
The Under-Appreciated UnfoldJeremy GibbonsSchool of Computing and Math. SciencesOxford Brookes UniversityGipsy Lane, Headington,Oxford OX3 0BP, UK.Email: jgibbons@brookes.ac.uk
Geraint JonesOxford University Computing LabWolfson Building, Parks RoadOxford OX1 3QD, UK.Email: geraint@comlab.ox.ac.uk

AbstractFolds are appreciated by functional programmers. Theirdual, unfolds, are not new, but they are not nearly as wellappreciated. We believe they deserve better. To illustrate,we present (indeed, we calculate) a number of algorithmsfor computing the breadth-�rst traversal of a tree. We spe-cify breadth-�rst traversal in terms of level-order traversal,which we characterize �rst as a fold. The presentation as afold is simple, but it is ine�cient, and removing the ine�-ciency makes it no longer a fold. We calculate a character-ization as an unfold from the characterization as a fold; thisunfold is equally clear, but more e�cient. We also calcu-late a characterization of breadth-�rst traversal directly asan unfold; this turns out to be the `standard' queue-basedalgorithm.Keywords: Program calculation, functional program-ming, fold, unfold, anamorphism, co-induction, traversal,breadth-�rst, level-order.1 IntroductionFolds are appreciated by functional programmers. Thebene�ts of encapsulating common patterns of computationas higher-order operators instead of using recursion directlyare well-known and well understood [14]. The dual notionto folds, unfolds, have been explored by Hagino [10] andMalcolm [16], and popularized at this conference by Meijeret al [18]. Unfolds are certainly not new, but they are notnearly as well appreciated as folds. (For example, they meritjust half a page in [4], and have disappeared altogether in[3]. Co-inductive types warrant a few pages in [23], but apartfrom that there are no other mentions in the fourteen func-tional programming textbooks on our shelves.) We believeunfolds deserve a much higher pro�le.To illustrate this claim, we present (indeed, we calcu-late) a number of algorithms for computing the breadth-�rsttraversal of a tree in a pure functional language. This is athorny problem for functional programmers, in contrast tothe more natural depth-�rst traversal: depth-�rst traversalruns with the grain of the tree, but breadth-�rst traversalruns against the grain. Nevertheless, we can construct aTechnical report CMS-TR-98-05, School of Comput-ing and Mathematical Sciences, Oxford Brookes Uni-versity; revised July 1998. To appear in the Third ACMSIGPLAN International Conference on Functional Pro-gramming, Baltimore, Maryland, September 1998.

simple and elegant characterization of breadth-�rst traversalin terms of level-order traversal, which we characterize as afold. Unfortunately, this characterization is ine�cient, andin order to remove the ine�ciency we must resort to a `mere'recursive de�nition (or to a higher-order fold).In contrast, from the fold characterization of level-ordertraversal we can calculate an unfold characterization. Theunfold characterization is equally clear, but apparently lessobvious, even to experienced functional programmers. (Wehave been talking about this topic to various audiences for�ve years, but have only recently discovered the unfold char-acterization.) Moreover, the unfold characterization is e�-cient, taking linear time. Best of all, it is easier to manip-ulate; in particular, it leads easily to a deforested programwith no unnecessary data structures.Taking a di�erent route, we can also calculate a char-acterization of breadth-�rst traversal directly as an unfold.This turns out to be the `standard' queue-based algorithmwhich, with a little extra work to make the queue operationse�cient, also takes linear time.The remainder of this paper is structured as follows. InSection 2, we briey present our notation. In Section 3,we de�ne breadth-�rst traversal, in terms of level-order tra-versal. In Section 4, we present the characterization of level-order traversal as a fold, and show that it is ine�cient; wethen calculate the e�cient characterization that ceases tobe a (�rst-order) fold. In Section 5, we calculate the char-acterization of level-order traversal as an unfold from thecharacterization as a fold, and show that it is linear. Fin-ally, in Section 6 we calculate as an unfold the standardqueue-based algorithm for breadth-�rst traversal.2 NotationWe will be using Haskell notation [22], but the translationinto nearly any modern functional language is straightfor-ward.2.1 Folds over listsWe will be using two kinds of fold on lists: the normal `foldright',foldr :: (a->b->b) -> b -> [a] -> bfoldr op e [] = efoldr op e (a:x) = a `op` foldr op e x(here, the function op is converted into a binary operator`op` by writing it in backquotes) and a restricted versionfor non-empty lists, determined by

