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Abstract
This paper presents an efficient algorithm for constructing Bayesian belief networks from databases. The

algorithm takes a database and an attributes ordering (i.e., the causal attributes of an attribute should appear earlier
in the order) as input and constructs a belief network structure as output. The construction process is based on the
computation of mutual information of attribute pairs. Given a data set which is large enough and has a DAG-
Isomorphic probability distribution, this algorithm guarantees that the perfect map [1] of the underlying dependency
model is generated, and at the same time, enjoys the time complexity of O N( )2 on conditional independence (CI)
tests. To evaluate this algorithm, we present the experimental results on three versions of the well-known ALARM
network database, which has 37 attributes and 10,000 records. The correctness proof and the analysis of
computational complexity are also presented. We also discuss the features of our work and relate it to previous
works.

1 Introduction
The Bayesian belief network is a powerful knowledge representation and reasoning tool under conditions of

uncertainty. A Bayesian belief-network is a directed acyclic graph (DAG) with a conditional probability distribution
for each node [1,2,3]. The DAG structure of such networks contains nodes representing domain variables, and arcs
between nodes representing probabilistic dependencies. On constructing Bayesian networks from databases, we use
nodes to represent database attributes.

In the last ten years, significant progress has been made in the area of probabilistic inference on belief
networks, but the construction of belief networks remains a time consuming task, especially when the number of
variables is large. Recently many belief network construction algorithms have be developed. Generally, these
algorithms can be grouped into two categories: one category of algorithms uses heuristic search method to construct
a model and evaluates it using a scoring method. This process continues until the score of the new model is not
significantly better than the old one. Different scoring criteria have been applied in these algorithms, such as,
Bayesian scoring method [5,6], entropy based method [21], and minimum description length method [20]. The other
category of algorithms constructs Bayesian networks by analyzing dependency relationships among nodes. The
dependency relationships are measured by using some kind of conditional independence (CI) test. The algorithms
described in [4,8,9,10] and the proposed algorithm in this paper belong to this category. Both of these two
categories of algorithms have their advantage and disadvantage: Generally, the first category of algorithms has less
time complexity in the worst case (when the underlying DAG is densely connected), but it may not find the best
solution due to its heuristic nature; The second category of algorithms is usually asymptotically correct when the
probability distribution of data is DAG-Isomorphic (The definition is in [1]), but as Cooper et al. pointed out in [5],
CI tests with large condition-sets may be unreliable unless the volume of data is enormous.

On developing this algorithm, we take the following two facts into consideration. First of all, real world
situations usually yield sparse networks, and densely connected networks reveal very few independence
relationships and thus contain little valuable information. Therefore, the algorithm should be particularly efficient
when the database has a sparse underlying network. Secondly, since CI tests with large condition-sets are
computational expensive and may be unreliable, we try to avoid CI tests with large condition-sets and use as few CI
tests as possible. Considering the above discussion, we developed a three phases algorithm that constructs a draft of



the network structure in the first phase using mutual information and ‘thickens’ and ‘thins’ it using CI tests in the
second and third phases. When the underlying network is sparse, the draft can be very similar to the underlying
model. Therefore, our algorithm can avoid many unnecessary CI tests with large condition-sets and also reduce the
number of CI tests.

The remainder of this paper is organized as follows. In Section 2, we give the background information and
introduce our information theory based algorithm. In Section 3, we present our algorithm in detail and give the
correctness proof. Section 4 contains the experimental results on three data sets of alarm network. Finally, in Section
5, we discuss the related works and the important features of our work.

2 An Approach Based on Information Theory
The Bayesian belief network is a kind of probabilistic models. It uses DAG to represent dependency

relationships between variables. Since every independence statement in belief networks satisfies a group of axioms
(See  [1] for details), we can construct belief networks from data by analyzing conditional independence
relationships. This CI test based method is used by all the algorithms of the second category described in Section 1.

