
Web Services Enterprise Security Architecture:
A Case Study

Carlos Gutiérrez
STL

Xaudaró, 15
28034, Madrid. (SPAIN)

34 913 48 92 61

Carlos.Gutierrez@stl.es

Eduardo Fernández-Medina
Alarcos Research Group,

Universidad de Castilla-La Mancha
Paseo de la Universidad 4

13071, Ciudad Real. (SPAIN)
34 926 29 53 00

Eduardo.FdezMedina@uclm.es

Mario Piattini
Alarcos Research Group,

Universidad de Castilla-La Mancha
Paseo de la Universidad 4

13071, Ciudad Real. (SPAIN)
34 926 29 53 00

Mario.Piattini@uclm.es

ABSTRACT
Web Services (WS hereafter) Security is a crucial aspect for
technologies based on this paradigm to be completely adopted by
the industry. As a consequence, a lot of initiatives have arisen
during the last years setting as their main purpose the
standardization of the security factors related to this paradigm. In
fact, over the past years, the most important consortiums of
Internet, like IETF, W3C or OASIS, are producing a huge number
of WS-based security standards. Despite of this growing, there’s
not exist yet a process that guides developers in the critical task of
integrating security within all the stages of the development’s life
cycle of WS-based software. Such a process should facilitate
developers in the activities of web service-specific security
requirements specification, web services-based security
architecture design and web services security standards selection,
integration and deployment. In this article we briefly present the
PWSSec (Process for Web Services Security) process that is
composed of three stages, WSSecReq (Web Services Security
Requirements), WSSecArch (Web Services Security Architecture)
and WSSecTech (Web Services Security Technologies) that
accomplishes the mentioned activities, respectively. We also
provide a thorough explanation of the WSSecArch (Web Services
Security Stage) stage intended to design the web services-based
security architecture. In addition, a real case study where this
stage in being applied is also included.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications -
Elicitation methods (e.g., rapid prototyping, interviews, JAD),
Software Architectures – Domain-specific architectures.

General Terms: Security.

Keywords
Security, web services, software development process, software
architecture.

1. INTRODUCTION
Web Services (WS hereafter) technologies have become the ‘de
facto’ solution for Enterprise Application Integration since it
enables complex business workflow integration scenarios and
provides the so-demanded and so-called hyper-connectivity inter-
and intra-enterprises [21]. IDC estimates that $2.3 billion was
spent worldwide on total WS software in 2004, more than double
the amount from the previous year. IDC expects spending to
continue to increase dramatically over the next 5 years, reaching
approximately $14.9 billion by 2009 [14]. Due to this fact, an
enormous quantity of WS-based standards is being produced. This
diversity, also found in the context of WS security [11] has made
us to consider its application, from a global perspective, as a very
complex and hard process to understand with a very difficult
learning curve.
At present, there is still a lack of a global approach that offers a
methodical development for constructing security architectures for
WS-based systems. Thus, the main objective of this paper is to
present the process PWSSec (Process for Web Services Security)
[12]. PWSSec has been created to facilitate and orientate the
development of security for WS-based systems in a way that in
each one of the traditional stages for the development of this sort
of systems [6], a complementary stage comprising security can be
integrated. Therefore, this process can be used once the functional
architecture of the system has been built or during the stages used
to elaborate this architecture. In both cases, the result will be a
WS-based security architecture formed by a set of coordinated
security mechanisms that use the WS security standards to fulfil
the WS-based system security requirements.
The main contribution of this paper is the presentation and
application of the security reference architecture specified in the
WSSecArch stage. A preliminary version of the WSSecArch stage
was presented in [13]. In addition, a real case study that
demonstrates how the WSSecArch stage of the PWSSec process
can be applied in order to provide ‘quality of protection’ to a
request/reply interaction between a WS consumer agent and a WS
provider agent is developed. The allocation of the security
requirements into a security web services-based architecture is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SWS’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-234-8/05/0011...$5.00

10

explained and the necessary security policies to be defined are
stated. In addition the web services-based security reference
architecture will be developed explaining how its main elements
interact in order to address both functional and security
requirements.
The case study presented in this article is a real development that
is being carried out between three bank organizations and a state-
owned company dedicated to sport and lottery gambling (hereafter
SportGamblingOrg). When a participant wins a prize higher than
600 euros, he has to go to one of the predetermined bank
organizations, identify himself and request the payment of his
prize. The branch of the bank organization where the participant
goes to get his prize has to connect with a Legacy Backend
system, managed by the SportGamblingOrg organization, by
means of a web service consumer agent. This web service
consumer agent carries out a request/reply interaction with a web
service provider agent located at the SportGamblingOrg
organization. The SportGamblingOrg’s web service interacts with
a Central Legacy Backend system by offering three main
operations: prize’s payment request, prize’s payment state request
and bank organization’s prize’s payment report request. The
Central Legacy Backend system is the ultimate responsible for
deciding whether certain lottery ticket has a prize or not. The bank
organization’s branch can pay the prize to the participant if, it has
previously obtained a prize’s payment’s confirmation from the
Central Legacy Backend system.
When the Central Legacy Backend system verifies that the lottery
ticket has a prize assigned that has not been paid yet, it sends a
confirmation response to the SportGamblingOrg’s web service
provider agent that, in turn, sends the response to the bank
organization‘s web services consumer agent.
Once the Central Legacy Backend system replies with a payment
confirmation it changes the state of the lottery ticket to ‘payed’
state. When the bank organization’s branch receives the
confirmation stating that the lottery ticket given by the participant
has a prize, it can proceed to carry out the real payment on behalf
of the participant. Figure 1 shows the use cases that the
aforementioned system should implement.