foldr1 op (x++[a]) = foldr op a xThe two are related by the property that, for non-empty x,foldr op e x = foldr1 op xwhen e is a right unit of op.The normal fold enjoys a universal property, essentiallysaying that the de�nition of foldr, treated as an equationin the `unknown' foldr op e, has a unique (strict) solution.In other words, for strict h,h = foldr op e� h [] = e ^ h (a:x) = a `op` h xA number of promotion properties are simple consequencesof the universal property:fold-map promotion: if f is strict andf (a `op` b) = f a `op2` f bthenf . foldr op e = foldr op2 (f e) . map ff . foldr1 op = foldr1 op2 . map ffold-join promotion: ifh = foldr op e . map fwhere op is associative with identity e, thenh (xs ++ ys) = h xs `op` h ysfold-concat promotion: ifh = foldr op e . map fwhere op is associative with identity e, thenh . concat = foldr op e . map h2.2 Unfolds over listsWe also use unfolds [10, 16, 18], a dual to folds. The stand-ard construction of unfolds [16] gives the characterizationunfold :: (b -> Either () (a,b)) -> b -> [a]unfold pfg x = case pfg x ofLeft () -> []Right (a,y) -> a : unfold pfg ybut we will �nd it more convenient to use the equivalentcharacterizationunfold :: (b->Bool) -> (b->a) -> (b->b) -> b -> [a]unfold p f g x| p x = []| otherwise = f x : unfold p f g (g x)Unfolds too enjoy a universal property, saying that theabove de�nition, considered as an equation in the unknownunfold p f g, has a unique solution. In other words,h = unfold p f g� h x = if p x then [] else f x : h (g x)

We work in the setting cpo of continuous functionsbetween pointed complete partial orders, as advocated byMeijer et al [18], instead of the setting set of total func-tions between sets originally used by Hagino [10] and Mal-colm [16], in order better to match the semantics of mostfunctional programming languages. In particular, becauseof the treatment of in�nite data structures in set, the datastructures generated by unfolds are di�erent from the datastructures consumed by folds, so folds and unfolds cannotbe composed; in cpo, the two kinds of data structure arethe same.2.3 TreesOur trees are represented by the datatypedata Tree a = Nd a [Tree a]of rose trees [17]. That is, a tree of type Tree a consists of aroot label of type a and a list of children, each again of typeTree a. We de�ne the two deconstructors root and kids:root :: Tree a -> aroot (Nd a ts) = akids :: Tree a -> [Tree a]kids (Nd a ts) = tsActually, we carry out most calculations on forests, lists oftrees; it turns out simpler that way. We use the type syn-onymtype Forest a = [Tree a]2.4 Folds over treesThe datatypes of trees and forests are mutually recursive,so folds over trees and forests are too. We de�ne the twofolds as follows:foldt :: (a->c->b) -> ([b]->c) -> Tree a -> bfoldt f g (Nd a ts) = f a (foldf f g ts)foldf :: (a->c->b) -> ([b]->c) -> Forest a -> cfoldf f g ts = g (map (foldt f g) ts)For example, the function sumt, which sums a tree of num-bers, is given bysumt :: Tree Int -> Intsumt = foldt (+) sum(where sum sums a list of numbers), and the correspondingfunction sumf on forests bysumf :: Forest Int -> Intsumf = foldf (+) sum3 Breadth-�rst traversalA tree traversal is an operation that, given a tree, computesa list consisting of all the elements of the tree in some or-der. One example of a tree traversal is preorder traversal,in which every parent appears in the traversal before any ofits children, and siblings appear in left-to-right order. Forexample, the preorder traversal of the tree2

