
Quadtree and R-tree Indexes in Oracle Spatial:
A Comparison using GIS Data

Ravi Kanth V Kothuri
Spatial Technologies
Oracle Corporation

NEDC, Nashua NH 03062.
Ravi.Kothuri@oracle.com

Siva Ravada
Spatial Technologies
Oracle Corporation

NEDC, Nashua NH 03062.
Siva. Ravada@oracle.com

Daniel Abugov
Spatial Technologies
Oracle Corporation

NEDC, Nashua NH 03062.
Daniel.Abugov@oracle.com

ABSTRACT
Spatial indexing has been one of the active focus ar-
eas in recent database research. Several variants of
Quadtree and R-tree indexes have been proposed in
database literature. In this paper, we first describe
briefly our implementation of Quadtree and R-tree
index structures and related optimizations in Ora-
cle Spatial. We then examine the relative merits of
t h e two structures as implemented in Oracle Spatial
and compare their performance for different types of
queries and other operations. Finally, we summarize
our experiences with these different structures in in-
dexing large GIS datasets in Oracle Spatial.

1. INTRODUCTION
Spatial searching is a fundamental primitive in non-
t radi t ional databases such as GIS, CAD/CAM and
mult i -media applications. Wi th the rapid prolifera-
tion of these databases in the past decade, extensive
research has been conducted on the design of efficient
da ta structures to enable fast spatial searching. Sev-
eral da ta structures have been developed in this con-
text. These include Quadtrees [26, 27, 31], R-trees [13,
2S], hB-trees [19], WV-trees [lS], SS-trees [33], and SR-
trees [15]. Subsequent research has improved these ba-
sic structures further by proposing new techniques for
query processing [4, 5, 9, 14, 16, 20, 21, 22, 30], faster
and bet ter index creation [12, 17, 29, 32], and bet-
ter split-strategies in dynamic updates [2, 3]. These
techniques are especially effective for low-dimensional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permassion and/or a fee.
ACM S1GMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

spatial da t a such as those in GIS and CAD/CAM ap-
plications. Commercial database vendors like IBM,
and Oracle have also s tar ted implementing these in-
dexing techniques to cater to the large and diverse GIS
and C A D / C A M application markets. In this paper we
examine different approaches supported by Oracle for
indexing such low-dimensional da ta and present our
experiences with their relative performance on large
GIS datasets.

For indexing low-dimensional spatial data, Oracle Spa-
tial allows users to choose between one of two spatial
indexes: a (Linear) Quadtree [27] or an R-tree [13,
28, 2, 3, 17, 11]. These indexes are implemented us-
ing the extensible indexing framework of Oracle [24]
and incorporate and enhance some of the best propos-
als from existing spatial indexing research. The Lin-
ear Quadtree (or Quadtree for short) computes tile
approximations for geometries and uses existing B-
tree indexes for performing spatial search and other
DML operations. This approach results in simpler
index creation, faster updates and inheriting of built-
in B-tree concurrency control protocols. The R-tree
is implemented logically as a tree and physically us-
ing tables inside the database and the search involves
recursive SQL for traversing the tree from root to rel-
evant leaves. This approach may be more efficient for
queries due to bet ter preservation of spatial proxim-
ity but may be slow in updates or index creation and
implements its own concurrency protocols on top of
Oracle's table-level concurrency mechanisms. In the
following sections, we describe these implementations
in more detail and compare their relative behavior pri-
marily with respect to query performance (since up-
dates are not high in most GIS applications). Such a
comparison of two popular indexing strategies, inside
a commercial database, provides useful insight into the
following aspects of indexing: (1) the strengths and
weaknesses of the Quadtree and the R-tree implemen-
tations for indexing spatial data, and (2) whether a

546

"true" tree-based structure in a database could be as
efficient as structures implemented using built-in in-
dexes like B-trees or hash tables.

The rest of the paper is organized as follows: Sec-
t ion 2 describes how Oracle Spatial supports spatial
da ta and presents the model for query processing us-
ing either of its two indexes, Quadtrees and R-trees.
Sections 3 and 4 present implementation details of
Quadtrees and R-trees in Oracle Spatial. Section 5 de-
scribes the tes tbed and compares the two index struc-
tures. The final section summarizes the results.

2. ORACLE SPATIAL
Oracle Spatial models 2-4 dimensional spatial da ta us-
ing an sdo_geometry data type. For the 2-dimensional
case, this da ta type models all the spatial da ta types
defined by the Open GIS Consortium (OGC) and caters
to most data occurring in GIS, CAD/CAM applica-
tions. Supported spatial da ta includes simple prim-
itive elements such as points, lines, curves, polygons
(with and without holes), and complex elements that
are made up of a combination of primitive elements.
The sdo_geometry da ta type is implemented as an Or-
acle object datatype. This approach extends all the
benefits of Oracle's object-relational database technol-
ogy including replication to spatial data.