In section 2, a brief introduction to the PWSSec process is
presented; in section 3, the security requirements elicited for the
case study are listed; in section 4, the WSSecArch is presented in
a detailed fashion and the case study is developed; in section 5,
conclusions and future work are indicated.

2. PWSSec overview
In this section we provide an overall view of the PWSSec process,
including its main objectives, basic principles and the stages into
which it is divided.
In general terms, the main characteristics of this process are:

− Iterative and incremental. The model chosen for the
PWSSec process is iterative and incremental [4, 17, 18],
thereby facilitating the gradual integration of WS-based
security.

− It facilitates the traceability and re-usability of the
process as well as the interoperability and re-usability of
the product. Both principles are derived from the
practical nature it has been felt necessary to confer on
the process. Traceability means the capacity for tracing
the properties of the system along with the different
levels of abstraction, offering controlled support for
modifying and extending the system [4]. Process re-
usability will allow its application in different domains,
within the context of WS-based systems, while product
re-usability will guarantee us the fastest possible
development cycles based on proven solutions. The
interoperability of the product consists in identifying the
responsibility in terms of logical security services.

It includes concepts and techniques developed within the scope of
Security Requirement Engineering and Risk Management and
Analysis [1, 9, 10, 19, 30].
Figure 2 illustrates the stages into which the PWSSec is
structured.

Each of the stages defined in PWSSec describes its inputs,
outputs, activities, actors and, in some cases, there are guides,
tools and techniques which complement, improve and facilitate
the set of activities developed within these stages. Following, a
brief description of these stages will be presented (more details
could be found in [12]):
 - WSSecReq (Web Services Security Requirements): The main
purpose of this stage is to produce a
specification (or a part of it) of the security requirements of the
WS-based “to-be-constructed” system. Its input is composed by a

Figure 2. Stages and products in the PWSSec
development process.

Prize's Payment State Request

(from Use Case View)

Prize's Payment Request

(from Use Case View)

Legacy Central
Backend

(from Use Case View)

Bank System
Requester Agent
(from Use Case View)

Prize's Payment Report Request

(from Use Case View)

Figure 1. Use case view of the case study.

11

specification of the scope that we want to comprise during the
current iteration (e.g.: if we have a definition of the Use Cases
available, we can select those that we want to cover and use them
as an input for the iteration), the business and security goals
defined for the system as well as the part of the organizational
security policy that we estimate that may impact on the system
design. The output is basically formed by: i) A threat attack tree
[25] associated with the WS business and application pattern [6]
identified within the analyzed functionality; ii) Every built attack
tree’s leaf will show a threat [33] that can refined by a set of

attack scenarios, defined as misuse cases according to [2, 26],
organized into attack profiles [20], and represented according to
the Quality if Service UML profile [24]; ii) every misuse case
must have related a set of security use cases, according to Donald
G. Firesmith [8], that state how the system should respond to the
associated misuse case; iii) A formal specification of the security
requirements for the scope of the system based on SIREN [29].
These requirements will have been derived after instantiating the
WS security requirements templates associated with every security
use case. This stage is supported by two repositories: i) WS

Table 1. Security Requirements related to message authentication, integrity, confidentiality and authorization.

Id 001013
Quality Factor Security
Quality Subfactor Data Origin

Authentication
Security Use Case SUC-00201
Priority HIGH
Criticality HIGH
Viability OK
Risk HIGH
Source SportGambling
Includes 1019
Excludes -

The WS provider agent WS-PrizePaymentTeller shall verify the authenticity of the
request message(s) sent by the WS consumer agent WS-BankOrg-XXX at both,
HTTP transport and SOAP message-level with the aim of avoiding sophisticated

attacks during the execution of use cases ‘Superior Prize Payment Request’,
‘Superior Prize Payment Status Request’, ‘Superior Prize Payment Summary Report

Request’ in the 99.99% of the use cases’ instantiation.

Id 001014
Quality Factor Security
Quality Subfactor Authorization
Security Use Case SUC-00203
Priority HIGH
Criticality HIGH
Viability OK
Risk HIGH
Source SportGambling
Includes -
Excludes -

The WS provider agent WS-PrizePaymentTeller shall require WS consumer agent
WS-BankOrg-XXX to posses the necessary credentials, being pre-assigned by

SportGambling organization, to be authorized to execute use cases ‘Superior Prize
Payment Request’, ‘Superior Prize Payment Status Request’, ‘Superior Prize
Payment Summary Report Request’ a minimum of 99.99% of the use cases’

instantiations.