To introduce our approach, we first review the concept of d-separation [1], which plays an important role in
our algorithm. For any three disjoint node sets X, Y, and Z in a belief network, X is said to be d-separated from Y by
Z if there is no active undirected path between X and Y. A path between X and Y is active if: (1) every node in the
path having head-to-head arrows is in Z or has a descendant in Z; (2) every other node in the path is outside Z. To
understand d-Separation, we can use an analogy, which is similar to the one suggested in [3]. We view a belief
network as a network system of information channels, where each node is a valve that is either active or inactive and
the valves are connected by noisy information channels. The information flow can pass through an active valve but
not an inactive one. When all the valves (nodes) on one undirected path between two nodes are active, we say this
path is open. If any one valve in the path is inactive, we say the path is closed. When all paths between two nodes
are closed given the status of a set of valves (nodes), we say the two nodes are d-separated by the set of nodes. The
status of valves can be changed through the instantiation of a set of nodes. The amount of information flow between
two nodes can be measured by using mutual information, when no nodes are instantiated, or conditional mutual
information, when some other nodes are instantiated.

In information theory, the mutual information of two nodes X Xi j, is defined as
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where Xi , X j  are two nodes and C is a set of nodes. In our algorithm, we use conditional mutual information as CI

tests to measure the average information between two nodes when the statuses of some valves are changed by the
condition-set C. When I X X Ci j( , | ) is smaller than a certain threshold value ε , we say that Xi , X j  are d-

separated by the condition-set C, and they are conditionally independent.
This algorithm also makes the following assumptions: (1) The database attributes have discrete values and

there are no missing values in all the records. (2) The volume of data is large enough for reliable CI tests. (3) The
ordering of the attributes is available before the network construction, i.e., a node’s parents nodes should appear
earlier in the order.

3 The Algorithm for Belief Network Construction
This algorithm has three phases: drafting, thickening and thinning. In the first phase, this algorithm computes

mutual information of each pair of nodes as a measure of closeness, and creates a draft based on this information. In
the second phase, the algorithm adds arcs when the pairs of nodes cannot be d-separated. The result of Phase II is an
independence map (I-map) [1] of the underlying dependency model. In the third phase, each arc of the I-map is
examined using CI tests and will be removed if the two nodes of the arc can be  d-separated. The result of Phase III
is the minimal I-map [1].



3.1 The Algorithm

Phase I: (Drafting)

1.  Initiate a graph G V E( , ) where V={all the nodes of a data set}, E={ }. Initiate two empty ordered set S, R.

2.  For each pair of nodes ( , )v vi j where v v Vi j, ∈ , compute mutual information I v vi j( , )  using equation (1). For

the pairs of nodes that have mutual information greater than a certain small value ε , sort them by their mutual
information from large to small and put them into an ordered set S.

3.  Get the first two pairs of nodes in S and remove them from S. Add the corresponding arcs to E. (the direction of
the arcs in this algorithm is determined by the previously available nodes ordering.)

4.  Get the first pair of nodes remained in S and remove it from S. If there is no open path between the two nodes
(these two nodes are d-separated given empty set), add the corresponding arc to E; Otherwise, add the pair of
nodes to the end of an ordered set R.

5.  Repeat step 4 until S is empty.

In order to illustrate this algorithm’s working mechanism, we use a simple multi-connected network example
borrowed from [3]. Suppose we have a database that has underlying Bayesian network as Figure 1.a; and we also
have a nodes’ order as A, B, C, D, E. Our task is to find out the exact network structure. After step 2, we can get the
mutual information of all 10 pair of nodes. Suppose we have I(B,D) ≥ I(C,E) ≥ I(B,E) ≥ I(A,B) ≥ I(B,C) ≥ I(C,D)
≥ I(D,E) ≥ I(A,D) ≥ I(A,E) ≥ I(A,C), and all the mutual information is greater thanε , we can construct a draft
graph shown in Figure 1.b after step 5. Please note that the order of mutual information between nodes can not be
arbitrary. For example, from information theory, we have I(A,C) < Min(I(A,B),I(B,C)). This is also the reason why
Phase I can construct a graph close to the original graph to some extent. When the underlying graph is sparse, Phase
I can construct a graph very close to the original one. In fact, if the underlying graph is a singly connected graph (a
graph without undirected cycle), Phase I of this algorithm is essentially the algorithm of Chow and Liu[6], and it
guarantees the constructed network is the same as the original one. Our algorithm can be viewed as an extension of
Chow and Liu’s algorithm to multi-connect networks. In this example, (B,E) is wrongly added and (D,E) is missing
because of the existing open path (D-B-E) and (D-B-C-E). The draft graph created in this phase is the base for next
phase.