k1k2k5 k6 k3 k4k7is the list [1,2,5,6,3,4,7].Preorder traversal, postorder traversal (in which a parentappears after all its children) and inorder traversal (whichonly makes sense on binary trees, and in which a parent ap-pears between its two children) are all examples of depth-�rsttraversals. They are easy to implement in a pure functionallanguage, because they naturally follow the structure of thetree|that is, they can be expressed as folds over trees. Forexample, preorder traversal of a tree is given bypreordert :: Tree a -> [a]preordert = foldt (:) concatIn contrast, breadth-�rst traversal goes against the struc-ture of the tree. The breadth-�rst traversal of a tree con-sists �rst of the root (the only element at depth 1), thenof all the elements at depth 2, and so on. For example, thebreadth-�rst traversal of the tree above is [1,2,3,4,5,6,7].It is not nearly so obvious how to implement breadth-�rsttraversal e�ciently in a pure functional language. In par-ticular, breadth-�rst traversal is not a fold, because the tra-versal of a forest cannot be constructed from the traversalsof the trees in that forest. The standard implementationof breadth-�rst traversal in an imperative language involvesqueues, which are awkward to express functionally becausethey require fast access to both ends of a list. In contrast,depth-�rst traversals are based on stacks, which `come forfree' with recursive programs.It is possible to express the standard queue-based al-gorithm e�ciently in a pure functional language; indeed,we do so in Section 6. However, this algorithm is unsatis-factory in a functional language, for two reasons. For onething, a little e�ort is required to implement queues with(amortized) constant time operations, which is necessary toget a linear-time program. For another, the queue-based al-gorithm really describes a process rather than a value, andso is rather low-level; in a declarative language, we wouldprefer a more declarative `speci�cation' of the problem (evenif we then develop a more operational implementation).We �nd this more declarative characterization ofbreadth-�rst traversal in the notion of level-order traversal[7, 8] of a tree. This gives the elements on each level of thetree, as a list of lists (and so, strictly speaking, this is nota traversal according to our de�nition). For example, thelevel-order traversal of the tree above is the list of lists[[1], [2,3,4], [5,6,7]]Given the level-order traversal, the breadth-�rst traversal iseasy to construct: simply concatenate the levels.4 Traversal as a foldIn this section, we will present a characterization of level-order traversal as a fold over trees and forests. That is, wewill de�ne the two related functionslevelt :: Tree a -> [[a]]levelf :: Forest a -> [[a]]

to compute the level-order traversals of trees and forests,respectively. For example, the level-order traversal of theforest[k1k2k5 k6 k3 k4k7 , k3k4 k5 , k5]
is the list of lists[[1,3,5], [2,3,4,4,5], [5,6,7]]Given the level-order traversal of a tree or forest, thebreadth-�rst traversal is formed by concatenating the levels:bftt :: Tree a -> [a]bftt = concat . leveltbftf :: Forest a -> [a]bftf = concat . levelfNow, the level-order traversal of a forest is found by `glu-ing together' the level-order traversals of the trees in thatforest. Two lists of lists can be `glued together' in the ap-propriate way by the function lzc (standing for `long zipwith concatenate'). `Long zip with' is related to the stand-ard function zipWith, but it returns a list as long as itslonger argument, whereas zipWith returns a list as long asits shorter argument. Formally, we havelzc :: [[a]] -> [[a]] -> [[a]]lzc = lzw (++)wherelzw :: (a->a->a) -> [a] -> [a] -> [a]lzw op xs ys| null xs = ys| null ys = xs| otherwise = (head xs `op` head ys) :lzw op (tail xs) (tail ys)(Note that lzw op is associative when op is.) Therefore wede�ne the function glue, to glue together the traversals ofthe trees in a forest, as follows:glue :: [[[a]]] -> [[a]]glue = foldr lzc []The level-order traversal of a tree consists of the root ofthe tree `pushed' on to the traversal of the forest that formsits children, so we de�nepush :: a -> [[a]] -> [[a]]push a xss = [a] : xssNow we can de�ne the two functions levelt and levelf,returning the level-order traversal of a tree and a forest re-spectively, bylevelt :: Tree a -> [[a]]levelt = foldt push gluelevelf :: Forest a -> [[a]]levelf = foldf push glue3