Id 001018
Quality Factor Security
Quality Subfactor Communications

Confidentiality
Security Use Case SUC-00204
Priority HIGH
Criticality HIGH
Viability OK
Risk HIGH
Source SportGambling
Includes -
Excludes -

The WS consumer agent WS- BankOrg-XXX shall protect requests, at both HTTP
transport-level and SOAP message-level, transmitted so that the winner personal

info would be only visible to the WS provider agent WS-PrizePaymentTeller
resisting sophisticated attacks during the execution of use case ‘Superior Prize

Payment Request’ in 99.99% of the use case’s instantiation.

Id 001019
Quality Factor Security
Quality Subfactor Communications

Integrity
Security Use Case SUC-00206
Priority HIGH
Criticality HIGH
Viability OK
Risk HIGH
Source SportGambling
Includes 001013
 Excludes -

The WS consumer agent BankOrg-XXX shall protect the requests it transmits, at
both transport- and message-level, from possible modifications, deletions and
insertions over its payload due to sophisticated attacks on integrity during the
execution of the use cases ‘Superior Prize Payment Request’, ‘Superior Prize

Payment Status Request’, ‘Superior Prize Payment Summary Report Request’ a
minimum of 99.99% of the use cases’ instantiations.

12

Security E&A Resources, that contains all the artefacts mentioned
above but the security requirements specification; ii) WS Security
Requirements Record that contains a set of generic security
requirements that can be applied to WS-based systems within
diverse domains [29].

- WSSecArch (Web Services Security Architecture): This stage
has as its main objective to allocate and integrate the security
requirements specified in the WSSecReq stage by identifiying the
appropriate security WS architectural patterns and the security
services derived from them. The input of this stage is composed
of: i) business goals of the current iteration; ii) organizational
security goals and policies taken into account during the current
iteration; iii) the set of attack and security scenarios developed in
WSSecReq; and iv) the set of security requirements defined in the
specifications SyRS (System Requirements Specification), SRS
(Software Requirements Specification), SyTS (System Tests
Specification), STS (Software Tests Specification), IRS (Interfaz
Requirements Specification) developed in WSSecReq stage. The
output is a complete specification of the developed security
architecture, called Software Security Architecture Specification
(SASSec), indicating: i) how the functional requirements used as
input to the stage are integrated into the specifications mentioned
above; ii) what security requirements are achieved and how are
the allocated in the architecture [27]; and iii) what are the security
WS that need to be introduced as security mechanisms.

- WSSecTech (Web Services Security Technologies): The main
purpose of this stage is to define a set of standards that will
implement the Abstract Security Services identified in the
previous stage. Its principal input will be the SASSec elaborated
then. Output will be a description of the set of standards identified
for each Abstract Security Service together with the reasoning
framework that made us select it and a security architecture
design. The activities carried out in this stage are the following: i)
WS-based Security Standards Identification; and ii) Deployment
Security Policies Definition.

3. BACKGROUND
In order to show how the WSSecArch stage has been applied to
our case study, we firstly needed to apply the WSSecReq stage.
As a result of the application (as explained in [12]) of this stage to
the case study we obtained a set of quality-of-protection and
authorization security requirements presented in Table 1.
This set of security requirements, jointly with the set of
functional, misuse and security use cases, form the main input for
the WSSecArch stage

4. WSSecArch
A preliminary vision of the WSSecArch was presented in [13]. In
this paper we will present a more detailed view of this stage and,
in particular, the application of the security reference architecture
to the aforementioned case study.
In Figure 3, the steps which the WSSecArch is divided into are
presented. In this paper we will focus on the Security Pattern

Identification, Security Policy Specification and the Security
Architecture Design activities.
The WS-based security reference architecture has as its main
objective to guide system designers in the task of allocating the
security requirements into the security architecture and to provide
an organizational and administrative basis on which functional
WS, security WS and security policies can be developed,
deployed and reused within the enterprise.
A description of the main elements that make up the WS-based
security reference architecture can be found in [13]. The central
element of this reference architecture is the Web Services Security
Kernel (WSSecKern). The set of functional WS (e.g.: WS-
PrizePaymentTeller) deployed within an enterprise reside in
Security Zones. Every Security Zone has one or more
WSSecKern. A WSSecKern is responsible for managing a set of
WS-based security services that, in turn, implement a set of WS-
based security standards. One of the WSSecKern deployed within
a Security Zone will act as the master for that Security Zone. The
Master WSSecKern of a Security Zone intercepts all
incoming/outgoing messages directed to/from the functional WS
located within the Security Zone it belongs to. In addition, the
Master WSSecKern enforces the suitable security policies to all
incoming/outgoing messages. The functional WS are located in
Security Zones. The criteria of allocating functional WS into one
Security Zone or another depends on the enterprise and project’s
context. For instance, the enterprise where the case study is being
developed distinguishes one Security Zone: a Critical Security
Zone, where all the WS provider agents that need to interact with
the Central Legacy Backend system for fulfilling their tasks are
deployed. Every Security Zone has assigned a Security Zone
Administrator responsible for the monitoring and administration
of the security and functional WS deployed within that zone.

Figure 3. Tasks defined within the WSSecArch stage.