2.1 Indexing Framework
Quadtree and R-tree indexes on spatial da ta are im-
plemented using the extensible indexing framework of
Oracle [6, 24]. This framework allows for the cre-
ation of new domain-specific indexes and associated
query operators and provides for the integration of
user-specified query, update and index creation rou-
tines inside Oracle server. Oracle Spatial supports a
"spatialAndex" indextype for indexing spatial data.
Quadtree and R-tree indexes are supported as part
of this "spatial_index" indextype. Since these indexes
are implemented as part of the extensible indexing
framework, spatial indexes can be easily created on
"sdo_geometry" columns of database tables using an
extended SQL syntax. As part of such index creation,
the corresponding spatial index creation routines are
executed and the constructed spatial index is stored
in the database as a "spatial.index" table. The index
table stores index information such as R-tree nodes
in the case of R-trees and Quadtree tiles in the case
of Quadtrees. The metada ta for the entire index is
stored as a row in a separate me tada ta table. This
me tada ta includes the name of the index table storing
the index, dimensionality, root pointer fanout param-
eters for an R-tree and the tiling level parameter for
a Quadtree index.

In addition to SQL-level index creation, inserts and

updates to database tables that have a spatial in-
dex also automatical ly trigger an update of the cor-
responding spatial indexes. In addit ion to these ad-
vantages, extensible indexing also ensures s ta tement
or session-level concurrency and table-level recovery.

To query the constructed spatial indexes, new pred-
icates, referred to as operators, are defined. These
operators can be included in the "where" clause of
a SQL sta tement to select da ta tha t satisfy a speci-
fied query criterion with respect to a specified query
window. Such operators are executed using index-
associated procedures for query processing and allow
for incremental processing of queries (see [24, 6] for
more details). In what follows, we describe the query
operators supported by Oracle Spatial. These opera-
tors have identical semantics irrespective of whether
they are executed using underlying Quadtree or R-tree
indexes.

2.2 Queries on Spatial Indexes
Oracle Spatial provides an operator called sdo_relate
that identifies da ta geometries that interact with the
query geometry for a specified criterion, in Oracle Spa-
tial terms, a mask. These masks or criteria are based
on the 9-intersection model of [7, 8] and the sdo_relate
operator is equivalent to the ST_relate operator of
SQL/MM. 1

• anyinteract: identify da ta geometries that inter-
sect the specified query geometry

• inside: identify da ta geometries tha t are "com-
pletely inside" the query geometry

• coveredby: identify da ta geometries tha t "touch"
on at least one boundary and are inside the query
geometry otherwise

• contains: reverse of inside

• covers: reverse of coveredby

• touch: identify geometries whose boundary "touches"
the boundary of the query geometry but disjoint
otherwise

• equal: identify geometries that are exactly the
same as the query geometry

• overlapbdyintersect: identify geometries tha t over-
lap each other and boundaries intersect.

• overlapbdydisjoint: identify geometries that over-
lap with the query geometry but the boundaries
are disjoint.

1Most SQL/MM suggested methods are available in
one form or the other in Oracle Spatial.

547

Since indexes for geometries work with approxima-
tions, Oracle Spatial provides the sdo_filter operator
which returns results directly from the index without
performing geometry-level comparisons. This opera-
tor gives a fast but approximate answer for geometries
intersecting a query window. In addit ion to these op-
erators, Oracle spatial also provides the following set
of metric (or distance) operators:

• sdo_within_distance (or within-distance) queries:
identify geometries tha t are within a specified
distance from the query geometry

• sdo_nn (nearest-neighbor) queries: identify the
k nearest neighbors [14, 25] for a specified query
geometry.

In this paper, we focus mostly on sdo_relate and
sdo_within_distance operators since they are the most
frequently used operators in GIS applications. In what
follows, we describe the general methodology for pro-
cessing such queries in Oracle Spatial. The techniques
described are applied for both types of indexes, Quadtrees
or R-trees.

2.3 Query Processing in Oracle Spatial
To efficiently process the above queries on complex
spatial data, Oracle Spatial uses a multi-stage query
model as shown in Figure l (a) . In the first stage, re-
ferred to as the primary filter, the spatial index is used
for query filtering. Candidate geometries tha t may
satisfy a given query criterion are first identified in this
stage with the help of the exterior approximations in
the spatial index. In the case of a Quadtree, Quadtree
tiles [27] are used as the exterior approximations and
in the case of an R-tree, minimum bounding rectan-
gles (MBRs) are used. In the intermediate stage, can-
didate geometries are compared with the query using
the interior approximations of both query and can-
didate geometries and some candidate geometries are
either accepted or el iminated based on the query cri-
terion. The rest of the geometries whose interaction
is not determined in the intermediate filter are then
passed through to the final stage, referred to as the
secondary filter, and the exact result set is determined
and returned to the user. Whereas the secondary filter
uses computat ional geometry algorithms to determine
interaction between query and candidate geometries,
the pr imary and intermediate filters use exterior and
interior approximations of query and da ta geometries
(from the index). In what follows, we il lustrate the
processing of these two filters with a simple example.
More detailed explanation in the context of specific
indexes is discussed in the subsequent sections.

