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Abstract. Mining frequent patterns in transaction databases, time-series databases, and many other kinds of
databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like
candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there
exist a large number of patterns and/or long patterns.

In this study, we propose a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-
based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed,
smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts
a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a
partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for
mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance
study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns,
and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported
new frequent-pattern mining methods.
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1. Introduction

Frequent-pattern mining plays an essential role in mining associations (Agrawal et al.,
1993, 1996; Agrawal and Srikant, 1994; Mannila et al., 1994), correlations (Brin et al.,
1997), causality (Silverstein et al., 1998), sequential patterns (Agrawal and Srikant, 1995),
episodes (Mannila et al., 1997), multi-dimensional patterns (Lent et al., 1997; Kamber
etal., 1997), max-patterns (Bayardo, 1998), partial periodicity (Han et al., 1999), emerging
patterns (Dong and Li, 1999), and many other important data mining tasks.

Most of the previous studies, such as Agrawal and Srikant (1994), Mannila et al. (1994),
Agrawal et al. (1996), Savasere et al. (1995), Park et al. (1995), Lent et al. (1997), Sarawagi
et al. (1998), Srikant et al. (1997), Ng et al. (1998) and Grahne et al. (2000), adopt an
Apriori-like approach, which is based on the anti-monotone Apriori heuristic (Agrawal and
Srikant, 1994): if any length k pattern is not frequent in the database, its length (k + 1)
super-pattern can never be frequent. The essential idea is to iteratively generate the set of
candidate patterns of length (k + 1) from the set of frequent-patterns of length k (for k > 1),
and check their corresponding occurrence frequencies in the database.

The Apriori heuristic achieves good performance gained by (possibly significantly) re-
ducing the size of candidate sets. However, in situations with a large number of frequent
patterns, long patterns, or quite low minimum support thresholds, an Apriori-like algorithm
may suffer from the following two nontrivial costs:

— It is costly to handle a huge number of candidate sets. For example, if there are 10*
frequent 1-itemsets, the Apriori algorithm will need to generate more than 107 length-2
candidates and accumulate and test their occurrence frequencies. Moreover, to discover
a frequent pattern of size 100, such as {ay, ..., ajgo}, it must generate 2100 _ 2 ~ 1030
candidates in total. This is the inherent cost of candidate generation, no matter what
implementation technique is applied.

— Itis tedious to repeatedly scan the database and check a large set of candidates by pattern
matching, which is especially true for mining long patterns.

Can one develop a method that may avoid candidate generation-and-test and utilize some
novel data structures to reduce the cost in frequent-pattern mining? This is the motivation
of this study.

In this paper, we develop and integrate the following three techniques in order to solve
this problem.

First, a novel, compact data structure, called frequent-pattern tree, or FP-tree in short,
is constructed, which is an extended prefix-tree structure storing crucial, quantitative infor-
mation about frequent patterns. To ensure that the tree structure is compact and informative,
only frequent length-1 items will have nodes in the tree, and the tree nodes are arranged in
such a way that more frequently occurring nodes will have better chances of node sharing
than less frequently occurring ones. Our experiments show that such a tree is compact,
and it is sometimes orders of magnitude smaller than the original database. Subsequent
frequent-pattern mining will only need to work on the FP-tree instead of the whole data set.

Second, an FP-tree-based pattern-fragment growth mining method is developed, which
starts from a frequent length-1 pattern (as an initial suffix pattern), examines only its
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conditional-pattern base (a “sub-database” which consists of the set of frequent items co-
occurring with the suffix pattern), constructs its (conditional) FP-tree, and performs mining
recursively with such a tree. The pattern growth is achieved via concatenation of the suffix
pattern with the new ones generated from a conditional FP-tree. Since the frequent itemset
in any transaction is always encoded in the corresponding path of the frequent-pattern trees,
pattern growth ensures the completeness of the result. In this context, our method is not
Apriori-like restricted generation-and-test but restricted test only. The major operations of
mining are count accumulation and prefix path count adjustment, which are usually much
less costly than candidate generation and pattern matching operations performed in most
Apriori-like algorithms.

Third, the search technique employed in mining is a partitioning-based, divide-and-
conquer method rather than Apriori-like level-wise generation of the combinations of fre-
quent itemsets. This dramatically reduces the size of conditional-pattern base generated at
the subsequent level of search as well as the size of its corresponding conditional FP-tree.
Moreover, it transforms the problem of finding long frequent patterns to looking for shorter
ones and then concatenating the suffix. It employs the least frequent items as suffix, which
offers good selectivity. All these techniques contribute to substantial reduction of search
costs.

A performance study has been conducted to compare the performance of FP-growth with
two representative frequent-pattern mining methods, Apriori (Agrawal and Srikant, 1994)
and TreeProjection (Agarwal et al., 2001). Our study shows that FP-growth is about an
order of magnitude faster than Apriori, especially when the data set is dense (containing
many patterns) and/or when the frequent patterns are long; also, FP-growth outperforms
the TreeProjection algorithm. Moreover, our FP-tree-based mining method has been im-
plemented in the DBMiner system and tested in large transaction databases in industrial
applications.

Although FP-growth was first proposed briefly in Han et al. (2000), this paper makes
additional progress as follows.

— The properties of FP-tree are thoroughly studied. Also, we point out the fact that, although
it is often compact, FP-tree may not always be minimal.

— Some optimizations are proposed to speed up FP-growth, for example, in Section 3.2,
a technique to handle single path FP-tree has been further developed for performance
improvements.

— A database projection method has been developed in Section 4 to cope with the situation
when an FP-tree cannot be held in main memory—the case that may happen in a very
large database.

— Extensive experimental results have been reported. We examine the size of FP-tree as
well as the turning point of FP-growth on data projection to building FP-tree. We also
test the fully integrated FP-growth method on large datasets which cannot fit in main
memory.