(In passing, we observe that lzw' f = uncurry (lzw f)is an unfold:lzw' :: (a->a->a) -> ([a],[a]) -> [a]lzw' op = unfold p f g wherep (xs,ys) = null xs && null ysf (xs,ys)| null ys = head xs| null xs = head ys| otherwise = head xs `op` head ysg (xs,ys) = (tail' xs, tail' ys)tail' zs| null zs = []| otherwise = tail zsHowever, this uncurried version is inconvenient to use, be-cause the standard de�nition of foldr requires a curried op-erator. Moreover, this version is less e�cient than the directrecursion, because it takes time proportional to the lengthof the result, whereas the direct recursion only traverses theshorter argument.)4.1 Traversal as a fold in linear timeThis characterization of level-order traversal (and hence ofbreadth-�rst traversal) does not take linear time, even usingthe e�cient long zip lzw. Consider for example the forestts = [Nd 1 [t,u], Nd 2 [v,w]]where t, u, v and w are four trees. Unfolding the de�nitions,we havelevelf ts= lzc ([1] : lzc (levelt t)(lzc (levelt u) []))(lzc ([2] : lzc (levelt v)(lzc (levelt w) [])))[]Note that levelt t and levelt u must be traversed onceeach to compute levelf [t,u], and then traversed againto compute levelf ts. In a complete binary tree of depthd, the level-order traversals of the deepest trees will be re-traversed d-1 times; the whole algorithm takes time propor-tional to the size of the forest times its depth.The standard technique of introducing an accumulatingparameter [1] can be used to remove this ine�ciency. Weintroduce two auxilliary functions levelt' and levelf',de�ned bylevelt' :: Tree a -> [[a]] -> [[a]]levelt' t xss = lzc (levelt t) xsslevelf' :: Forest a -> [[a]] -> [[a]]levelf' ts xss = lzc (levelf ts) xssThis is a generalization, becauselevelt t = levelt' t []levelf ts = levelf' ts []Now, for levelf' we havelevelf' [] xss= f levelf' glzc (levelf []) xss= f levelf, lzc gxss

and levelf' (t:ts) xss= f levelf' glzc (levelf (t:ts)) xss= f levelf glzc (lzc (levelt t) (levelf ts)) xss= f lzc is associative glzc (levelt t) (lzc (levelf ts) xss)= f levelt', levelf' glevelt' t (levelf' ts xss)For levelt', we have to consider separately the two caseswhether or not xss is empty. When xss is empty, we havelevelt' (Nd a ts) xss= f levelt' glzc (levelt (Nd a ts)) xss= f lzc; xss is empty glevelt (Nd a ts)= f levelt g[a] : levelf ts= f levelf' g[a] : levelf' ts []and when xss is non-empty, we havelevelt' (Nd a ts) xss= f levelt' glzc (levelt (Nd a ts)) xss= f levelt glzc ([a]:levelf ts) xss= f lzc; xss is non-empty g(a:head xss) : lzc (levelf ts) (tail xss)= f levelf' g(a:head xss) : levelf' ts (tail xss)Hence we can de�nelevelt' :: Tree a -> [[a]] -> [[a]]levelt' (Nd a ts) xss = (a:ys) : levelf' ts ysswhere(ys,yss) | null xss = ([],[])| otherwise = (head xss,tail xss)levelf' :: Forest a -> [[a]] -> [[a]]levelf' ts xss = foldr levelt' xss tswhich takes linear time. (The e�cient long zip lzw is neces-sary here; with the unfold version lzw' the program is stillquadratic in the worst case.)Unfortunately, this e�cient characterization of level-order traversal is no longer a fold: the traversal of a forest isnot constructed from the independent traversals of the treesin that forest, but rather, the trees must be considered fromright to left, the traversal of one being used as a startingpoint for constructing the `traversal' of the next. This issad, because we have to resort to expressing the recursiondirectly, losing the bene�ts of higher-order operators [14].Apart from being more di�cult to read, this direct recur-sion is no longer suitable for parallel evaluation, because theaccumulating parameter is `single-threaded' throughout thecomputation.It is possible to regain a characterization as a fold, buttaking linear time, by abstracting from the accumulatingparameter and constructing instead a function between lists4