Next, we illustrate the processing of pr imary and in-
termediate filters for an R-tree index. Similar process-
ing is performed for Quadtrees. Consider the query
geometry Q and da ta geometry G of Figure l (b) . We
assume the query is finding all geometries tha t inter-
sect the query geometry (window query with anyin-
teract (intersection)-type of interaction). The exte-
rior approximations, which are MBRs for Oracle Spa-
tial R-trees [24], are shown as dashed boxes and the
interior rectangles are shown as solid boxes for the ge-
ometries. The pr imary filter determines tha t query
Q may interact with geometry G using their exterior
approximations, the MBRs, which happen to inter-
sect each other. Next, the intermediate filter is used
which determines tha t the exterior of the geometry G
is inside the interior of the query Q. It then deter-
mines tha t the geometry satisfies the anyinteract cri-
terion of the query and includes the geometry directly
in the result set thus bypassing the secondary filter.
Since comparison of two geometries (query geometry
and a candidate da ta geometry) in the secondary fil-
ter is expensive due to both loading of geometry da ta
and the expensive computat ional geometry required
to determine the relationship between the two geome-
tries, e l iminat ion/acceptance in the intermediate filter
reduces query processing t ime considerably. Experi-
mental results validating this theory are presented in
[23] for the case of R-trees. Similar results are also
reported for Quadtrees in [1].

3. INDEX-BASED FILTERING IN OR-
ACLE SPATIAL

In this section, we first describe the implementat ion of
pr imary and intermediate filters using Quadtree and
R-tree indexes. Then, we describe the implementat ion
of intermediate filter for each of these indexes.

3.1 Quadtree as the Primary Filter
Oracle Spatial uses the following s t rategy in Quadtree
indexing: a user-specified tiling level is chosen and
each da ta geometry is approximated by a minimal
set of covering tiles. Each tile is associated with a
tile-code obtained by using z-ordering of all tiles at
the specified level. During tessellation, the tiles for
the geometry are divided into interior and boundary
based on whether or not they are completely interior
to the geometry. All the covering tiles for a geometry
are then inserted into the spat ia l . index table along
with the rowid of the geometry. As a result of this
approach, a geometry may have mult iple rows in the
spat ial . index table where each row stores a (different)
tile-code, in ter ior /boundary status, and the rowid of
the geometry. A B-tree index on the tile_code, rowid,
s tatus is then constructed for speeding up queries.

548

Primary Filter

~ Candidate
Quelr~ Geometries Intermediate

Filter

False Hits
(exclude from the result set)

~nown Secondary Filter
Geometry-
Geometry
Comparator

True Hits
(send directly to the result set)

Result Geometries

F i g u r e 1: (a) M u l t i - s t a g e Q u e r y P r o c e s s i n g in Oracle Spat ia l .
geometries.

', ~ UBRCQ)

?,1
(b) Interior approximations for

At query time, the query geometry is likewise tessel-
lated into a set of tiles. Using each tile of the query ge-
ometry, the rowids of all geometries whose tiles match
the query tiles are identified by a tile-code join using
the B-tree index on the tile-codes.

The above approach also makes updates much easier
to handle. When a new geometry is inserted into the
dataset, it is tessellated into the user-specified-level
tiles and the tiles are inserted into the spatial.index ta-
ble. The B-tree index is automatically updated to in-
clude the tiles for the new geometry. Likewise, when a
geometry is deleted the corresponding rows are deleted
from the spatial.index table and the B-tree index is
once again internally updated by the server. In spite
of these advantages, Quadtree has one drawback: the
need to choose an appropriate tiling level for tesse-
luting the data and query geometries. Much experi-
mentation with different levels is needed in order to
optimize performance for a specific dataset.

3.2 R-tree as the Primary Filter
In Oracle Spatial, R-trees maintain their logical tree
structure and are implemented as a table where each
node of the R-tree corresponds to a row in the table
and a child pointer in the R-tree corresponds to the
rowid of child row in the same table. The root rowid
(pointer) of the R-tree is stored in the metadata for
the index and allows navigation from the root of the
R-tree to the leaf nodes. Leaf nodes of the R-tree store
one MBR for each data geometry along with the ge-
ometry rowid. Queries and updates obtain the root of
the R-tree and navigate down the tree to the leaves.
More details on this implementation can be obtained
from [24]. Note that each time an R-tree node is vis-
ited, the corresponding row from the spatial.index is
selected using a SQL statement internally. This means
query and update processing in R-trees involves pro-
cessing of more recursive SQL statements than in the
case of Quadtrees. As a result, some DML operations
especially updates are likely to be more costly.

The algorithms used for R-trees in Oracle Spatial in-

volve scalable adaptations of existing research solu-
tions and a set of in-house optimizations and enhance-
ments. The details are not in the scope of this paper.
Major optimizations such as the interior approxima-
tions for intermediate filter are described in the next
subsection.

3.3 Intermediate Filter in Oracle Spatial
In the primary filter, the spatial index uses the ex-
terior approximations of query and candidate data
geometries to determine whether or not they inter-
act. If they do interact, then the query and the ge-
ometry along with any interior approximations are
passed on to the intermediate filter. The interme-
diate filter takes the query q, and a candidate ge-
ometry g and returns true if the geometry is to be
included in the result set, false if not, and unknown
if it cannot determine the relationship, in which case
the query-candidate pair is passed to the secondary-
filter to determine the exact relationship. These paths
from the intermediate filter are shown with unknown,
true, false labels in Figure l(a). To determine these
relationships, the intermediate filter uses the interi-
ors of the query and the candidate geometries (passed
on from the primary filter). In the case of quadtrees,
the interior and the boundary tiles of the candidate
geometries are compared with the interior and the
boundary tiles of query geometry. In the case of R-
trees, only the interior of the query geometry is used
and the interiors of the candidate data geometries are t
not computed. The operational behavior of the inter-
mediate filter for different queries for both Quadtree
and R-tree indexes are described in [23].