The remainder of the paper is organized as follows. Section 2 introduces the FP-tree
structure and its construction method. Section 3 develops an FP-tree-based frequent-pattern
mining algorithm, FP-growth. Section 4 explores techniques for scaling FP-growth in large
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databases. Section 5 presents our performance study. Section 6 discusses the issues on
further improvements of the method. Section 7 summarizes our study and points out some
future research issues.

2. Frequent-pattern tree: Design and construction

Let I ={a;,a, ..., a,} be aset of items, and a transaction database DB= (T, T», ...,
T,), where T; (i € [1...n])is atransaction which contains a set of items in /. The support'
(or occurrence frequency) of a pattern A, where A is a set of items, is the number of
transactions containing A in DB. A pattern A is frequent if A’s support is no less than a
predefined minimum support threshold, §.

Given a transaction database DB and a minimum support threshold &, the problem of
finding the complete set of frequent patterns is called the frequent-pattern mining problem.

2.1. Frequent-pattern tree

To design a compact data structure for efficient frequent-pattern mining, let’s first examine
an example.

Example 1. Let the transaction database, DB, be the first two columns of Table 1, and the
minimum support threshold be 3 (i.e., § = 3).
A compact data structure can be designed based on the following observations:

1. Since only the frequentitems will play arole in the frequent-pattern mining, it is necessary
to perform one scan of transaction database DB to identify the set of frequent items (with
frequency count obtained as a by-product).

2. If the set of frequent items of each transaction can be stored in some compact structure,
it may be possible to avoid repeatedly scanning the original transaction database.

3. If multiple transactions share a set of frequent items, it may be possible to merge the
shared sets with the number of occurrences registered as count. It is easy to check whether
two sets are identical if the frequent items in all of the transactions are listed according
to a fixed order.

Table 1. A transaction database as running example.

TID Items bought (Ordered) frequent items
100 fra,c,d, g, i,m, p fic,a,m, p

200 a,b,c, f,l,m,o fic,a,b,m

300 b, fih,j,o f.b

400 b,c,k,s, p ¢, b, p

500 a, f,c,e,l,p,m,n fic,a,m, p
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4. If two transactions share a common prefix, according to some sorted order of frequent
items, the shared parts can be merged using one prefix structure as long as the count is
registered properly. If the frequent items are sorted in their frequency descending order,
there are better chances that more prefix strings can be shared.

With the above observations, one may construct a frequent-pattern tree as follows.

First, a scan of DB derives a list of frequentitems, (( f:4), (c:4), (a:3), (b:3), (m:3), (p:3))
(the number after ““:” indicates the support), in which items are ordered in frequency-
descending order. This ordering is important since each path of a tree will follow this order.
For convenience of later discussions, the frequent items in each transaction are listed in this
ordering in the rightmost column of Table 1.

Second, the root of a tree is created and labeled with “null”. The FP-tree is constructed
as follows by scanning the transaction database DB the second time.

1. The scan of the first transaction leads to the construction of the first branch of the tree:
((f:1), (c:1), (a:1), (m:1), (p:1)). Notice that the frequent items in the transaction are
listed according to the order in the list of frequent items.

2. For the second transaction, since its (ordered) frequent item list ( f, ¢, a, b, m) shares a
common prefix (f, ¢, a) with the existing path (f, ¢, a, m, p), the count of each node
along the prefix is incremented by 1, and one new node (b:1) is created and linked as a
child of (a:2) and another new node (m:1) is created and linked as the child of (b:1).

3. For the third transaction, since its frequent item list { f, ) shares only the node ( f) with
the f-prefix subtree, f’s count is incremented by 1, and a new node (b:1) is created and
linked as a child of (f:3).

4. The scan of the fourth transaction leads to the construction of the second branch of the
tree, ((c:1), (b:1), (p:1)).

5. For the last transaction, since its frequent item list ( f, ¢, a, m, p) is identical to the first
one, the path is shared with the count of each node along the path incremented by 1.

To facilitate tree traversal, an item header table is built in which each item points to its
first occurrence in the tree via a node-link. Nodes with the same item-name are linked in
sequence via such node-links. After scanning all the transactions, the tree, together with the
associated node-links, are shown infigure 1.

Based on this example, a frequent-pattern tree can be designed as follows.

Definition 1 (FP-tree). A frequent-pattern tree (or FP-tree in short) is a tree structure
defined below.

1. It consists of one root labeled as “null”, a set of item-prefix subtrees as the children of
the root, and a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields: item-name, count, and
node-link, where item-name registers which item this node represents, count registers
the number of transactions represented by the portion of the path reaching this node, and
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Figure 1. The FP-tree in Example 1.

node-link links to the next node in the FP-tree carrying the same item-name, or null if
there is none.

Each entry in the frequent-item-header table consists of two fields, (1) item-name and
(2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the
item-name).

Based on this definition, we have the following FP-tree construction algorithm.

Algorithm 1 (FP-tree construction).

Input: A transaction database DB and a minimum support threshold &.
Output: FP-tree, the frequent-pattern tree of DB.
Method: The FP-tree is constructed as follows.

1.

Scan the transaction database DB once. Collect F, the set of frequent items, and the
support of each frequent item. Sort F in support-descending order as FList, the list of
frequent items.

Create the root of an FP-tree, T, and label it as “null”. For each transaction Trans in DB
do the following.

Select the frequent items in Trans and sort them according to the order of FList. Let the
sorted frequent-item list in Trans be [p | P], where p is the first element and P is the
remaining list. Call insert_tree([p | P1, T).

The function insert_tree([p | P], T) is performed as follows. If T has a child N such
that N.item-name = p.item-name, then increment N’s count by 1; else create a new node
N, with its count initialized to 1, its parent link linked to 7', and its node-link linked to
the nodes with the same item-name via the node-link structure. If P is nonempty, call
insert_tree( P, N) recursively.