of lists, in a continuation-based [26] or higher-order fold [6]style:levelt'' :: Tree a -> [[a]] -> [[a]]levelt'' = foldt f gwhere f a hss = (a:) : hssg = foldr (lzw (.)) []levelf'' :: Forest a -> [[a]] -> [[a]]levelf'' = foldf f gbut this is even more complicated, and moreover it requireshigher-order language features, and so cannot be used inmore traditional languages.5 Traversal as an unfoldIn this section, we calculate a characterization of levelf asan unfold. We have to �nd p, f and g such thatlevelf = unfold p f gSince a non-empty forest has a non-empty traversal,levelf ts = [] � null tswhich determines p; it remains only to consider non-emptyforests.head . levelf= f levelf ghead . foldr lzc [] . map levelt= f foldr lzc [] = foldr1 lzcon non-empty lists ghead . foldr1 lzc . map levelt= f fold-map promotion: for non-empty xs, ys,head (lzw f xs ys) = f (head xs) (head ys) gfoldr1 (++) . map head . map levelt= f head . levelt = wrap . root,where wrap a = [a] gfoldr1 (++) . map wrap . map root= f foldr1 (++) . map wrap = idon non-empty lists gmap rootand tail . levelf= f levelf gtail . foldr lzc [] . map levelt= f foldr lzc [] = foldr1 lzcon non-empty lists gtail . foldr1 lzc . map levelt= f fold-map promotion: for non-empty xs, ys,tail (lzw f xs ys) =lzw f (tail xs) (tail ys) gfoldr1 lzc . map tail . map levelt= f tail . levelt = levelf . kids gfoldr1 lzc . map levelf . map kids= f foldr op e = foldr1 op on non-empty lists gfoldr lzc [] . map levelf . map kids= f fold-concat promotion glevelf . concat . map kidsTherefore, levelf is an unfold as well as a fold:levelf= unfold null (map root) (concat . map kids)

We can write levelt using levelf:levelt t = levelf [t]which gives a characterization of levelt using an unfold too.This gives us another linear-time algorithm for level-order traversal; this algorithm is no more complicated (in-deed, it is arguably simpler) than the characterization asa fold, but it is more e�cient. Moreover, we will see sub-sequently that it is also amenable to manipulation; to con-clude this section, we will use deforestation [25] to eliminatethe intermediate list of lists constructed during the breadth-�rst traversal.5.1 DeforestationAs hinted at above, one of the bene�ts that accrues fromexpressing levelf as an unfold is that bftf is then a hy-lomorphism, that is, an unfold followed by a fold. Hylo-morphisms proceed in two stages, the �rst producing a datastructure and the second consuming it. With lazy evalu-ation, the intermediate complex data structure need neverexist as a whole|the producer and consumer phases op-erate concurrently|but it is still advantageous to fuse thetwo phases into one, to reduce the amount of heap spaceturned over. This transformation is known as deforestation[25], and is now a standard technique; indeed, it can evenbe performed mechanically [13, 21].To be speci�c, we will use deforestation on functions ofthe formh = foldr op e . unfold p f gConsider �rst the case that p holds of the argument:h x= f h gfoldr op e (unfold p f g x)= f assumption: p x holds; unfold gfoldr op e []= f foldr geWhen p x does not hold, we haveh x= f h gfoldr op e (unfold p f g x)= f assumption: p x does not hold; unfold gfoldr op e (f x : unfold p f g (g x))= f foldr gf x `op` foldr op e (unfold p f g (g x))= f h gf x `op` h (g x)Thereforeh x| p x = e| otherwise = f x `op` h (g x)Applied to breadth-�rst traversal, deforestation gives theprogrambftf ts| null ts = []| otherwise = map root ts ++bftf (concat (map kids ts))5