3.4 Interior Approximations in Quadtrees
In the case of Quadtrees, interior tiles for data geome-
tries are identified at index creation time. The tiles
for each geometry are labeled with a "status" indicat-
ing whether they are interior tiles or boundary tiles.
If any part of the boundary of a geometry touches a
tile, the status is set to "boundary". Otherwise, if the
tile is completely inside the geometry, the status is set
to "interior". These status labels along with the tile-

549

codes axe compared with those of the query tiles at
query time to implement the intermediate filtering as
described above. Note that such labeling of the tiles
that cover query and da ta geometries imposes very lit-
tle overhead (one byte per row) on storage space, and
does not effect query or update performance.

3.5 Interior Approximations in R-trees
In the case of R-trees, we decided to compute inte-
rior approximations for query geometries only and use
them in the intermediate filter. This approach allevi-
ates the need for changing existing indexes (only the
query behavior will change and not the physical R-tree
storage), and avoids any ill-effects of decreasing the
fanout for a fixed block-size. In addition, since da ta
geometries are generally much smaller than query ge-
ometries, the loss of any improvements from using the
da ta interiors will be relatively small compared to the
gains of using the query interior.

R-trees take a two-pronged approach to finding in-
terior approximations. For convex geometries, they
divide the geometry into 4 pieces using the x- or the
y-extent (whichever is larger) and compute the largest
inscribed rectangle for each of these pieces using the
technique of [10]. Several interesting properties from
[23] show that the interior MBRs could be used as one
single contiguous geometry.

The above approach for finding interiors of convex
polygons cannot be effectively extended to concave
geometries as described in [23]. For concave geome-
tries, an al ternate technique for finding the interior
approximations for concave query windows is used.
The idea is to first recursively divide the MBR of the
concave geometry into quadrants 4 times i.e., perform
a level-4 tiling using the MBR as the tiling domain.
Then among the tiles tha t cover the geometry tiles
that are interior to the geometry are identified. Can-
didate MBRs are also tiled and the tiles for the can-
didate MBR are searched among the interior tiles for
the concave query window. Recent results [23] show
that this two-pronged approach for implementing the
intermediate filter in R-trees achieves substantial im-
provements in query performance. As will be seen in
the experiments, the interior area captured using this
approach could be larger than tha t for some quadtree
indexes constructed using a tiling level of 14 since the
tiling domain in tha t case is the entire da ta space
whereas the tiling domain for the R-tree is just the
MBR of the concave geometry.

3.6 Interior Approximations Summary
Table 1 summarizes the use of interior approximations
for Quadtrees and R-trees. As described, Quadtrees
use interior tiles for both query and da ta geometries.

The tiles for each da ta geometry in the spat ial . index
table are labeled interior or boundary based on whether
or not they are interior to the da ta geometry. Like-
wise, the interior tiles to a query are also identified.
Together, the interiors of the query and candidate ge-
ometries are used in the intermediate filter to bypass
the secondary filter whenever possible (as described
in Section 3.1). In contrast, R-trees only use interiors
of the queries. As a consequence, bypassing the sec-
ondary filter is not possible in all cases but will still be
effective in most cases (as described in Section 3.5).

Convex Query

Concave Query

Quadtree] R - t r e e [

Interior None
tiles

Interior Interior
tiles MBRs

Interior Interior
tiles tiles

Table 1: Summary of the use o f interior ap-
proximations for Quadtree and R-trees

With all these optimizations incorporated into the in-
dexes, we compare the performance of both Quadtrees
and R-trees for different queries.

4. EXPERIMENTS
In this section, we describe experimental results tha t
compare the performance of Quadtrees and R-trees.
We used two datasets: the US Blockgroup (USBG)
dataset consisting of about 230K arbi t rar i ly-shaped
polygon geometries, and the US Business Area (ABI)
dataset consisting of over 10M da ta points.

For both datasets, Quadtree and R-tree indexes are
created. In order to optimize performance, Quadtrees
need to be fine-tuned by choosing an appropria te tiling
level. Unlike Quadtrees, no specific tuning is required
for R-trees. In the next subsection, we demonstra te
the dependence of Quadtree performance on the tiling
level using a subset of USBG data.