13

Each WSSecKern is responsible for managing one or more
security WS. Every security WS addresses a type of security
requirement by means of one or more mechanisms (e.g.:
authorization based on RBAC or ACL’s or Integrity based on
either symmetric cryptography and Message Authentication Codes
or asymmetric cryptography and digital signatures), standardized
by one or more WS-based security standards.

4.1 Security Pattern Identification
The mechanisms defined in the security architectural patterns
could be abstracted from one or more standards or industry
adopted ‘de facto’ solutions so that a reference security
architecture with all its variants (specific solutions which the
security pattern was abstracted from) can be described for certain
security subfactors (e.g.: E. B. Fernandez [7] presents two WS-
based security patterns that abstract XML-based firewall and
assertion management solutions).

We’ve defined the QoP Security Pattern, abstracted from the
mechanisms defined in the WS-Security specification [22], which
address ‘QoP’ security requirements. That is, message
confidentiality, message integrity and message authentication.
This ‘QoP’ WS defines an interface for protecting and verifying
the protection of SOAP messages. Figure 4 shows a fragment of
the messages and port type definition of this security service. The
WS-Security standard is the ‘de facto’ WS security standard that
implements this security service.

In our case study we applied the WS QoP (Quality of Protection)
architectural pattern in order to address security requirements
001013, 001018 and 001019. That is, message authentication,
integrity and confidentiality security requirements.

The WS QoP architectural pattern defines a security WS capable
of protecting, and verifying the protection of, SOAP
outbound/inbound messages, respectively. It defines a security
policy template that should define the type of security requirement

its instance covers (message authentication & integrity,
confidentiality), the specific security mechanisms to be used and
the WS specification that it deploys.
As a result of this activity, the set of security WS required and
derived from WS-based security architectural patterns should
have been identified. Following, the security policies related to
both, functional and security WS shall be stated.

…

<wsdl:message name=“QoPProtectionRequest”>
 <wsdl:part name=“SOAPMsg”
 element=“soapEnv:Envelope”/>
 <wsdl:part name=“QoPProtectionProperties”
 element=“tns:QoPProtectionProperties”/>
 </wsdl:message>

 <wsdl:message name=“QoPProtectionResponse”>
 <wsdl:part name=“QoPProtectionResponse”
element=“soapEnv:Envelope”/>
 </wsdl:message>

 …
 <wsdl:portType name=“QoPSecurityService”>
 <wsdl:operation name=“protect”>
 <wsdl:input message=“tns:QoPProtectionRequest”/>
 <wsdl:output message=“tns:QoPProtectionResponse”/>
 </wsdl:operation>
</wsdl:portType>

…

Figure 4. WSDL fragment that contains the message types
and port type defined for the QoP security service.

<?xml version=“1.0” encoding=“UTF-8”?>
<SecurityRequirements product=“P456”>

<SecurityRequirement>
<id>001013</id>

 <subfactor>data_origin_authentication</subfactor>
 <securityusecase><id>00201</id></securityusecase>
 <priority>HIGH</priority>
 <criticality>HIGH</criticality >
 <risk>HIGH</risk>
 <source><id>SportGambling</id></source>

 <includes>
<SecurityRequirementReference><Id>001019</Id></Se

curityRequirementReference>
</includes>

 <excludes></excludes>
</SecurityRequirement>
<SecurityRequirement>

 <id>001014</id>
 <subfactor>authorization</subfactor>
 <securityusecase><id>00203</id></securityusecase>
 <priority>HIGH</priority>
 <criticality>HIGH</criticality >
 <risk>HIGH</risk>
 <source><id>SportGambling</id></source>
 <includes></includes>
 <excludes></excludes>

</SecurityRequirement>
<SecurityRequirement>

 <id>001018</id>
 <subfactor>communications_confidentiality</subfactor>
 <securityusecase><id>00204</id></securityusecase>
 <priority>HIGH</priority>
 <criticality>HIGH</criticality >
 <risk>HIGH</risk>
 <source><id>SportGambling</id></source>
 <includes></includes>
 <excludes></excludes>

</SecurityRequirement>
<SecurityRequirement>

 <id>001019</id>
 <subfactor>communications_integrity</subfactor>
 <securityusecase><id>00204</id></securityusecase>
 <priority>HIGH</priority>
 <criticality>HIGH</criticality >
 <risk>HIGH</risk>
 <source><id>SportGambling</id></source>

<includes>
<SecurityRequirementReference><Id>001013</Id></S
ecurityRequirementReference>
</includes>
<excludes></excludes>

 </SecurityRequirement>
</SecurityRequirements>

Figure 5. Security policy describing the set of security
requirements of information system 456.