Analysis. The FP-tree construction takes exactly two scans of the transaction database: The
first scan collects the set of frequent items, and the second scan constructs the FP-tree. The
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cost of inserting a transaction Trans into the FP-tree is O(|freq(Trans)|), where freq(Trans)
is the set of frequent items in Trans. We will show that the FP-tree contains the complete
information for frequent-pattern mining.

2.2.  Completeness and compactness of FP-tree

There are several important properties of FP-tree that can be derived from the FP-tree
construction process.

Given a transaction database DB and a support threshold . Let F be the frequent items in
DB. For each transaction T, freq(T) is the set of frequent items in 7', i.e., freq(T) = TN F,
and is called the frequent item projection of transaction 7. According to the Apriori
principle, the set of frequent item projections of transactions in the database is sufficient
for mining the complete set of frequent patterns, because an infrequent item plays no role
in frequent patterns.

Lemma 2.1. Given a transaction database DB and a support threshold &, the complete
set of frequent item projections of transactions in the database can be derived from DB’s
FP-tree.

Rationale. Based on the FP-tree construction process, for each transaction in the DB, its
frequent item projection is mapped to one path in the FP-tree.

For a path aja; . . . a; from the root to a node in the FP-tree, let ¢, be the count at the
node labeled a; and c;k be the sum of counts of children nodes of a;. Then, according to
the construction of the FP-tree, the path registers frequent item projections of ¢, — ¢,
transactions.

Therefore, the FP-tree registers the complete set of frequent item projections without
duplication.

Based on this lemma, after an FP-tree for DB is constructed, it contains the complete
information for mining frequent patterns from the transaction database. Thereafter, only the
FP-tree is needed in the remaining mining process, regardless of the number and length of
the frequent patterns.

Lemma 2.2. Given a transaction database DB and a support threshold &. Without con-
sidering the (null) root, the size of an FP-tree is bounded by ) r_pp |freq(T)|, and the
height of the tree is bounded by maxrcpp{|freq(T)|}, where freq(T) is the frequent item
projection of transaction T.

Rationale. Based on the FP-tree construction process, for any transaction 7 in DB, there
exists a path in the FP-tree starting from the corresponding item prefix subtree so that the set
of nodes in the path is exactly the same set of frequent items in 7". The root is the only extra
node that is not created by frequent-item insertion, and each node contains one node-link
and one count. Thus we have the bound of the size of the tree stated in the Lemma.

The height of any p-prefix subtree is the maximum number of frequent items in any
transaction with p appearing at the head of its frequent item list. Therefore, the height of
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the tree is bounded by the maximal number of frequent items in any transaction in the
database, if we do not consider the additional level added by the root.

Lemma 2.2 shows an important benefit of FP-tree: the size of an FP-tree is bounded by the
size of its corresponding database because each transaction will contribute at most one path
to the FP-tree, with the length equal to the number of frequent items in that transaction. Since
there are often a lot of sharings of frequent items among transactions, the size of the tree is
usually much smaller than its original database. Unlike the Apriori-like method which may
generate an exponential number of candidates in the worst case, under no circumstances,
may an FP-tree with an exponential number of nodes be generated.

FP-tree is a highly compact structure which stores the information for frequent-pattern
mining. Since a single path “a; — a, — --- — a,,” in the a;-prefix subtree registers all
the transactions whose maximal frequent set is in the form of “a; — a, — --- — a;” for
any 1 < k < n, the size of the FP-tree is substantially smaller than the size of the database
and that of the candidate sets generated in the association rule mining.

The items in the frequent item set are ordered in the support-descending order: More
frequently occurring items are more likely to be shared and thus they are arranged closer
to the top of the FP-tree. This ordering enhances the compactness of the FP-tree structure.
However, this does not mean that the tree so constructed always achieves the maximal com-
pactness. With the knowledge of particular data characteristics, it is sometimes possible
to achieve even better compression than the frequency-descending ordering. Consider the
following example. Let the set of transactions be: {adef , bdef, cdef,a,a,a, b, b, b, c, c, c},
and the minimum support threshold be 3. The frequent item set associated with sup-
port count becomes {a:4, b:4, c:4,d:3, e:3, f:3}. Following the item frequency ordering
a—b—c—>d— e— f,the FP-tree constructed will contain 12 nodes, as shown in
figure 2(a). However, following another item ordering f — d — e - a — b — ¢, it will
contain only 9 nodes, as shown in figure 2(b).

The compactness of FP-tree is also verified by our experiments. Sometimes a rather small
FP-tree is resulted from a quite large database. For example, for the database Connect-4 used
in MaxMiner (Bayardo, 1998), which contains 67,557 transactions with 43 items in each
transaction, when the support threshold is 50% (which is used in the MaxMiner experiments

CRCRC CIOIOIC)
@ @ @ ()
CRCEC C
®®® 6O

a) FPtree follows the support ordering b} FPtree does not follow the support ordering

Figure 2. FP-tree constructed based on frequency descending ordering may not always be minimal.
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(Bayardo, 1998)), the total number of occurrences of frequent items is 2,219,609, whereas
the total number of nodes in the FP-tree is 13,449 which represents a reduction ratio of
165.04, while it still holds hundreds of thousands of frequent patterns! (Notice that for
databases with mostly short transactions, the reduction ratio is not that high.) Therefore,
it is not surprising some gigabyte transaction database containing many long patterns may
even generate an FP-tree that fits in main memory. Nevertheless, one cannot assume that
an FP-tree can always fit in main memory no matter how large a database is. Methods for
highly scalable F'P-growth mining will be discussed in Section 5.

3. Mining frequent patterns using FP-tree

Construction of a compact FP-tree ensures that subsequent mining can be performed with
a rather compact data structure. However, this does not automatically guarantee that it will
be highly efficient since one may still encounter the combinatorial problem of candidate
generation if one simply uses this FP-tree to generate and check all the candidate patterns.

In this section, we study how to explore the compact information stored in an FP-tree,
develop the principles of frequent-pattern growth by examination of our running exam-
ple, explore how to perform further optimization when there exists a single prefix path in
an FP-tree, and propose a frequent-pattern growth algorithm, FP-growth, for mining the
complete set of frequent patterns using FP-tree.