(In fact, the version generated automatically by HYLO [21]also deforests away the ++ and the concat . map kids.)This program was shown to us by Bernhard M�oller [19]. Itis certainly elegant, but it is rather low-level; in particular,it uses recursion directly rather than encapsulating it witha higher-order operator. It is gratifying to �nd that thisprogram arises as a compiler optimization from our moreabstract characterization.6 Traversal using a queueIt turns out that the standard queue-based traversal al-gorithm arises from expressing bftf directly as an unfold,starting from the characterization of level-order traversal asa fold. The calculation depends crucially on the followingproperty of lzw: if op is associative, thenfoldr op e (lzw op (x:xs) ys)= x `op` foldr op e (lzw op ys xs)For example,concat (lzc [xs1,xs2] [ys1,ys2,ys3])= f lzc gconcat [xs1 ++ ys1, xs2 ++ ys2, ys3]= f concat g(xs1 ++ ys1) ++ (xs2 ++ ys2) ++ ys3= f associativity gxs1 ++ (ys1 ++ xs2) ++ ys2 ++ ys3= f concat, lzc gxs1 ++ concat (lzc [ys1,ys2,ys3] [xs2])The proof of this property, by induction on xs, is straight-forward and is omitted.Returning to traversal, clearly we havebftf ts = [] � null tsFor a non-null forest, we havebftf (Nd a us : ts)= f bftf, levelf gconcat (foldr lzc [](map levelt (Nd a us : ts)))= f map, foldr gconcat (lzc (levelt (Nd a us))(foldr lzc [] (map levelt ts)))= f levelf gconcat (lzc (levelt (Nd a us)) (levelf ts))= f levelt gconcat (lzc ([a] : levelf us) (levelf ts))= f crucial property g[a] ++ concat (lzc (levelf ts) (levelf us))= f fold-join promotion: levelf (ts ++ us) =lzc (levelf ts) (levelf us) g[a] ++ concat (levelf (ts ++ us))= f ++; bftf ga : bftf (ts ++ us)Therefore, we havebftf = unfold null f gwhere f (Nd a us : ts) = ag (Nd a us : ts) = ts ++ us|the standard queue-based traversal algorithm. Again, itis rather low-level, and it is gratifying to be able to deriveit from a more abstract speci�cation.

Of course, this program is not linear-time: appendingthe children us of the �rst tree to the end of the queue tstakes time proportional to length ts, which grows linearlyin the size of the tree, so the program is quadratic. To makeit take linear time, we could use a clever data structure thatallows queue operations in amortized constant time [12, 20],but here the simpler technique [5, 9, 11] of using two lists,one reversed, su�ces. That is, the idea is to introduce afunction bftf' such thatbftf' (ts,vs) = bftf (ts ++ reverse vs)where reverse reverses a list; thenbftf ts = bftf' (ts,[])and straightforward calculations lead to the characterizationbftf' :: (Forest a,Forest a) -> [a]bftf' ([],[]) = []bftf' ([],vs) = bftf' (reverse vs,[])bftf' (Nd a us : ts,vs)= a : bftf' (ts,reverse us ++ vs)of bftf'. In fact, bftf' is an unfold, too:bftf' = unfold p f gwherep (ts,vs) = null ts && null vsf ([],vs) = f (reverse vs,[])f (t:ts, vs) = root tg ([],vs) = g (reverse vs,[])g (t:ts, vs) = (ts, reverse (kids t) ++ vs)Expressing bftf' in this way entails two reversals of thesecond list, one for f and one for g, when the �rst list runsout. This is an artifact of our choice of characterization ofunfold; the standard characterization would entail just onereversal.AcknowledgementsThis paper arose from a discussion late in 1992 on theUsenet newsgroup comp.lang.functional, on how to per-form breadth-�rst traversal in a functional language. Wewrote an earlier paper [15] giving derivations of our solu-tions, and also giving a rather complicated derivation ofan algorithm for breadth-�rst labelling, a kind of inverse ofbreadth-�rst traversal originally posed to us by Joe Fasel:given is a tree t and a list x, and the problem is to con-struct a tree of the same shape as t but with breadth-�rsttraversal x.In response to that earlier paper, Bernhard M�oller [19]showed us the elegant traversal algorithm presented here inSection 5.1. This led to the much simpler derivations presen-ted here, and indirectly to our observation that unfolds aregreatly under-appreciated, even in the functional program-ming community (not least by ourselves at the time).We are grateful to the Problem Solving Club at OxfordUniversity Computing Laboratory, to Graham Hutton andColin Runciman, and to attendees at the IFIP WorkingGroup 2.1 meetings in Winnipeg and in Oxford, for theirhelp in polishing the derivations presented here; also, wethank Zhenjiang Hu and Yoshiyuki Onoue for their experi-ments with the HYLO system.6

