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ABSTRACT

In this paper we present a novel method for interpolating im-

ages and we introduce the concept of non-local interpolation.

Unlike other conventional interpolation methods, the estima-

tion of the unknown pixel values is not only based on its local

surrounding neighbourhood, but on the whole image (non-

locally). In particularly, we exploit the repetitive character of

the image. A great advantage of our proposed approach is

that we have more information at our disposal, which leads to

better estimates of the unknown pixel values. Results show

the effectiveness of non-local interpolation and its superiority

at very large magnifications to other interpolation methods.

Index Terms— Interpolation, image resolution

1. INTRODUCTION

In this paper we describe a new approach to image interpola-

tion. Many interpolation methods already have been proposed

in the literature, but all suffer from one or more artefacts.

Linear interpolation methods deal with aliasing (e.g. jagged

edges in the up scaling process), blurring and/or ringing ef-

fects [1]. Non-linear or adaptive interpolation methods in-

corporate a priori knowledge about images. Dependent on

this knowledge, the interpolation methods could be classified

in different categories. The edge-directed based techniques

follow a philosophy that no interpolation across the edges

in the image is allowed or that interpolation has to be per-

formed along the edges. This rule is employed for instance

in the AQua-2 method [4]. The restoration-based techniques

tackle unwanted interpolation artefacts. Examples are meth-

ods based on isophote smoothing, level curve mapping and

mathematical morphology [2, 8]. Some other adaptive tech-

niques exploit the self-similarity property of an image, e.g. it-

erated function systems [5, 9]. Another class of adaptive in-

terpolation methods is the example-based approach, which

maps blocks of the low-resolution image into predefined in-

terpolated blocks [6]. Adaptive methods still suffer from arte-

facts: their results often look segmented, yield important vi-

sual degradation in fine textured areas or random pixels are

created in smooth areas [2].

When we use very big enlargements (i.e. linear magnifi-

cation factors of 8 and more), then all these artefacts become

more visible and hence more annoying.

2. REPETITIVE STRUCTURES

Fractal-based interpolation methods suppose that many things

in nature possess fractalness, i.e. scale invariance [5]. This

means that parts of the image repeat themselves on an ever-

diminishing scale, hence the term self-similarity. This self-

similarity property is exploited for image compression and

interpolation by mapping the similar parts at different scales.

Due to the recursive application of these mappings at the de-

coder stage, the notion of iterated function systems (IFS) is

introduced.

Unlike IFS, we exploit the similarity of small patches in

the same scale, i.e. spatially. In order to avoid confusion,

we will use the term repetitivity. Another class of upscaling

methods which also takes advantage of repetitivity, is called

super resolution (SR) reconstruction. SR is a signal process-

ing technique that obtains a high resolution image from multi-

ple noisy and blurred low resolution images (i.e. from a video

sequence) [7]. It is well known that SR produces superior

results to interpolation methods. Typical SR reconstruction

schemes consist of the following steps:

• Subpixel registration of the resolution images;

• Data fusion and interpolation;

• Restoration (i.e. deblurring and denoising).

It is often assumed that true motion is needed for SR,

however many registration methods do not yield true mo-

tion: their results are optimal to some proposed cost criterion,

which are not necessarily equal to true motion. With this in

mind, we can hypothetically assume that repetitive structures

could serve as multiple noisy observations of the same struc-

ture (after proper registration). Results of our experiments in

§ 4 will confirm that this hypothesis holds for real situations.

The concept of repetitive structures has already succesfully

been used for image denoising [3]. Besides repetitivity in tex-

ture, we can also find this recurrent property in other parts of

the image, some examples are illustrated in figure 1.

Our method is found perfectly suitable to some applica-

tions: text images (multiple repeated characters regardless of
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their font), gigantic satellite images (long roads and a lot of

texture provide a huge amount of training data).

(a) Repetition in different objects.

(b) Repetition along edges.

(c) Repetition in uniform areas.

Fig. 1. Examples of repetitive structures in images.

3. PROPOSED RECONSTRUCTION SCHEME

We propose a simple interpolation method which exploits this

repetitive behaviour. Our scheme is quite straightforward and

consists of three consecutive steps (similar to the SR scheme).

3.1. Matching and registration of repetitive structures

For the sake of simplicity, we define small squared windows

(B with n2 pixels) as basic structure elements. Two criterions

are used in our algorithm to find matching windows across the

whole image, namely the zero-mean normalized cross corre-
lation (CC) and the mean absolute differences (MAD):

ECC =

∑
x∈Ω

(B(m(x)) − B)(Bref (x) − Bref )

√∑
x∈Ω

(B(m(x)) − B)2
∑
x∈Ω

(Bref (x) − Bref )2

(1)

EMAD =
1
n2

∑
x∈Ω

|B(m(x)) − Bref (x)| (2)

Fig. 2. The decimation operator maps a 3M × 3N image to

an M × N image.

where Ω contains all the pixels of the reference window

Bref ; B and Bref are denoted as the mean values of respec-

tively B and Bref . The transformation of the coordinates

is characterized by the mapping function m. To simplify

the registration problem and particularly to save computation

time, we assume that we are only dealing with pure translation

motions of B. The main motive to use these two criterions is

because they are somewhat complementary: CC emphasizes

the similarity of the structural or geometrical content of the

windows, while MAD underlines the similarity of the lumi-

nance (and colour) information. A matched window is found

if the two measures ECC and EMAD satisfy to the respective

thresholds τCC and τMAD , more specifically: ECC > τCC

and EMAD < τMAD . Our implementation uses an exhaus-

tive search in order to find the matching windows, but more

intelligent (pattern-based) search algorithms could reduce the

computation time enormously.