4.1 Impact of Tiling level on the Perfor-
mance of Quadtrees

To determine the impact of tiling level on the per-
formance of Quadtrees, we choose a subset of USBG
dataset . This subset consists of all geometries in 100-
mile radius from the center of Manhat tan, NY and
contains 23982 geometries (i.e., 10% of the original
size of the USBG dataset) . Table 2 shows the index
creation performance as the tiling level increases. For
small tiling levels of 2 to 8, each geometry fits com-
pletely inside a single tile and the index creation times

550

are small. As tiling level increases from 12 to 14 and
then from 14 to 16, the number of tiles per geometry
increase by a factor of 3 and 7. Although this means
the storage and the index creation costs increase as
the tiling level increases (as shown in Table 2), the
benefit is tha t finer and better tile approximations
are obtained for geometries. As a result, fewer and
fewer (tile approximations of) da ta geometries will in-
teract with (the tile approximations of) a query ge-
ometry improving query performance of the quadtree
index. However, increasing the tiling level beyond a
certain level makes the tile approximations too fine
and too many: potentially affecting the query times
adversely. Finding the right tiling level is critical to
the performance of quadtree. This phenomenon is il-
lus t ra ted in Figure 2 using a 5-mile and a 10-mile ra-
dius window around the Manhat tan center. Figure 2
(a) shows the results for a 5-mile-radius query win-
dow. As the tiling level increases, the pr imary filter
s tar ts returning fewer and fewer results due to bet ter
t i le-approximations of the da ta /query geometries: at
level 2, the tiles are too coarse and hence all 23982 ge-
ometries are returned whereas at level 14, only 2216
geometries are returned. Due to the decrease in the
number of returned geoemtries the query times de-
crease substantially. However, as the tiling level in-
creases to 16 and then to 18, the number of tile ap-
proximations increase substantially (as shown in Ta-
ble 2) and the associated searching costs on the large
number of tiles outweigh any further gains from bet ter
tile approximations (and reduced data-query interac-
tions). The same phenomenon also occurs for the sec-
ondary filter query wherein the resulting candidates
from the index (primary filter) are checked with the
query geometry for intersection. Similar results are
also obtained for a 10-mile-radius query window. In
all these results, a tiling level of 14 obtains best query
performance for the subset of USBG data. This ex-
periment illustrates tha t picking the right tiling level
is critical to the performance of a quadtree.

In the next subsection, we compare the performance
of Quadtree and R-tree indexes on the USBG and the
ABI datasets.

4.2 Quadtree and R-tree Comparison
For the ABI dataset, the Quadtree is tessellated at
level 18 and for the USBG dataset it is tessellated at
level 14. These tiling levels for the Quadtree are cho-
sen after much experimentation to optimize the over-
all query performance. In contrast, R-tree requires
no such fine-tuning. We conducted the experiments
using Oracle Release 9.2.0 running on a Sun 400MHz
machine with 1GB memory (note: the tests do not
need so much memory) First, we present the times for
index creation and index updates for both indexes and

then describe the results for queries.

Tiling Level A v g . ~ o f ti les
p e r g e o m e t r y

2 1

I n d e x i n g
t ime(s)

21
21

6 1.01 21
8 1.03 21
10 1.16 24
12 1.59 26
14 4.35 46
16 29.81 259
18 359.01 3031

T a b l e 2: A s t i l i ng leve l i n c r e a s e s , n u m b e r o f
ti les per g e o m e t r y increase as wel l as the in-
dexing t ime.

4.2.1 Creation and Update times
In Table 3, we describe the t ime for creation of these
indexes. The table indicates tha t the creation t ime for
the Quadtree index on the ABI dataset is one-fourth
of that for the R-tree. This is because the t ime for
clustering in the R-tree for a large dataset of 10M is
relatively expensive. The multiple SQL statements
for selecting subsets of the dataset and writing R-tree
nodes one by one takes a substantial portion of this
creation time. In the case of the Quadtree, the cost is
considerably less since tessellation of each da ta geome-
t ry into a single tile (ABI da ta is point data), insertion
into the spat ial . index table, and creation of the B-tree
index on the spat ial . index table take much less time.
The next row in table 1 indicates that the Quadtree
creation time for USBG dataset is several times higher
than the R-tree creation time. This is because tessel-
lation of each block group geometry into level-14 tiles
is quite expensive and dominates the overall creation
time.

The table also indicates the t ime for inserting rows
into the Blockgroup indexes. We insert three sets of
geometries: The first set consists of 10000 simple point
da ta obtained from the ABI dataset . The second set
consists of 20000 simple polygon geometries obtained
from the USBG dataset (New York region) and the
third set consists of 10000 complex polygon geome-
tries also obtained from the USBG da ta (Alaska re-
gion). This is to examine the variation of the quadtree
times with the complexity of the geometries. For in-
sertion of point data, the Quadtree is nearly twice as
fast as the R-tree. Since tessellation of points is very
fast, all the Quadtree needs to do is insert the tile into
the spatial_index table and have the associated B-tree
updated. For these inserts, the quadtree inherits the
relative fastness of B-tree updates and gains from be-
ing implemented on top of built-in indexes. Similar

551

3 2 ~ P r i m a r y F I I t e r (I n c l e x) ' ,~'
S e c o n d a r y F i l t e r ~.