References[1] Richard S. Bird. The promotion and accumulationstrategies in transformational programming. ACMTransactions on Programming Languages and Systems,6(4):487{504, October 1984. See also [2].[2] Richard S. Bird. Addendum to \The promotion andaccumulation strategies in transformational program-ming". ACM Transactions on Programming Languagesand Systems, 7(3):490{492, July 1985.[3] Richard S. Bird. Introduction to Functional Program-ming Using Haskell. Prentice-Hall, 1998.[4] Richard S. Bird and Philip L. Wadler. An Introductionto Functional Programming. Prentice-Hall, 1988.[5] F. Warren Burton. An e�cient functional implement-ation of FIFO queues. Information Processing Letters,14(5):205{206, July 1982.[6] Leonidas Fegaras and Tim Sheard. Revisiting cata-morphisms over datatypes with embedded functions.In 23rd ACM SIGPLAN Symposium on Principles ofProgramming Languages, pages 284{294, St PetersburgBeach, Florida, 1996.[7] Jeremy Gibbons. Algebras for Tree Algorithms. D. Phil.thesis, Programming Research Group, Oxford Uni-versity, 1991. Available as Technical Monograph PRG-94.[8] Jeremy Gibbons. Deriving tidy drawings of trees.Journal of Functional Programming, 6(3):535{562,1996. Earlier version appears as Technical ReportNo. 82, Department of Computer Science, Universityof Auckland.[9] David Gries. The Science of Programming. Textsand Monographs in Computer Science. Springer-Verlag,1981.[10] Tatsuya Hagino. A typed lambda calculus with categor-ical type constructors. In D. H. Pitt, A. Poign�e, andD. E. Rydeheard, editors, LNCS 283: Category Theoryand Computer Science, pages 140{157. Springer-Verlag,September 1987.[11] Robert Hood and Robert Melville. Real-time queue op-erations in pure Lisp. Information Processing Letters,13(2):50{53, 1981.[12] Rob Hoogerwoord. A symmetric set of e�cientlist operations. Journal of Functional Programming,2(4):505{513, 1992.[13] Zhenjiang Hu, Hideya Iwasaki, and Masato Takei-chi. Deriving structural hylomorphisms from recursivede�nitions. In International Conference on FunctionalProgramming. ACM/SIGPLAN, 1996.[14] John Hughes. Why functional programming matters.Computer Journal, 32(2):98{107, April 1989. Also in[24].

[15] Geraint Jones and Jeremy Gibbons. Linear-timebreadth-�rst tree algorithms: An exercise in the arith-metic of folds and zips. Computer Science ReportNo. 71, Dept of Computer Science, University of Auck-land, May 1993. Also IFIP Working Group 2.1 workingpaper 705 WIN-2.[16] Grant Malcolm. Data structures and program trans-formation. Science of Computer Programming, 14:255{279, 1990.[17] Lambert Meertens. First steps towards the theory ofrose trees. CWI, Amsterdam; IFIP Working Group 2.1working paper 592 ROM-25, 1988.[18] Erik Meijer, Maarten Fokkinga, and Ross Pater-son. Functional programming with bananas, lenses,envelopes and barbed wire. In John Hughes, ed-itor, LNCS 523: Functional Programming Languagesand Computer Architecture, pages 124{144. Springer-Verlag, 1991.[19] Bernhard M�oller. Personal communication, May 1993.[20] Chris Okasaki. Simple and e�cient purely functionalqueues and deques. Journal of Functional Program-ming, 5(4):583{592, 1995.[21] Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, andMasato Takeichi. A calculational fusion system HYLO.In Richard Bird and Lambert Meertens, editors, Al-gorithmic Languages and Calculi, pages 76{106. Chap-man and Hall, 1997.[22] John Peterson, Kevin Hammond, Lennart Augustsson,Brian Boutel, Warren Burton, Joseph Fasel, Andrew D.Gordon, John Hughes, Paul Hudak, Thomas Johns-son, Mark Jones, Erik Meijer, Simon Peyton Jones,Alastair Reid, and Philip Wadler. The Haskell 1.4 re-port. http://www.haskell.org/report/, April 1997.[23] Simon Thompson. Type Theory and Functional Pro-gramming. Addison-Wesley, 1991.[24] David A. Turner, editor. Research Topics in FunctionalProgramming. University of Texas at Austin, Addison-Wesley, 1990.[25] Philip Wadler. Deforestation: Transforming programsto eliminate trees. Theoretical Computer Science,73:231{248, 1990.[26] Mitchell Wand. Continuation-based program trans-formation strategies. Journal of the ACM, 27(1):164{180, January 1980.

7