Phase II: (Thickening)

6.  Get the first pair of nodes in R and remove it from R.

7.  Find a block set that blocks each open path between these two nodes by a set of minimum number of nodes.
(This procedure find_block_set (current graph, node1, node2) is given at the end of this subsection.)
Conduct a CI test. If these two nodes are still dependent on each other given the block set, connect them by an
arc.

8.  go to step 6 until R is empty.

In our example, the graph after Phase II is shown in Figure 1.c. When this algorithm examines the pair of
nodes (D,E) in step 7, it finds that {B} is the minimum set which blocks all the open paths between D and E. Since
the CI test can reveal that D and E are still dependent given {B}, arc (D,E) is added. Arc (A,C) is not added because
the CI test can reveal that A and C are independent given block set {B}. Arc (A,D), (C,D) and (A,E) are not added
for the same reason. In this phase, the algorithm examines all pairs of nodes that have mutual information greater
than ε , an arc is not added only when the two nodes are independent given some block set. It is possible that some
arcs are wrongly added in this phase.

Phase III: (Thinning)

9.  For each arc in E, if there are open paths between the two nodes besides this arc, remove this arc from E
temporarily and call procedure find_block_set (current graph, node1, node2). Conduct a CI test on the
condition of the block set. If the two nodes are dependent, add this arc back to E; otherwise remove the arc
permanently.



The ‘thinned’ graph of our example is shown in Figure 1.d, which is the same as the original graph. Arc (B,E)
is removed because B and E are independent given {C,D}. This procedure generates the perfect I-map of the
underlying dependency model.
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Figure 1. A simple multi-connected network.

Finding Minimum Block Set

As suggested by Acid et al. in [19], knowing the minimum block set of two nodes in belief networks can be
very useful in several ways. In our algorithm, we try to avoid CI tests with large condition-sets by finding minimum
block sets. The following simple procedure uses a heuristic-search method to find the block set. An algorithm for
finding minimum d-Separation sets can be found in [19].

Procedure find_block_set (current graph, node1, node2)

begin

find all the undirected paths between node1 and node2;

store the open paths in open_path_set, store the closed paths in closed_path_set;

do

     while there are open paths which have only one node do

           store the nodes of each such path in the block set;

           remove all the blocked paths by these nodes from the open_path_set and closed_path_set;

           from the closed_path_set, find paths opened by the nodes in block set and move them to

           the open_path_set, shorten such paths by removing  the nodes that are also in the block set;

     end while

     if there are open paths do

           find a node which can block maximum number of the rest paths and put it in the block set;

           remove all the blocked paths by the node from the open_path_set and the closed_path_set;

           from the closed_path_set, find paths opened by this node and move them to

           the open_path_set, shorten such paths by removing  the nodes that are also in the block set;

    end if

until there are no open path

end procedure.

Because this procedure uses a greedy search method, it does not guarantee that a minimum block set is found.
However, in the case of ALARM network, which will be discussed in Section 4, all the block sets, over 200, found



by this procedure are minimum. This procedure can also be easily extended to find the block set of two sets of
nodes.

3.2 Correctness
Suppose a data set is large enough for reliable CI tests and has a DAG-Isomorphic underlying dependency

model M. We give the proofs of the following propositions.

Proposition 1 Graph G2 generated after Phase II is an I-map of M.
Proof: Phase I and Phase II of our algorithm examined all the arcs between any two nodes that are not independent.
An arc is not added only if these two nodes are d-separated by a set of other nodes. Hence, any pair of not
connected nodes of G2 are conditional independent in M.      Q.E.D.