1 6

8

4

2

1

° 5 2 1 ; ; t'o 1'~ 1'~ 1'~ 1~
T i l i n g l e v e l

.J

J

3 2 ~ I ~ r l m a r y F I l ' t e r (I r~dex) " ,~'
S e c o n d a r y F i l t e r ~-

1 6

8

4

T i l i n g l e v e l

Figure 2: Any in terac t Query P e r f o r m a n c e for different t i l ing leve ls for (a) 5-mi le radius, and (b)
10-mile radius windows: B o t h pr imary and secondary filter p e r f o r m a n c e decreases as t i l ing leve l
increases from 2 to 14 and starts to increase again b e y o n d t i l ing leve l 14. T h e initial decrease is due
to b e t t e r approx imat ions in the index and fewer resul t ing candidates from index. The subsequent
increase is due to increase in the n u m b e r of t i les per g e o m e t r y and assoc ia ted searching costs .

results are also reported for 20000 small-polygon in-
serts. However, when inserting 10000 large and com-
plex polygons from the USBG data, the tessellation
time dominates for the Quadtree and it is several times
slower than the R-trees. Also note that the insertion
times for R-tree increase almost linearly as the dataset
is increased from 10000 to 20000 and is independent
of the complexity and sizes of the polygons.

Per formance
Criter ion
ABI Index
Creation

USBG Index 8330s
Creation

10K-point 67s
inserts (ABI)

20K-small-polygon 183s
inserts (USBG)

3600s 10K-large-polygon
inserts (USBG)
Storage(ABI)

Storage(USBG)

Quadtree R- tree

4203s 20406s

454s

131s

330s

166s

909MB 824MB
728MB 24MB

Tab l e 3: C o m p a r i s o n of Quadtree and R - t r e e
create and update t i m e s and storage character-
istics: Quad-tree is faster for A B I (po in t) data
in i n d e x c r e a t i o n / u p d a t e . R - t r e e is faster for
l a r g e - p o l y g o n U S B G da t a . R - t r e e needs less
space in b o t h cases.

The last two rows of Table 3 present the storage space
consumed by the Quad-tree and R-tree indexes. For
the ABI (point) data, both indexes require almost the
same amount of memory whereas for the USBG (poly-

gon) data, R-tree storage consumption is 1/30 th of
that for the Quadtree. This is because the Quadtree
is tiled at level 14 to optimize query performance and
this generates many tiles for each data geometry con-
suming a lot of storage space.

4.2.2 Queries
Next, we examine the performance of queries on the
two indexes for the two datasets. We consider two
types of queries: window queries and within_distance
queries (R-trees are much faster than "Linear" Quad-
trees for nearest-neighbor queries and are not pre-
sented here). For the window queries, we first use
the 3230 counties in the United States as a set of con-
cave queries. Then, we generate convex windows using
some of the most-densely populated areas and ran-
domly generated query center points within the areas.
For instance, for the ABI dataset we used the New
York Manhat tan center as one query center. Using
such query centers, we generated a convex query win-
dow of different radii from 0.25 miles width to 100
miles width. For within-distance queries, we use sim-
ilar queries by specifying the center and a distance of
0.25 to 100 mile radius. All queries are of the form:

select geometry from geom_tab
where sdo_<operator>(geometry,
<query_geom>, ...)='TRUE'

Note that the queries retrieve geometries as opposed
to doing a "select count(*)". We have chosen to use
these queries since this is how the GIS and CAD/CAM
applications use Oracle Spatial in a realistic scenario.
As a consequence, with the increase in the number

552

of result geometries, the query time grows and the
geometry-retrieval t ime may dominate the actual in-
dex response time. We will come across this phenom-
ena for large queries that retrieve a lot of geometries.

Table 4 presents the average query response times
for both Quadtree and R-tree indexes on the USBG
dataset using the 3230 county polygons as query win-
dows. We observe that R-tree performs bet ter than
the Quadtree for all masks. For anyinteract, R-tree
is faster by 35%; for inside by 65%. This is because
the interior-tile optimization performed in R-trees for
the (concave) county queries is more effective than
that for the Quadtree at level-14 for USBG. Specifi-
cally, the interior area captured by the R-tree is more
than that in the Quadtree. By increasing the tiling
level to more than 14 for the Quadtree, this interior
area may improve but that will result in larger stor-
age requirement for the Quadtree index and adversely
affects the query performance. R-tree is faster by 90%
for most of the other masks like contains, equal, and
covers. This is because for these masks, R-tree first
compares the "single" MBRs of query and da ta geome-
tries and eliminates most secondary filters. For exam-
ple, for a contains mask, the query MBR is checked
for containment in the da ta MBR (which does not
happen in most cases) in addition to regular inter-
section. Such optimizations are not easily extended
to Quadtrees since the exterior of the query /da ta is
split over multiple tiles. For overlap masks ("over-
lapbdydisjoint" and "overlapbdyintersect"), both R-
trees and quadtrees perform nearly the same. Similar
results are also obtained for the ABI dataset. Next,
we examine the performance of the two structures for
convex query windows.

Q u e r y m a s k Q u a d t r e e (s) R t r e e (s)

anyinteract 0.81 0.49
inside 0.80 0.28

contains 0.85 0.04
touch 1.52 1.13

coveredby 0.88 0.66
covers 0.44 0.05
equal 1.53 0.04

overlapbdydisjoint 1.77 1.41
overlapbdyintersect 1.53 1.41

Table 4: C o m p a r i s o n o f A v e r a g e Q u e r y t i m e s
for Q u a d t r e e and R- tree i n d e x e s on U S B G
data: Quer ie s are from c o u n t i e s da tase t . R-
t ree is faster for all m a s k s - - a n y i n t e r a c t , R-
tree faster by 35~0; ins ide by 65~0.