3.1.  Principles of frequent-pattern growth for FP-tree mining

In this subsection, we examine some interesting properties of the FP-tree structure which
will facilitate frequent-pattern mining.

Property 3.1 (Node-link property). For any frequent item a;, all the possible patterns
containing only frequent items and a; can be obtained by following a;’ s node-links, starting
from a;’s head in the FP-tree header.

This property is directly from the FP-tree construction process, and it facilitates the access
of all the frequent-pattern information related to a; by traversing the FP-tree once following
a;’s node-links.

To facilitate the understanding of other properties of FP-tree related to mining, we first
go through an example which performs mining on the constructed FP-tree (figure 1) in
Example 1.

Example 2. Let us examine the mining process based on the constructed FP-tree shown
in figure 1. Based on Property 3.1, all the patterns containing frequent items that a node a;
participates can be collected by starting at @;’s node-link head and following its node-links.
We examine the mining process by starting from the bottom of the node-link header table.

For node p, its immediate frequent pattern is (p:3), and it has two paths in the FP-tree:
(f:4,c3,a:3,m:2, p:2) and (c:1,b:1, p:1). The first path indicates that string
“(f,c,a,m, p)” appears twice in the database. Notice the path also indicates that string



62 HAN ET AL.

(f, c,a) appears three times and (f) itself appears even four times. However, they only
appear twice rogether with p. Thus, to study which string appear together with p, only p’s
prefix path (f:2, ¢:2, a:2, m:2) (or simply, ( fcam:2)) counts. Similarly, the second path
indicates string “(c, b, p)” appears once in the set of transactions in DB, or p’s prefix path
is {cb:1). These two prefix paths of p, “{(fcam:2), (cb:1)}”, form p’s subpattern-base,
which is called p’s conditional pattern base (i.e., the subpattern-base under the condition of
p’s existence). Construction of an FP-tree on this conditional pattern-base (which is called
p’s conditional FP-tree) leads to only one branch (c:3). Hence, only one frequent pattern
(cp:3) is derived. (Notice that a pattern is an itemset and is denoted by a string here.) The
search for frequent patterns associated with p terminates.

For node m, its immediate frequent pattern is (m:3), and it has two paths, (f:4, c:3,
a:3,m:2) and (f:4, c:3,a:3, b:1,m:1). Notice p appears together with m as well, however,
there is no need to include p here in the analysis since any frequent patterns involving p
has been analyzed in the previous examination of p. Similar to the above analysis, m’s
conditional pattern-base is {(fca:2), (fcab:1)}. Constructing an FP-tree on it, we derive m’s
conditional FP-tree, (f:3, ¢:3, a:3), a single frequent pattern path, as shown in figure 3.
This conditional FP-tree is then mined recursively by calling mine({ f:3, c:3, a:3) | m).

Figure 3 shows that “mine({ f:3, c:3, a:3) | m)” involves mining three items (a), (¢), (f)
in sequence. The first derives a frequent pattern (am:3), a conditional pattern-base {(fc:3)},
and then a call “mine({f:3, c:3) | am)”; the second derives a frequent pattern (cm:3), a
conditional pattern-base {(f:3)}, and then a call “mine({f:3) | cm)”; and the third derives
only a frequent pattern (fin:3). Further recursive call of “mine({ f:3, c:3) | am)” derives two
patterns (cam:3) and (fam:3), and a conditional pattern-base {(f:3)}, which then leads
to a call “mine({f:3) | cam)”, that derives the longest pattern (fcam:3). Similarly, the call
of “mine({f:3) | cm)” derives one pattern (fcm:3). Therefore, the set of frequent patterns
involving m is {(m:3), (am:3), (cm:3), (fm:3), (cam:3), (fam:3), (fcam:3), (fcm:3)}. This
indicates that a single path FP-tree can be mined by outputting all the combinations of the
items in the path.

Similarly, node b derives (b:3) and it has three paths: ( f:4, c:3, a:3, b:1), (f:4, b:1), and
(c:1, b:1). Since b’s conditional pattern-base {(fca:1), (f:1), (c:1)} generates no frequent
item, the mining for b terminates. Node a derives one frequent pattern {(a:3)} and one
subpattern base {(f¢:3)}, a single-path conditional FP-tree. Thus, its set of frequent patterns

Conditional pattern-base of "m" Conditional pattern-base of "am"

@ Conditional pattern-base of "cam"
(feab:1)
Conditional FP-tree of "am” @

Conditional FP-tree of "cam”

Header table

Figure 3. Mining FP-tree | m, a conditional FP-tree for item m.
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Table 2. Mining frequent patterns by creating conditional (sub)pattern-bases.

Item Conditional pattern-base Conditional FP-tree
4 {(feam:2), (cb:1)} {(e:3)}p

m {(fca:2), (fcab:1)} {(f:3, ¢:3, a:3)}|m
b {(fea:1), (f:1), (c:1)} (7]

a {(fe:3)} {(f:3, e3)}a

¢ {3} {(f:3)}e

f 1 [

can be generated by taking their combinations. Concatenating them with (a:3), we have
{(fa:3), (ca:3), (fca:3)}. Node ¢ derives (c:4) and one subpattern-base {(f:3)}, and the
set of frequent patterns associated with (c:3) is {(fc:3)}. Node f derives only (f:4) but no
conditional pattern-base.

The conditional pattern-bases and the conditional FP-trees generated are summarized in
Table 2.

The correctness and completeness of the process in Example 2 should be justified.
This is accomplished by first introducing a few important properties related to the mining
process.

Property 3.2 (Prefix path property). To calculate the frequent patterns with suffix a;, only
the prefix subpathes of nodes labeled a; in the FP-tree need to be accumulated, and the
frequency count of every node in the prefix path should carry the same count as that in the
corresponding node a; in the path.