Proposition 2 Graph G3 generated after Phase III is a perfect map of M.
Proof: Since an arc is removed in Phase III only if the pair of nodes are d-separated, G3 is an I-map of M. Next, we
shall prove that this also a Dependent-map (D-map) [1]. Suppose G3 is not a D-map, then there must exist an arc (a,
b) which is in G3 and the two nodes a and b are actually independent in the underlying model M. Therefore, a and b
can be d-separated by blocking a set of all the real open paths Pr in M. From our algorithm, we can get that a and b
are connected in G3 only if a and b cannot be d-separated by blocking a set of all the open paths P in G3. Since G3
is an I-map of M, P includes Pr and some pseudo-paths. Because pseudo-paths cannot pass information, information
must be passed through the paths in Pr. Therefore Pr cannot d-separate a and b. This contradicts our assumption
that a and b are independent in M. Hence, G3 is a D-map and I-map (a perfect map) of M.      Q.E.D.

The above propositions ensure that our algorithm can construct the perfect map of the underlying dependency
model.

3.3 Complexity Analysis
Suppose a data set has N attributes, the maximum number of possible values of any attribute is r, and an

attribute may have k parents at most. We give the complexity as follows.
Phase I: Since Phase I computes mutual information between any two nodes, it needs N 2  mutual information
computations. By equation (1) of Section 2, each computation of mutual information requires O r( )2  times of basic
operations such as logarithm, multiplication and division. Sorting the nodes pairs can be finished in
O N N( log ) steps by using quicksort algorithm. The time complexity of this phase on basic operations is O N r( )2 2 .

Phase II: This phase tries to add each arc to the graph and requires CI tests at most N 2  times. By equation (2) of
Section 2, each CI test requires at most O r k( )+2  basic operations. The complexity of this phase on basic operations

is O N r k( )2 2+ . In the worst case, it requires basic operations O N r N( )2  times. Because Procedure find_block_set
is just an optimization and can be replaced by a simple O N( ) procedure that may return larger block sets. We do not
include the complexity of this procedure here.
Phase III: This phase tries to remove each arc from the graph and has the same time complexity as Phase II.

Overall, this algorithm requires CI tests of O N( )2  complexity. (Mutual information computations can be

regarded as CI tests with empty condition-sets.) The time complexity on basic operations is O N r k( )2 2+ . In the
worst case, when all the CI tests require condition-sets on all the other nodes, the time complexity on basic operation
is O N r N( )2 .

4 Results on ALARM Network
ALARM network[15] is a medical diagnostic alarm message system for patient monitoring, it contains 37

nodes and 46 arcs (see Figure 2). This belief network has become the de facto benchmark for evaluating belief
network construction algorithms. Researchers in this field use data sets generated from three versions of this belief
network. The three versions have the same structure but different probability distributions. To evaluate our
algorithm, we use three data sets generated from each of the three versions of ALARM network. We call them
dataset1, dataset2 and dataset3i . Each of them has 10,000 cases.



Figure 2. The ALARM belief network

Since this algorithm requires nodes ordering, we use the ordering described in the web page of Norsys
Software Corp. for dataset1 and dataset2 and use the ordering described in [5] for dataset3. Please note that the
actual orderings make no difference to the algorithm as long as they preserve the cause and effect relationships. To
make CI tests more reliable when the volume of data is not large enough, we also modified equation (2) by taking
the variable’s degree of freedom into consideration. We use 0.003 as the value of ε .

We summarize our experimental results into the following two tables. Table 1 shows the detail test results of
dataset1, and table 2 compares the results of the three data sets. All these experiments were conducted on a Pentium
90MHz PC and the data sets are stored in a Microsoft Access database.

Phase Arcs Missing Wrongly Added No. of CI Testsii Time

0 1 2 3 4 Tota
l

(Minute)

I 43 5 {22-15,22-13,33-
27,23-13,35-14}

2 {34-13,34-14} 666 0 0 0 0 666 20.00

II 50 0 4 {34-13,34-14} + {35-
13,32-27}

0 166 35 4 0 205  8.34

III 46 0 0 0 9 3 1 2 15  0.81

Table 1. Networks constructed at each phase for dataset1 of ALARM database.

Data sets Results No. of CI Tests Time (Minute)

0 1 2 3 4 Total Phase I Phase
II

Phase
III

Total

Dataset1 Correct 666 175 38 5 2 886 20.00 8.34 0.83 29.17

Dataset2 Missing {11-27} 666 184 18 1 0 869 20.00 6.50 0.50 27.00

Dataset3 Missing {12-32,21-
31}

666 86 26 1 0 779 20.00 3.67 0.50 24.17

Table 2. Results on dataset1, dataset2 and dataset3.