• Figure 3 (a) shows the performance of R-tree and
Quadtree indexes for the most common type: "anyin-
teract" queries on the ABI dataset. The x-axis plots
the query radius in miles and the y-axis the response

time for each index. Both axes are on a logarithmic
scale. As the query radius increases, the response
times also increase. R-tree consistently outperforms
Quadtree for small-medium radii: for small radii of
0.25 miles, R-trees are 30% faster. As the radius in-
creases to 100 miles, the number of retrieved geome-
tries increases (to order of .5M) and the geometry-
retrieval cost dominates the index cost. In such cases,
both indexes perform the same. Figure 3 (b) shows
similar results for the USBG dataset for small query
radii. R-trees dominate quadtrees for small to medium
query radii.

Figure 4 compares the performance of R-tree and
Quadtree for the next most popular query: the in-
side query. Figure 4(a) plots the results for the ABI
dataset and Figure 4(b) plots the results for the USBG
dataset. Once again, the x-axis plots the query radius
in miles and the y-axis the response time for each
index. As the query radius increases, the response
times also increase. R-tree consistently outperforms
Quadtree for all radii: for small radii of 0.25 miles,
R-trees are nearly 3-4 times faster than Quadtree;
whereas for large radii of 100 miles R-trees are 2 times
faster than Quadtrees.

In Figures 3 and 4, R-trees obtain bet ter perfor-
mance due to capturing a lot of interior using in-
terior rectangles/tiles. However, in " touch ' - type of
queries, the boundaries of query and da ta items are
checked for touch-type of interaction. In this case,
the boundary area for an R-tree query is the MBR
approximation minus the interior approximations of
R-tree. This boundary for an R-tree covers more area
than the "boundary" tiles of a Quadtree (as the MBR
is a coarser approximation than quadtree tiles). As
a result, the number of da ta exclusively intersecting
the boundary area is more with an R-tree than with
a Quadtree. This is especially evident (1) for large
query windows, and (2) more predominant for point
layers (since more points can fit in the boundary area
than non-point data). Since the number of candidate
da ta resulting from the index determines the num-
ber of secondary filter comparisons and the result-
ing query performance, R-tree performance could be
worse than that of Quadtree for these queries. Fig-
ure 5 (a) and (b) illustrates this for the ABI dataset
(a point dataset). Figure 5(a) plots the touch-query
response time for both R-tree and Quadtree whereas
Figure 5(b) plots the number of candidates passed on
to the secondary filter from the primary filter (spatial
index). For small query windows the R-tree is faster
but as the query size increases, the boundary tiles of
the query window in a quadtree intersect fewer data
points in contrast to the R-tree. As shown in Fig-
ure 6(a), for non-point da ta of the USBG dataset this

553

5 1 2

2 5 6

1 2 8

. . ~ 6 4

1

1 5

6

4

. . . . Q i . J a d t r r e e ') (,
R t r e e ~Jf

~0250:5 ; ; ; ~ 1'5 3'~ 8'. 128
Q u e r y r a d i u s (m i l e s)

J

J

3 2 ~ u o ' ~ ' ~ u a ~ t r e ' - ' H '
R t r e e ,~

1 6

S

4

2

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 5 2 5 3'2 e'4 1 2 5 0 . 2 5 0 . 5 1 2 4 8 1 6

Q u e r y r a d i u s (m i l e s)

Figure 3: Per formance for Anyinteract queries: (a) A B I dataset and (b) U S B G dataset .

1 0 2 4

5 1 2

2 5 5

1 2 8

6 4

3 2

. . . . Q u a d t r e e ' '
R t r e e

4

2 , , ,
0 . 2 5 0 . 5 1 2 4 8 1 3 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

J

6 4 , , , ~ - - - - " - ~ u a " ~ t r a =, , , , ,

R t r e e +
3 2

1 6

8

4

2

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

0 . 0 3 1 2 5 J , = t I , = /
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

Figure 4: Per formance for Inside queries: (a) A B I dataset and (b) U S B G dataset .

6 4 - - - - - - . - - r . ~ , ; a , . . i t r , e , ,

3 2

1 5

8

4

2

1

0 . 5 , t = i i = i =
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

~ 5
m=

2 6 2 1 4 4

1 3 1 0 7 2

5 5 5 3 6

3 2 7 6 8

1 6 3 8 4

8 1 9 2

4 0 9 6

2 0 4 8

R t r e e

1 0 2 4 = = = I ' ' '
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

Figure 5: Per formance for Touch queries on A B I dataset: (a) Query t imes , and (b) N u m b e r
of secondary filter comparisons . Quadtrees are faster because they pass in fewer candidates to
secondary filter. This is because the "boundary" ti les of quadtrees are m o r e ef fect ive in filtering
candidate point data than the "boundary" area of the query in R- tree (query M B R minus interior
approx imat ions) .