Rationale. Let the nodes along the path P be labeled as a;, . . ., a, in such an order that
a is the root of the prefix subtree, a,, is the leaf of the subtree in P, and a; (1 <i <n)is
the node being referenced. Based on the process of FP-tree construction presented in Algo-
rithm 1, for each prefix node a; (1 < k < i), the prefix subpath of the node a; in P occurs
together with a; exactly a;.count times. Thus every such prefix node should carry the same
count as node a;. Notice that a postfix node a,, (fori < m < n) along the same path also
co-occurs with node a;. However, the patterns with a,, will be generated when examining
the suffix node a,,, enclosing them here will lead to redundant generation of the patterns that
would have been generated for a,,. Therefore, we only need to examine the prefix subpath
of g; in P.

For example, in Example 2, node m is involved in a path (f:4, ¢:3, a:3, m:2, p:2), to
calculate the frequent patterns for node m in this path, only the prefix subpath of node m,
which is ( f:4, c:3, a:3), need to be extracted, and the frequency count of every node in the
prefix path should carry the same count as node m. That is, the node counts in the prefix
path should be adjusted to (f:2, c:2, a:2).



64 HAN ET AL.

Based on this property, the prefix subpath of node a; in a path P can be copied and
transformed into a count-adjusted prefix subpath by adjusting the frequency count of every
node in the prefix subpath to the same as the count of node ;. The prefix path so transformed
is called the transformed prefix path of a; for path P.

Notice that the set of transformed prefix paths of a; forms a small database of patterns
which co-occur with a;. Such a database of patterns occurring with a; is called a;’s con-
ditional pattern-base, and is denoted as “pattern_base | a;”. Then one can compute all
the frequent patterns associated with a; in this a;-conditional pattern-base by creating a
small FP-tree, called a;’s conditional FP-tree and denoted as “FP-tree |a;”. Subsequent
mining can be performed on this small conditional FP-tree. The processes of construction of
conditional pattern-bases and conditional FP-trees have been demonstrated in Example 2.

This process is performed recursively, and the frequent patterns can be obtained by a
pattern-growth method, based on the following lemmas and corollary.

Lemma 3.1 (Fragment growth). Let a be an itemset in DB, B be o’s conditional pattern-
base, and B be an itemset in B. Then the support of @ U B in DB is equivalent to the support

of Bin B.

Rationale. According to the definition of conditional pattern-base, each (sub)transaction
in B occurs under the condition of the occurrence of « in the original transaction database
DB.If an itemset 8 appears in B y times, it appears with « in DB i times as well. Moreover,
since all such items are collected in the conditional pattern-base of o, @ U 8 occurs exactly
Y times in DB as well. Thus we have the lemma.

From this lemma, we can directly derive an important corollary.

Corollary 3.1 (Pattern growth). Let o be a frequent itemset in DB, B be o’ s conditional
pattern-base, and B be an itemset in B. Then o U B is frequent in DB if and only if B is
frequent in B.

Based on Corollary 3.1, mining can be performed by first identifying the set of frequent
1-itemsets in DB, and then for each such frequent 1-itemset, constructing its conditional
pattern-bases, and mining its set of frequent 1-itemsets in the conditional pattern-base, and
so on. This indicates that the process of mining frequent patterns can be viewed as first
mining frequent 1-itemset and then progressively growing each such itemset by mining
its conditional pattern-base, which can in turn be done similarly. By doing so, a frequent
k-itemset mining problem is successfully transformed into a sequence of k frequent 1-
itemset mining problems via a set of conditional pattern-bases. Since mining is done by
pattern growth, there is no need to generate any candidate sets in the entire mining process.

Notice also in the construction of a new FP-tree from a conditional pattern-base obtained
during the mining of an FP-tree, the items in the frequent itemset should be ordered in the
frequency descending order of node occurrence of each item instead of its support (which
represents item occurrence). This is because each node in an FP-tree may represent many
occurrences of an item but such a node represents a single unit (i.e., the itemset whose
elements always occur together) in the construction of an item-associated FP-tree.
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3.2.  Frequent-pattern growth with single prefix path of FP-tree

The frequent-pattern growth method described above works for all kinds of FP-trees. How-
ever, further optimization can be explored on a special kind of FP-tree, called single prefix-
path FP-tree, and such an optimization is especially useful at mining long frequent patterns.
A single prefix-path FP-tree is an FP-tree that consists of only a single path or a single
prefix path stretching from the root to the first branching node of the tree, where a branching
node is a node containing more than one child.
Let us examine an example.

Example 3. Figure 4(a) is a single prefix-path FP-tree that consists of one prefix path,
((a:10) — (b:8) — (c:7)), stretching from the root of the tree to the first branching node (c:7).
Although it can be mined using the frequent-pattern growth method described above, a better
method is to split the tree into two fragments: the single prefix-path, ((a:10) — (b:8) —
(c:7)), as shown in figure 4(b), and the multipath part, with the root replaced by a pseudo-
root R, as shown in figure 4(c). These two parts can be mined separately and then combined
together.

Let us examine the two separate mining processes. All the frequent patterns associated
with the first part, the single prefix-path P = ((a:10) — (b:8) — (c:7)), can be mined by
enumeration of all the combinations of the subpaths of P with the support set to the minimum
support of the items contained in the subpath. This is because each such subpath is distinct
and occurs the same number of times as the minimum occurrence frequency among the
items in the subpath which is equal to the support of the last item in the subpath. Thus, path
P generates the following set of frequent patterns, freq_pattern_set(P) = {(a:10), (b:8),
(c:7), (ab:8), (ac:T), (bc:T), (abc:T)}.

Let QO be the second FP-tree (figure 4(c)), the multipath part rooted with R. Q can be
mined as follows.

First, R is treated as a null root, and Q forms a multipath FP-tree, which can be mined
using a typical frequent-pattern growth method. The mining result is: freq_pattern_set(Q)

= {(d:4), (e:3), (f:3), (df:3)}.