From Table 1, we can analyze the result of each phase. In Phase I, the mutual information of all 666
( = × −37 37 1 2( ) / ) pairs of nodes were computed; and our algorithm uses this information to construct a draft. The
draft is quite similar to the underlying graph and has only 5 missing arcs and 2 wrongly added arcs. In Phase II, this
algorithm conducted 205 CI tests and added 7 arcs; among which, all the 5 real arcs missed in the first phase were
added. The result of this phase is an I-map. In Phase III, only 15 CI tests were conducted and the condition-sets have
at most 4 nodes. This phase removed all the 4 wrongly added arcs correctly and constructed the exact belief
network. In table 2, we compare the results on dataset1, dataset2 and dataset3. The difference in the running time
and the number of CI tests among the three data sets is due to the difference in the obviousness of dependency
relationships of the underlying probability distribution. For example, the dependency relationships are more obvious
in dataset3 than those in dataset1. Our result on dataset3 missed two arcs of ALARM network; this is due to the fact
that 12-32 and 21-31 are actually independent in dataset3: the mutual information between 12 and 32 is 7 10 5× − ,
between 21 and 31 is 3 10 5× − , while all the rest real arcs have mutual information greater than 0.01. χ 2 tests all

show that these two pairs of nodes are independent. Therefore, we consider our result is correct. The reason for the
missing arc 11-27 in our result on dataset2 is that this pair of nodes has very weak relationship when node 32 or 34
is instantiated. This may suggest that the dependency relationship between node 11 and 27 can be expressed through
other dependency relationships.

Because this algorithm only requires CI tests less than 3 2N  times and does not require high order CI tests (in
the case of the ALARM network, it only requires condition-sets with 4 nodes at most.), it is very efficient and
reliable. In our experiments, most running time is consumed by database engine on query preparing and data
retrieving. The algorithm also constructed the correct network on 3,000 cases of dataset1 in less than 10 minutes.
Moreover, although Phase II and Phase III have exponential time complexity on basic operations in the worst case,
in the case of sparse networks like ALARM, they consume less time than Phase I, which has time complexity
O N r( )2 2 in the worst case.

5 Discussion
Some of the belief network construction algorithms require nodes ordering, such as the algorithms presented in

[5,10,18,20,21] and the proposed algorithm in this paper; Others do not require nodes ordering and can orient the
edges automatically, such as the algorithms presented in [4, 12]. The former group of algorithms can be viewed as a
special case of the latter group of algorithms where the nodes ordering is known. Based on the same ideas presented
in this paper, we also developed a correct algorithm that does not require nodes ordering [22]. Since dropping the
requirement of nodes ordering means many more possibilities to be considered, the new algorithm requires CI tests
O N( )4 times. Of course, the complexity on basic operations is exponential. Comparing to the algorithm presented
in this paper, the new algorithm uses 20% more CI tests and is 30% slower on the data sets of ALARM network.
The actual results are as follows. On dataset1, the result has one missing arc, one wrongly added arc and four not
oriented arcs; On dataset2, it has one missing arc, four not oriented arcs and one wrongly oriented arc. On dataset3,
it has one missing arc (excluding 12-32, 21-31 for the reason given in Section 4) and five not oriented arcs.

Both of our algorithms can be viewed as extension of the algorithm of [7] to multi-connected networks. One
merit of the proposed algorithm is that it preserves the O N( )2 complexity on CI tests. Algorithms described in
[4,8,10] can also construct a belief network whose structure is a minimal I-map of the underlying dependency
model. However, these algorithms require CI tests in exponential complexity. Comparing to the algorithms of
[4,8,10], our algorithms have the following two features. (1) By generating a draft in Phase I, our algorithms prevent
many pseudo-arcs from being added in Phase II, and therefore avoid high order CI tests in Phase II and III, and also
reduce the number of CI test needed in Phase III. (2) By using mutual information as a measure of dependency
relationship, our algorithms can compare two relationships quantitatively, and therefore avoid exponential
complexity in the case of no nodes ordering (the detail is in [22].)

Our subsequent research will focus on handling continuous variable nodes and missing values. We also plan to
develop a commercial software based on our algorithms.
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