14

4.2 Security Policies Specification
One of the main principles of the PWSSec process is traceability.
This traceability shows how security requirements are related to
functional WS and to the security WS that address them. Security
policies are defined with this objective in mind. In our security
reference architecture the following policies are defined: i)
Security Requirements policy stating what the security
requirements are to be addressed in the information system. We
limit our approach to those security requirements intended to
secure the message’s channel; ii) Security policy at Organization-
level that all Security Zones should enforce. This type of security
policies allows statements like “All WS provider agents that
provide services to the Human Resources department will
guarantee information’s privacy according certain security
policy”, or, “All WS consumer agents should attach security
mechanisms that guarantees the message’s authentication”; iii)
Security policy at Security Zone-level that should be applied by
the ‘Master’ WSSecKern of the Security Zone (e.g.: all inbound
messages should provide digital signatures so that message
authentication and integrity can be guaranteed). This type of
security policies allows statements like “All WS provider agents
running in the CriticalSecurityZone shall verify that incoming
messages attach security mechanisms that guarantees message
reliability” or “All incoming messages targeted at WS providers
running in the CriticalSecurityZone should provide mechanisms
that guarantees non-repudiation”; iv) Security policy at Service-
level that can be decompose into security policies defined by

functional WS and security policies defined by security WS. The
former will state what type of security requirements they are
related to and how they should be addressed, and the latter will
state what type of security requirements the security WS addresses
(e.g.: authorization, message filtering or confidentiality)and what
security mechanisms provides (e.g.: RBAC-based authorization
service, addressing information-based filtering or symmetric
ciphering).

In our case study we firstly defined a security policy that describes
the security requirements of the software system at hand. This
policy is directly derived from the security requirements elicited
in the WSSecReq stage. In Figure 5, this security policy is
depicted (for clarification’s sake namespaces declarations have
been omitted).
Security requirements have to be attached to the elements they
protect. When elaborating and specifying security requirements
for WS-based interactions we impose the following restrictions: i)
every security requirement has to be related to one interaction
between the WS consumer agent and the WS provider agent. This
interaction will be assigned an action’s name; ii) Every security
requirement addresses just one type of security subfactor (i.e.:
confidentiality, integrity, etc.); iii) Any WS-based security
requirement intended to secure the message’s channel will be
related to one protected element. The possible set of elements that
can be protected are specified in the WS-PolicyAttachment
(version 1.0) specification of the WS-Policy framework [31] :
wsdl:message, wsdl:message/wsdl:partwsdl:portType,
wsdl:portType/wsdl:operation,

…
<wsdl:portType name=“PrizePaymentInterface”>

<wsdl:operation name=“PrizePaymentOperation”
wsa:Action=“http://.../ws/PrizePaymentTeller/1.0/requests/PrizePaymentRequest”>

 <wsdl:input
 message=“tns:PrizePaymentRequestMessage”
 wsp:PolicyURIs=“http://.../policies#PaymentPrizeInputMessagePolicy”
 />
 …
 </wsdl:operation>
 <wsdl:operation name=“PrizePaymentStatusOperation”>
 <wsdl:input
 message=“tns:PrizePaymentStatusRequestMessage”
 wsp:PolicyURIs=“http://.../policies#PaymentPrizeStatusInputMessagePolicy”
 wsa:Action=“http://.../ ws/PrizePaymentTeller/1.0/requests/PrizePaymentStatusRequest “/>
 …
 </wsdl:operation>
 <wsdl:operation name=“PrizePaymentReportOperation”>
 <wsdl:input
 message=“tns:PrizePaymentReportRequestMessage”
 wsp:PolicyURIs=“http://.../policies#PaymentPrizeReportInputMessagePolicy”
 wsa:Action=“http://.../ ws/PrizePaymentTeller/1.0/requests/PrizePaymentReportRequest “/>
 …
 </wsdl:operation>
</wsdl:portType>
…

Figure 6. The protected element wsdl:input references the security policy where the security requirements
it is related to are stated.

15

wsdl:portType/wsdl:operation/wsdl:input,
wsdl:portType/wsdl:operation/wsdl:output,
wsdl:portType/wsdl:operation/wsdl:fault, wsdl:service and
wsdl:service/port.
In our case study, the elements being protected correspond with
the messages’ input operations provided by the WS-
PrizePaymentTeller. This association between the security
requirements and the elements it protects is described in an
independent policy. The element to be protected will reference the
security policy where the security requirements are stated. In
Figure 6, a fragment of this type of the security for the WS-
PrizePaymentTeller is presented. It shows how the elements
wsdl:input include the attribute wsp:PolicyURIs referencing the
security policy that contains the security requirement they are
related to (see Figure 6).
In our case study, we based the definition of the security policies
on the 1.0 version (when this article was elaborated version 1.1
had just been delivered) of the WS-SecurityPolicy and WS-
PolicyAttachment specifications. Every element in the WSDL
description is associated, by means of a Policy URI reference,
with its correspondent policy. Given the WSDL (for
clarification’s sake just portType section is shown) document
describing the functional interface offered by the WS-
PrizePaymentTeller depicted in Figure 7.
So far, we have defined what the security requirements are and
what WSDL protected elements they are related to. Next, a
security policy where every security requirement is associated
with the security mechanism (s) that should address it is defined.
This security policy will be defined from the point of view of the
functional WS and will state what security mechanisms should be
used for addressing a determined set of security requirements.
 Before deploying the functional WS, the CriticalSrvZone’s
Administrator registered in the WSSecKern (named
SportGambling-WSSecCriticalSrv) the last three types of policies
and its WSDL file.