0262680

(a) Single prefix-path tree {(b) Singlc-path portion P (c) Multipath portion Q

Figure 4. Mining an FP-tree with a single prefix path.
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Second, for each frequent itemset in Q, R can be viewed as a conditional frequent
pattern-base, and each itemset in Q with each pattern generated from R may form a dis-
tinct frequent pattern. For example, for (d:4) in freq_pattern_set(Q), P can be viewed as
its conditional pattern-base, and a pattern generated from P, such as (a:10), will generate
with it a new frequent itemset, (ad:4), since a appears together with d at most four times.
Thus, for (d:4) the set of frequent patterns generated will be (d:4) x freq_pattern_set(P) =
{(ad:4), (bd:4), (cd:4), (abd:4), (acd:4), (bcd:4), (abcd:4)}, where X x Y means that ev-
ery pattern in X is combined with every one in Y to form a “cross-product-like” larger
itemset with the support being the minimum support between the two patterns. Thus,
the complete set of frequent patterns generated by combining the results of P and Q
will be freq_pattern_set(Q) X freq_pattern_set(P), with the support being the support of
the itemset in Q (which is always no more than the support of the itemset
from P).

In summary, the set of frequent patterns generated from such a single prefix path consists
of three distinct sets: (1) freq_pattern_set(P), the set of frequent patterns generated from the
single prefix-path, P; (2) freq_pattern_set(Q), the set of frequent patterns generated from
the multipath part of the FP-tree, Q; and (3) freq_pattern_set(Q) x freq_pattern_set(P), the
set of frequent patterns involving both parts.

We first show if an FP-tree consists of a single path P, one can generate the set of frequent
patterns according to the following lemma.

Lemma 3.2 (Pattern generation for an FP-tree consisting of single path). Suppose an
FP-tree T consists of a single path P. The complete set of the frequent patterns of T can
be generated by enumeration of all the combinations of the subpaths of P with the support
being the minimum support of the items contained in the subpath.

Rationale. Let the single path P of the FP-tree be (a;:sy — az:sp = - -+ — ay:s). Since
the FP-tree contains a single path P, the support frequency s; of eachitema; (for1 <i < k)
is the frequency of a; co-occurring with its prefix string. Thus, any combination of the items
in the path, such as {(a;, ..., a;) (for 1 < i, j < k), is a frequent pattern, with their co-
occurrence frequency being the minimum support among those items. Since every item in
each path P is unique, there is no redundant pattern to be generated with such a combi-
national generation. Moreover, no frequent patterns can be generated outside the FP-tree.
Therefore, we have the lemma.

We then show if an FP-tree consists of a single prefix-path, the set of frequent patterns
can be generated by splitting the tree into two according to the following lemma.

Lemma 3.3 (Pattern generation for an FP-tree consisting of single prefix path). Suppose
an FP-tree T, similar to the tree in figure 4(a), consists of (1) a single prefix path P, similar
to the tree P in figure 4(b), and (2) the multipath part, Q, which can be viewed as an
independent FP-tree with a pseudo-root R, similar to the tree Q in figure 4(c).
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The complete set of the frequent patterns of T consists of the following three portions:

1. The set of frequent patterns generated from P by enumeration of all the combinations
of the items along path P, with the support being the minimum support among all the
items that the pattern contains.

2. The set of frequent patterns generated from Q by taking root R as “null.”

3. The set of frequent patterns combining P and Q formed by taken the cross-product
of the frequent patterns generated from P and Q, denoted as freq_pattern_set(P) X
freq_pattern_set(Q), that is, each frequent itemset is the union of one frequent itemset
from P and one from Q and its support is the minimum one between the supports of the
two itemsets.

Rationale. Based on the FP-tree construction rules, each node g; in the single prefix path
of the FP-tree appears only once in the tree. The single prefix-path of the FP-tree forms a
new FP-tree P, and the multipath part forms another FP-tree Q. They do not share nodes
representing the same item. Thus, the two FP-trees can be mined separately.

First, we show that each pattern generated from one of the three portions by following
the pattern generation rules is distinct and frequent. According to Lemma 3.2, each pattern
generated from P, the FP-tree formed by the single prefix-path, is distinct and frequent.
The set of frequent patterns generated from Q by taking root R as “null” is also distinct
and frequent since such patterns exist without combining any items in their conditional
databases (which are in the items in P. The set of frequent patterns generated by combining
P and Q, that is, taking the cross-product of the frequent patterns generated from P and
0, with the support being the minimum one between the supports of the two itemsets, is
also distinct and frequent. This is because each frequent pattern generated by P can be
considered as a frequent pattern in the conditional pattern-base of a frequent item in Q,
and whose support should be the minimum one between the two supports since this is the
frequency that both patterns appear together.

Second, we show that no patterns can be generated out of this three portions. Since
according to Lemma 3.1, the FP-tree T without being split into two FP-trees P and Q gen-
erates the complete set of frequent patterns by pattern growth. Since each pattern generated
from T will be generated from either the portion P or Q or their combination, the method
generates the complete set of frequent patterns.

3.3.  The frequent-pattern growth algorithm

Based on the above lemmas and properties, we have the following algorithm for mining
frequent patterns using FP-tree.

Algorithm 2 (FP-growth: Mining frequent patterns with FP-tree by pattern fragment
growth).

