant that allows accurate




Table 3: Maximum AFE errors for the model and for
direct 2nm computation

Max. ANE error

SNR (dB) 50 45 40 35 30

Model

1.614 | 1.839 | 2.130 | 2.588 | 3.271

2nm Comp.

6.003 | 6.090 | 6.207 | 6.364 | 6.575

computation of tristimulus values. The proposed esti-
mation scheme exploits the a priori knowledge of sig-
nal structure and bandwidths to estimate the model
parameters. Numerical results in terms of AFE errors
obtained by using the model for tristimulus value com-
putation indicate its value in obtaining accurate color
measurements.
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