In Figure 8, the SecurityRequirements elements specify the
attribute type. The possible set of values of this attribute
corresponds with the possible security subfactors or aspects to be
taken into account in WS. Thus far we have defined the following
potential values: CommunicationsFiltering,
CommunicationsIntegrity, CommunicationsConfidentiality,
DataOriginAuthentication and ServiceAuthorization. Every
security WS (e.g.: Quality-of-Protection WS) covers just one of
these types of security requirements.

4.3 Security Architecture Design
Once the set of security WS has been identified and the security
policies have been defined, the next step is to design the security
architecture. The elements defined in the security reference
architecture should be instantiated and organized.The QoP WS
shall be managed by a WSSecKern. This WSSecKern shall run
within a Security Zone. So far, no WSSecKern has been defined
so we define the Master WSSecKern of the Security Zone where
the WS-PrizePaymentTeller will run. In our case study, the WS-
based security reference architecture’s identified elements are:
Security Zone (Name: CriticalSrvZone, Criticality: HIGH,
Administration: Role CriticalWSZoneAdmin); WS Security
Kernel: SportGambling-WSSecCriticalSrv; WS-based Security
Services: Security XML-based firewall, Message Authentication,
Message Integrity, Message Confidentiality and Authorization;
Functional WS: WS-PrizePaymentTeller; Security Policy at
Organization-level: omitted; Security Policy at Security Zone-
level: omitted; Security Policy at WSSecKern SportGambling-
WSSecCriticalSrv level: omitted;Security Policy at business WS
level: WS-PrizePaymentTeller; Security Policy at security WS
level: Quality-of-Protection WS.
The WSSecKern will know what security WS there exist within
its Security Zone and will associate one or more security WS’s
with one type of security requirement. In our case will associate
the QoP WS with the following security requirement types:
CommunicationsIntegrity, CommunicationsConfidentiality,
DataOriginAuthentication.

Figure 7. This policy shows the security requirements related to the first wsdl:input protected element included in
Figure 6.

<?xml version=“1.0” encoding=“UTF-8”?>
<wsp:Policy xmlns:wsp=“…” xmlns:wsse=“...” xmlns:wsu=“…”>
 …
 <wsp:Policy wsu:Id=“ PaymentPrizeInputMessagePolicy “>
 <SecurityRequirements product=“P456”>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001013</Id></SecurityRequirementReference>
 </SecurityRequirement>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001014</Id></SecurityRequirementReference>
 </SecurityRequirement>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001018</Id></SecurityRequirementReference>
 </SecurityRequirement>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001019</Id></SecurityRequirementReference>
 </SecurityRequirement>
 </SecurityRequirements>
</wsp:Policy>

16

Although we’ve omitted it, every WSSecKern in a Security Zone
will register the meta-information associated to the security WS it
manages. In addition, the Master WSSecKern will register the
meta-information of all the WSSecKern, and of their
correspondent security WS.
With all the previous information (functional WS’s WSDL
document and its security policies), the WSSecKern
SportGambling-WSSecCriticalSrv will create a set of internal
tables. When an incoming request targeted at the WS-
PrizePaymentTeller is intercepted by the Master WSSecKern it
will enforce the Organization-level, the SecurityZone-level and
the WSSecKern-level policy in first place. Then, it will enforce
the functional WS’s security policy at the SOAP request-level.
For simplification’s sake, we will assume that only the last type of
security policy has been defined.
Basically, when the WSSecKern intercepts an incoming request it
will execute the following steps (notice that the same steps are
applied for outgoing messages): i) The WSSecKern will obtain
(see a] in Figure 9), the WS-Addressing Action included in the
message’s SOAP header (this a prerequisite for any incoming
message to be allowed); ii) It will check that it supports that
action, otherwise returns error; iii) Then, it will obtain the list of
security requirements that applies to the request (see b] in Figure

9); iv) For every security requirement: a) Determines the security
WS (and its responsible WSSecKern) that covers it within the
Security Zone (see d] in Figure 9); b) Determines the type of
WSDL element it protects (see c] in Figure 9); c) Fetches the
security policy to be sent to the security WS that address that sort
of security requirement (column Parameters in section e] of
Figure 9). There could be more than one security policy each
applying to different types of WSDL-protected element. The
WSSecKern will have to fetch all of them and combine them in
order to obtain the final policy [31]; d) Invokes the set of required
security WS; e) Forward SOAP message to the ultimate recipient.

5. CONCLUSIONS AND FUTURE
RESEARCH
In this paper we have presented the PWSSec process. PWSSec
process allows developers to integrate security aspects when
developing WS-based information systems from the very
beginning of their development life-cycle. We have also
introduced the stage WSSecArch of the PWSSec process intended
to facilitate the allocation of WS-based security requirements into
a WS-based security architecture. This stage defines a WS-based
security reference architecture that specifies the set of security
artifacts (e.g.: security zones, security WS, security policies, etc.)