Input: A database DB, represented by FP-tree constructed according to Algorithm 1, and
a minimum support threshold &.
Output: The complete set of frequent patterns.
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Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, o)

{

(1) if Tree contains a single prefix path  // Mining single prefix-path FP-tree

(2) then{

3) let P be the single prefix-path part of Tree;

“) let O be the multipath part with the top branching node replaced by a null root;
(®)] for each combination (denoted as ) of the nodes in the path P do

(6) generate pattern 8 U o with support = minimum support of nodes in B;

@) let freq_pattern_set(P) be the set of patterns so generated; }

(8) else let Q be Tree;

(9) foreachitema; in Q do { // Mining multipath FP-tree

(10) generate pattern § = a; U o with support = a;.support;

(11 construct B’s conditional pattern-base and then 8’s conditional FP-tree Treeg;
(12)  ifTreeg # 0

(13) then call FP-growth(Treeg, B);

(14) let freq_pattern_set(Q) be the set of patterns so generated; }

(15) return(freq_pattern_set(P) U freq_pattern_set(Q) U (freq_pattern_set(P)

x freq_pattern_set(Q)))
}

Analysis. With the properties and lemmas in Sections 2 and 3, we show that the algorithm
correctly finds the complete set of frequent itemsets in transaction database DB.

As shown in Lemma 2.1, FP-tree of DB contains the complete information of DB in
relevance to frequent pattern mining under the support threshold &.

If an FP-tree contains a single prefix-path, according to Lemma 3.3, the generation of the
complete set of frequent patterns can be partitioned into three portions: the single prefix-path
portion P, the multipath portion Q, and their combinations. Hence we have lines (1)-(4) and
line (15) of the procedure. According to Lemma 3.2, the generated patterns for the single
prefix path are the enumerations of the subpaths of the prefix path, with the support being the
minimum support of the nodes in the subpath. Thus we have lines (5)-(7) of the procedure.
After that, one can treat the multipath portion or the FP-tree that does not contain the single
prefix-path as portion Q (lines (4) and (8)) and construct conditional pattern-base and mine
its conditional FP-tree for each frequent itemset a;. The correctness and completeness of
the prefix path transformation are shown in Property 3.2. Thus the conditional pattern-bases
store the complete information for frequent pattern mining for Q. According to Lemmas 3.1
and its corollary, the patterns successively grown from the conditional FP-trees are the set
of sound and complete frequent patterns. Especially, according to the fragment growth
property, the support of the combined fragments takes the support of the frequent itemsets
generated in the conditional pattern-base. Therefore, we have lines (9)-(14) of the procedure.
Line (15) sums up the complete result according to Lemma 3.3.

Let’s now examine the efficiency of the algorithm. The FP-growth mining process scans
the FP-tree of DB once and generates a small pattern-base B, for each frequent item a;,
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each consisting of the set of transformed prefix paths of @;. Frequent pattern mining is then
recursively performed on the small pattern-base B,, by constructing a conditional FP-tree
for B,,. As reasoned in the analysis of Algorithm 1, an FP-tree is usually much smaller than
the size of DB. Similarly, since the conditional FP-tree, “FP-tree | a;”, is constructed on the
pattern-base B,,, it should be usually much smaller and never bigger than B,,. Moreover, a
pattern-base B,, is usually much smaller than its original FP-tree, because it consists of the
transformed prefix paths related to only one of the frequent items, a;. Thus, each subsequent
mining process works on a set of usually much smaller pattern-bases and conditional FP-
trees. Moreover, the mining operations consist of mainly prefix count adjustment, counting
local frequent items, and pattern fragment concatenation. This is much less costly than
generation and test of a very large number of candidate patterns. Thus the algorithm is
efficient.

From the algorithm and its reasoning, one can see that the F'P-growth mining process is
a divide-and-conquer process, and the scale of shrinking is usually quite dramatic. If the
shrinking factor is around 20-100 for constructing an FP-tree from a database, it is expected
to be another hundreds of times reduction for constructing each conditional FP-tree from
its already quite small conditional frequent pattern-base.

Notice that even in the case that a database may generate an exponential number of
frequent patterns, the size of the FP-tree is usually quite small and will never grow ex-
ponentially. For example, for a frequent pattern of length 100, “ay, ..., ajp”, the FP-tree
construction results in only one path of length 100 for it, possibly “(a;, — - - - —ajgo)” (if
the items are ordered in the list of frequent items as ay, . .., ajo0). The FP-growth algorithm
will still generate about 1030 frequent patterns (if time permits!!), such as “ay, ay, . . ., ajas,
..., a1aras, . . .,aj ...ayy.” However, the FP-tree contains only one frequent pattern path of
100 nodes, and according to Lemma 3.2, there is even no need to construct any conditional
FP-tree in order to find all the patterns.

4. Scaling FP-tree-based FP-growth by database projection

FP-growth proposed in the last section is essentially a main memory-based frequent pat-
tern mining method. However, when the database is large, or when the minimum support
threshold is quite low, it is unrealistic to assume that the FP-tree of a database can fit in
main memory. A disk-based method should be worked out to ensure that mining is highly
scalable. In this section, a method is developed to first partition the database into a set of pro-
jected databases, and then for each projected database, construct and mine its corresponding
FP-tree.
Let us revisit the mining problem in Example 1.

Example 4. Suppose the FP-tree in figure 1 cannot be held in main memory. Instead of
constructing a global FP-tree, one can project the transaction database into a set of frequent
item-related projected databases as follows.

Starting at the tail of the frequent item list, p, the set of transactions that contain item
p can be collected into p-projected database. Infrequent items and item p itself can be
removed from them because the infrequent items are not useful in frequent pattern mining,
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Table 3. Projected databases and their FP-trees.

Item Projected database Conditional FP-tree
)4 {fcam, cb, fcam} {(c:3)}p

m {fca, fcab, fca} {(f:3, ¢:3, a:3)}m
b {fea, f, c} ]

a {fc, fc, fc} {(f:3,c:3)}a

c {f. f. [} {(f:3)}e

f [ )

and item p is by default associated with each projected transaction. Thus, the p-projected
database becomes {fcam, cb, fcam}. This is very similar to the the p-conditional pattern-
base shown in Table 2 except fcam and fcam are expressed as (fcam:2) in Table 2. After
that, the p-conditional FP-tree can be built on the p-projected database based on the FP-tree
construction algorithm.