Common ways to achieve subpixel registration in the spa-

tial domain, is to interpolate either the image data or the cor-

relation data. In order to save computation time we only re-

sample the reference window Bref on a higher resolution. In

this way we represent the downsampling operator in the cam-

era model as a simple decimation operator (see figure 2). We

estimate the subpixel shifts using the criterion of equation 2.

After the registration, the pixel values of B are mapped onto

the high resolution (HR) grid. Most existing techniques use

linear methods to upscale Bref . However, these interpola-

tion methods typically suffer from blurring, staircasing and/or

ringing. These artefacts not only degrade the visual qual-

ity but also affect the registration accuracy. That is why we

adopt a fast non-linear restoration-based interpolation based

on level curve mapping [2].

3.2. Data fusion

Starting from the maximum likelihood principle, it can be

shown that minimizing the norm of the residuals is equiva-

lent to median estimation, which is very robust to outliers,

such as noise and errors due to misregistration [7]. For this

reason we adopt the median estimate for each pixel in the HR

grid for which we have at least one observation.
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For the other unknown pixels, we simply initialize them

with the values of the interpolated Bref s: no additional calcu-

lations are needed since these interpolations are already con-

structed for the registration step. As in traditional interpo-

lation, the original pixel values must not change [2], thus we

map these pixel values onto the HR grid. In a nutshell, the HR

grid consists of three classes: the original pixels (OR), the un-

known pixels (UN) and the fused pixels (FU). The last men-

tioned class will provide the extra information which gives us

better interpolation results compared to conventional upscal-

ing techniques.

3.3. Robust denoising

The obtained HR image I(x, 0) after data fusion is still noisy.

Diffusion-based denoising methods using partial differential

equations (PDE) are very popular nowadays: one can sup-

press the noise while retaining important edge information by

imposing some prior knowledge about the image in the reg-

ularization. The following PDE iteratively produces a fam-

ily of diffused images I(x, t) starting from the input image

I(x, 0):

∂I(x, t)
∂t

= ρ′1(I(x, t)) + λρ′2(I(x, t) − I(x, 0)) (3)

where λ is the regularization parameter between the two

terms, respectively called the regularization term and the data

fidelity term. One of the most successful edge-preserving reg-

ularization terms proposed for image denoising is the total

variation (TV):

ρ1(I(x, t)) = |∇I(x, t)| (4)

According to [7], the following data fidelity term is very

robust to outliers:

ρ2(I(x, t) − I(x, 0)) = |I(x, t) − I(x, 0)| (5)

These ρ-functions are very easy to implement and are very

computationally efficient. Other robust ρ-functions could also

be employed. We now adapt the PDE in equation 3 locally to

the several classes of pixels on the HR grid:

• Class OR: since these pixels are known and noise-free,

no regularization term has to be applied. This means

that these pixels depend only on the data fidelity term.

Since the initialization starts with the same pixel value

(see § 3.2), no changes will be made.

• Class UN: these pixels are most likely noise and de-

pend only on the regularization term (λ = 0).

• Class FU: these pixels contain noise and relevant infor-

mation. Equation 3 is applied here with λ proportional

to the number of available observations.

4. RESULTS

In figure 3 we show a part of the original image with a 8×
nearest neighbour interpolation of the region of interest. As

basic structure elements we use 5 × 5 windows and we have

enlarged the image with a linear magnification factor of 8.

For the matching step we have used the following threshold

parameters: τCC = 0.9 and τMAD = 9.0. For the denois-

ing we have applied the PDE within 100 iterations and with

λ = min( α
20 , 1), where α denotes the number of observa-

tions. With these parameters we obtained the following parti-

tion of the different classes: 1.5625% (OR), 30.9091% (FU)

and 67.5284% (UN).

Figure 4 shows our result compared to a linear interpola-

tion (cubic B-splines), an edge-directed method (AQua-2 [4])

and an IFS method (obtained from commercial software [9]).

Significant improvements in visual quality can be noticed in

our method: there is a very good reconstruction of the edges

and our result contains less annoying artefacts.

(a) A part of the original image.

(b) Nearest neighbour of the region of interest of (a).

Fig. 3. Parts of the original image.

695



5. CONCLUSION

In this paper we have presented a novel method for interpolat-

ing images based on the repetitive character of the image. Ex-

ploiting repetitivity brings more information at our disposal,

which leads to better estimates of the unknown pixel values.

Results show the effectiveness of non-local interpolation and

its superiority for very large magnifications to other interpo-

lation methods: edges are reconstructed well and artefacts are

heavily reduced.
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(a) Cubic B-spline.

(b) AQua-2 [4].

(c) IFS [9].

(d) Our proposed method.

Fig. 4. Results of several interpolation methods.
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