<wsp:Policy xmlns:wsp=“…” wsu:Id=“PaymentPrizeRequestSecRequirementSecMech”>
 <wsp:SpecVersion wsp:Usage=“wsp:Required”
 URI=“http://schemas.xmlsoap.org/ws/2002/07/secext”/>
 <SecurityRequirements product=“P456” type=“CommunicationsConfidentiality”>

<SecurityRequirement>
 <SecurityRequirementReference><Id>001018</Id></SecurityRequirementReference>

 <SecurityMechanism>
 <wsse:Confidentiality wsp:Usage=“wsp:Required”>

 <wsse:Algorithm Type=“wsse:AlgEncryption”
 URI=“http://www.w3.org/2001/04/xmlenc#3des-cbc” />

 <MessageParts>…</MessageParts>
 </wsse:Confidentiality>
 </SecurityMechanism>

 </SecurityRequirement>
 </SecurityRequirements>

 <SecurityRequirements product=“P456” type=“CommunicationsIntegrity”>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001013</Id></SecurityRequirementReference>
 </SecurityRequirement>
 <SecurityRequirement>
 <SecurityRequirementReference><Id>001019</Id></SecurityRequirementReference>
 </SecurityRequirement>

<wsse:Integrity wsp:Usage=“wsp:Required”>
 <wsse:Algorithm Type=“wsse:AlgCanonicalization” URI=“http://www.w3.org/Signature/Drafts/xml-exc-c14n” />
 <wsse:Algorithm Type=“wsse:AlgSignature” URI=“ http://www.w3.org/2000/09/xmldsig#rsa-sha1” />
 <wsse:SecurityToken>

 <wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
 <wsse:Claims>
 <wsse:SubjectName MatchType=“wsse:Regexp”>BankOrg\d{5}
 </wsse:SubjectName>

 </wsse:Claims>
 </wsse:SecurityToken>

 <MessageParts>…</MessageParts>
</wsse:Integrity>

 </SecurityRequirements>
</wsp:Policy>

Figure 8. Security policy specifying the security mechanisms, and their parameters, to be used when addressing the
security requirements.

17

that should be defined and how they interact. In addition, a case
study where the PWSSec process and the WSSecArch are being
applied has been presented.
Currently, several research lines are opened. We’re refining the
security reference architecture from the results obtained from the
case study presented in this article. In addition, we’re elaborating
two more security WS: Security Token Service that abstracts the
elements and mechanisms defined in the WS-Trust, XML Key
Management System and Secure Assertion Mark-up Language
standards; and a WS-based Authorization Service based on
XACML standard and several research proposals [3, 5, 15, 16, 23,
32]. A tool that helps in the task of elaborating the security
policies is also being studied [28].

6. ACKNOWLEDGMENTS
This research is part of the following projects: RETISTIC
network (TIC2002-12487-E), of Dirección General de
Investigación del Ministerio de Ciencia y Tecnología, and
DIMENSIONS (PBC-05-012-1), financed by the FEDER and the
“Consejería de Ciencia y Tecnología de la Junta de Comunidades
de Castilla-La Mancha.

7. REFERENCES
[1] C. J. Alberts, S. G. Behrens, R. D. Pethia, and W. R.

Wilson, “OCTAVE Framework, Version 1.0”, Carnegie
Mellon. SEI. CMU/SEI-99-TR-017, September 1999.

[2] I. Alexander, “Misuse Cases: Use Cases with Hostile
Intent”, IEEE Computer Software, vol. 20, pp. 58-66,
2003.

a] Functional WS proxied by the WSSecKern.

WS-Addressing Action Request Web Service Recipient’s
Name

Destination Port

http://…/PrizePaymentRequest WS-PrizePaymentTeller <WSDL PORT FRAGMENT>
http://…/PrizePaymentStateRequest WS-PrizePaymentTeller <WSDL PORT FRAGMENT>

http://…/PrizePaymentReportRequest WS-PrizePaymentTeller <WSDL PORT FRAGMENT>

b] Actions and security requirements associated.

WS-Addressing Action Request Product Security Requirement
http://…/PrizePaymentRequest 456 001013
http://…/PrizePaymentRequest 456 001018
http://…/PrizePaymentRequest 456 001019

c] Association between security requirements and its protected elements.

Produc
t

Security Requirement Type Protected Element

456 001013 DataOriginAuthentication //wsdl:portType/wsdl:input
456 001018 CommunicationsConfidentiality //wsdl:portType/wsdl:input
456 001019 CommunicationsIntegrity //wsdl:portType/wsdl:input

d] Association between security requirements types and security services that address them.

Security Requirement Type Security
Service

Operation

DataOriginAuthentication QoP VerifyProtection
CommunicationsConfidentiality QoP VerifyProtection

CommunicationsIntegrity QoP VerifyProtection

e] Security Requirement and Security Policies

Produc
t

Security Requirement Element Protected Parameters

456 001013 //wsdl:portType/wsdl:input <security policy content>.
456 001018 //wsdl:portType/wsdl:input <security policy content>.
456 001019 //wsdl:portType/wsdl:input <security policy content>.

Figure 9. Major internal tables generated by WSSecKern components.