Similarly, the set of transactions containing item m can be projected into m-projected
database. Notice that besides infrequent items and item m, item p is also excluded from the
set of projected items because item p and its association with m have been considered in the
p-projected database. For the same reason, the b-projected database is formed by collecting
transactions containing item b, but infrequent items and items f, m and b are excluded. This
process continues for deriving a-projected database, c-projected database, and so on. The
complete set of item-projected databases derived from the transaction database are listed in
Table 3, together with their corresponding conditional FP-trees. One can easily see that the
two processes, construction of the global FP-tree and projection of the database into a set
of projected databases, derive identical conditional FP-trees.

As shown in Section 2, a conditional FP-tree is usually orders of magnitude smaller than
the global FP-tree. Thus, construction of a conditional FP-tree from each projected database
and then mining on it will dramatically reduce the size of FP-trees to be handled. What
about that a conditional FP-tree of a projected database still cannot fit in main memory?
One can further project the projected database, and the process can go on recursively until
the conditional FP-tree fits in main memory.

Let us define the concept of projected database formally.
Definition 2 (Projected database).

— Let g; be a frequent item in a transaction database, DB. The a;-projected database for a;
is derived from DB by collecting all the transactions containing a; and removing from
them (1) infrequent items, (2) all frequent items after a; in the list of frequent items, and
(3) a; itself.

— Let a; be a frequent item in «-projected database. Then the a;o-projected database is
derived from the «-projected database by collecting all entries containing a ; and removing
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from them (1) infrequent items, (2) all frequent items after a; in the list of frequent items,
and (3) a; itself.

According to the rules of construction of FP-tree and that of construction of projected
database, the a;-projected database is derived by projecting the same set of items in the
transactions containing a; into the projected database as those collected in the construction
of the a;-subtree in the FP-tree. Thus, the two methods derive the same sets of conditional
FP-trees.

There are two methods for database projection: parallel projection and partition projec-
tion.

FParallel projection is implemented as follows: Scan the database to be projected once,
where the database could be either a transaction database or an «-projected database. For
each transaction T in the database, for each frequent item a; in T, project T to the a;-
projected database based on the transaction projection rule, specified in the definition of
projected database. Since a transaction is projected in parallel to all the projected databases
in one scan, it is called parallel projection. The set of projected databases shown in Table 3
of Example 4 demonstrates the result of parallel projection. This process is illustrated in
figure 5(a).

Parallel projection facilitates parallel processing because all the projected databases are
available for mining at the end of the scan, and these projected databases can be mined
in parallel. However, since each transaction in the database is projected to multiple pro-
jected databases, if a database contains many long transactions with multiple frequent
items, the total size of the projected databases could be multiple times of the original one.
Let each transaction contains on average / frequent items. A transaction is then projected
to [ — 1 projected database. The total size of the projected data from this transaction is
1+24+---4+01-1= l(’%” This implies that the total size of the single item-projected
databases is about % times of that of the original database.

To avoid such an overhead, we propose a partition projection method. Partition projection
is implemented as follows. When scanning the database (original or a-projected) to be
projected, a transaction T is projected to the a;-projected database only if g; is a frequent
item in 7 and there is no any other item after @; in the list of frequent items appearing

Transaction database TDB Transaction database TDB
|t feampdgi ¢ feampdgi
74 feabmlo feabmlo list: <f-c-a-b
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‘
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(a) Parallel projection (b) Partition Projection

Figure 5. Parallel projection vs. partition projection.
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in the transaction. Since a transaction is projected to only one projected database at the
database scan, after the scan, the database is partitioned by projection into a set of projected
databases, and hence it is called partition projection.

The projected databases are mined in the reversed order of the list of frequent items. That
is, the projected database of the least frequent item is mined first, and so on. Each time when
a projected database is being processed, to ensure the remaining projected databases obtain
the complete information, each transaction in it is projected to the a;-projected database,
where a; is the item in the transaction such that there is no any other item after a; in the
list of frequent items appearing in the transaction. The partition projection process for the
database in Example 4 is illustrated in figure 5(b).

The advantage of partition projection is that the total size of the projected databases at
each level is smaller than the original database, and it usually takes less memory and I/Os to
complete the partition projection. However, the processing order of the projected databases
becomes important, and one has to process these projected databases in a sequential manner.
Also, during the processing of each projected database, one needs to project the processed
transactions to their corresponding projected databases, which may take some I/O as well.
Nevertheless, due to its low memory requirement, partition projection is still a promising
method in frequent pattern mining.

Example 5. Let us examine how the database in Example 4 can be projected by partition
projection.

First, by one scan of the transaction database, each transaction is projected to only one
projected database. The first transaction, facdgimp, is projected to the p-projected database
since p is the last frequent item in the list of frequent items. Thus, fcam (i.e., with infrequent
items removed) is inserted into the p-projected database. Similarly, transaction abcflmo is
projected to the m-projected database as fcab, bfhjo to the b-projected database as f,
bcksp to the p-projected database as cb, and finally, afcelpmn to the p-projected database
as fcam. After this phrase, the entries in every projected databases are shown in Table 4.

With this projection, the original database can be replaced by the set of single-item
projected databases, and the total size of them is smaller than that of the original database.

Second, the p-projected database is first processed (i.e., construction of p-conditional
FP-tree), where p is the last item in the list of frequent items. During the processing of the
p-projected database, each transaction is projected to the corresponding projected database

Table 4. Single-item projected databases by partition projection.

Item Projected databases

P {fcam, cb, fcam}
m {fcab}
b {r}

?

[

f 9

S

S
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according to the same partition projection rule. For example, fcam is projected to the m-
projected database as fca, cb is projected to the b-projected database as ¢, and so on. The
process continues until every single-item projected database is completely processed.

5. [Experimental evaluation and performance study

In this section, we present a performance comparison of FP-growth with the classical
frequent pattern mining algorithm Apriori, and an alternative database projection-based al-
gorithm, TreeProjection. We first give a concise introduction and analysis to TreeProjection,
and then report our experimental results.

5.1. A comparative analysis of FP-growth and TreeProjec