18

[3] R. Bhatti, E. Bertino, A. Ghafoor, and J. B. D. Joshi,
“XML-Based Specification for Web Services Document
Security”, IEEE Computer, vol. 37, pp. 41-49, 2004.

[4] R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, V.
Lotz, and G. Wimmel, “Key Issues of a Formally Based
Process Model for Security Engineering”, Proc. 16th
International Conference on Software and Systems
Engineering and their Applications (ICSSEA'03), 2003.

[5] E. Damiani, S. D. C. d. Vimercati, S. Paraboschi, and P.
Samarati., “A fine-grained access control system for
XML documents”, ACM Transactions on Information
and System Security (TISSEC), pp. 169-202, 2002.

[6] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.
Krogdahl, M. Luo, and T. Newling, “Patterns: Service-
Oriented Architecture and Web Services”, IBM
Redbook, 1st ed, 2004, pp. 345.

[7] E. B. Fernandez, “Two patterns for web services
security”, Proc. International Symposium on Web
Services and Applications (ISWS'04), Las Vegas, NV,
2004.

[8] D. G. Firesmith, “Security Use Cases”, Journal of
Object Technology, vol. 2, pp. 53-64, 2003.

[9] D. G. Firesmith, “Engineering Security Requirements”,
Journal of Object Technology, vol. 2, pp. 53-68, 2003.

[10] D. G. Firesmith, “Common Concepts Underlying
Safety, Security, and Survivability Engineering”, SEI,
Technical Note CMU/SEI-2003-TN-033, December
2003.

[11] C. Gutiérrez, E. Fernández-Medina, and M. Piattini,
“Web Services Security: is the problem solved?”
Information Systems Security, vol. 13, pp. 22-31, 2004.

[12] C. Gutiérrez, E. Fernández-Medina, and M. Piattini,
“PWSSec: Process for Web Services Security”, Proc.
IEEE International Conference on Web Services 2005,
Orlando, Florida, USA, 2005.

[13] C. Gutiérrez, E. Fernández-Medina, and M. Piattini,
“Towards a Process for Web Services Security”, Proc.
WOSIS'05 en ICEIS'05, Miami, Florida, USA, 2005.

[14] IDC, 2005. See:
http://www.idc.com/getdoc.jsp?containerId=prUS00190
705].

[15] S. Indrakanti, V. Varadharajan, and M. Hitchens,
“Authorization Service for Web Services and its
Implementation”, Proc. ICWS'04, San Diego,
California, USA, 2004.

[16] H. Koshutanski and F. Massacci, “An Access Control
Framework for Business Processes for Web Services”,
Proc. ACM Workshop on XML Security, 2003.

[17] P. Kruchten, The Rational Unified Process: An
Introduction, 2nd. ed: Addison-Wesley Pub Co., 2000.

[18] A. v. Lamsweerde, “Elaborating Security Requirements
by Construction of Intentional Anti-Models”, Proc. 26th
International Conference on Software Engineering,
Edinburgh, 2004.

[19] J. D. Moffet and B. A. Nuseibeh, “A Framework for
Security Requirements Engineering”, Department of
Computer Science, University of York, UK, Report
YCS 368, August 2003.

[20] A. P. Moore, R. J. Ellison, and R. C. Linger, “Attack
Modelling for Information Security and Survivability”,
Software Engineering Institute 2001.

[21] C. Nott, Patterns: Using Business Service
Choreography In Conjuction With An Enterprise
Service Bus, 2004.

[22] OASIS, “Web Services Security (WS-Security) -
Specification 6 April 2004”, 2004.

[23] OASIS, “eXtensible Access Control Markup Language
(XACML) Version 2.0”, 2005.

[24] OMG, “UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms”,
2004.

[25] B. Schneier, “Attack Trees: Modeling Security Threats”,
Dr. Dobb's Journal, 1999.

[26] G. Sindre and A. L. Opdahl, “Eliciting Security
Requirements with Misuse Cases”, Proc. TOOLS-37'00,
Sydney, Australia, 2000.

[27] IEEE Computer Society, “Software Engineering Body
of Knowledge”, 2004.

[28] M. Tatsubori, T. Imamura, and Y. Nakamura, “Best-
Practice Patterns and Tool Support for Configuring
Secure Web Services Messaging”, Proc. 4th
International Conference on Web Services (ICWS'04),
San Diego, California, USA, 2004.

[29] A. Toval, J. Nicolás, B. Moros, and F. García,
“Requirements Reuse for Improving Information
Systems Security: A Practitioner's Approach”,
Requirements Engineering Journal, vol. 6, pp. 205-219,
2001.

[30] D. Verdon and G. McGraw, “Risk Analysis in Software
Design”, in IEEE Security & Privacy, vol. 2, 2004, pp.
79-84.

[31] VeriSign, Microsoft, SonicSoftware, IBM, BEA, and
SAP, “Web Services Policy Framework (WS-Policy)”,
2004.

[32] R. Wonohoesodo and Z. Tari, “A Role based Access
Control for Web Services”, Proc. ICWS'04, San Diego,
California, USA, 2004.

[33] WS-I, “Security Challenges, Threats and
Countermeasures Versión 1.0”, vol. 2005: WS-I, 2005.

19