554

phenomena does not occur until the query window
becomes relatively much larger than the data, i.e, for
large query windows. Similar elimination strategy also
applies to "coveredby" and "overlap" masks. These
results for the USBG dataset are shown in Figures
6(b) and 7. These masks are not applicable for point
data (all "coveredby" and "overlap" mask queries on
ABI dataset return 0 results right away). To sum-
marize the results for "touch", "overlap", and "cov-
eredby" queries that use boundary-area-based filter-
ing, R-trees could be slower than Quadtrees for touch-
type queries on point data layers. For non-point data,
R-trees are faster for most query sizes.

Next we present the results for other masks using
the USBG dataset. Figure 8 compares R-tree and
Quadtree for "contains" and "covers"-type of queries.
Since R-trees have only one exterior approximation for
both query and data geometries, optimizations such
as "traverse an index path only if the index/geometry
MBR contains or covers the query MBR". Such an op-
timization is not easily enforceable in Quadtrees. As a
result, the performance of Quadtrees degrades as the
query radius increases although at most 2 objects are
retrieved in the query. In contrast, R-tree response
times stay flat with the increase in query radius for
both "contains" as well as "covers"-type of queries.
Similar results are also obtained for "equals" masks
in Figure 8(c).

Next, we present the results for within_distance queries
for USBG and ABI datasets. Figure 9(a) plots the re-
sults for the ABI dataset and Figure 9(b) plots the
results for the USBG dataset. Once again, R-tree
consistently outperforms Quadtree for all radii: for
small radii of 0.25 miles, R-trees are nearly 3-4 times
faster than Quadtree; whereas for large radii of 100
miles R-trees are 2 times faster than Quadtrees. This
is because Quadtrees have an additional cost of cre-
ating buffers around the query center and tiling it
whereas R-trees internally use distance-based compu-
tation between query center and index/data geome-
tries to avoid expensive buffering.

5. CONCLUSIONS
In this paper, we compared Quadtree and R-tree in-
dexes supported in Oracle Spatial. We briefly de-
scribed their implementations along with some opti-
mizations. We evaluated their relative performance on
large GIS datasets using different query, insert, and
index-creation operations and compared their storage
requirement. For these datasets, R-trees consistently
outperformed Quadtrees by 2-3 times for upto 10-
mile radius windows for almost all query types. For
larger query windows, the performance gap between
the two indexes decreased and the gap even reversed

for some masks such as touch, overlapbdyintersect and
overlapbdydisjoint where Quadtrees performed better
due to finer approximation of "boundary" area in a
query window. For distance queries such as within-
distance (and nearest-neighbor), R-trees consistently
outperformed Quadtrees by a factor of 3. Update
times for R-trees are almost linear in the number of
updates, whereas for quadtrees they depend on the
size and complexity of the geometry. Storage require-
ments for a Quadtree are nearly the same as those
for R-trees when the data is points and more oth-
erwise. In short, a quadtree could be recommended
for update-intensive applications using simple poly-
gon geometries, high concurrency update databases,
or when specialized masks such as touch are frequently
used in queries. However, users have to fine-tune the
tiling level to obtain best performance. R-trees, which
do not require any such tuning, could be used in all
other cases to obtain nearly equivalent or better per-
formance.

6. REFERENCES
[1] W. M. Badaway and W. Aref. On local heuristics to

speed up polygon-polygon intersection tests. In
Proceedings of ACM GIS International Conference,
pages 97-102, 1999.

[2] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R* tree: An efficient and robust
access method for points and rectangles. In Proc.
ACM SIGMOD Int. Conf. on Management of Data,
pages 322-331, 1990.

[3] S. Berchtold, D. A. Keim, and H. P. Kreigel. The
X-tree: An index structure for high dimensional
data. Procff the Int. Conf. on Very Large Data
Bases, 1996.

[4] S. Berchtold, D. A. Keim, H.-P. Kriegel, and
T. Seidl. A new technique for nearest neighbor
search in high-dimensional space. IEEE Trans. on
Knowledge and Data Engineering, 12(1):45-57, 2000.

[5] T. Brinkhoff, H. Horn, H. P. Kriegel, and
R. Schneider. A storage and access architecture for
efficient query processing in spatial database
systems. In Symposium on Large Spatial Databases
(SSD'93), LNCS 692, 1993.

[6] S. Defazio, A. Daoud, L. A. Smith, and
J. Srinivasan. Integrating ir and rdbms using
cooperative indexing. In Proc. of ACM SIGIR Conf.
on Information Retrieval, pages 84-92, 1995.

[7] M. J. Egenhofer. Reasoning aobout binary
topological relations. In Symposium on Spatial
Databases, pages 271-289, 1991.

[8] M. J. Egenhofer, A. U. Frank, and J. P. Jackson. A
topological data model for spatial databases. In
Symposium on Spatial Databases (SSD), pages
271-289, 1989.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and
A. E. Abbadi. Approximate nearest neighbor
searching in multimedia databases. In Proc. Int.
Conf. on Data Engineering, pages 503-511, 2001.

[10] P. Fischer and K. U. Hoffgen. Computing a
maximum axis-aligned rectangle in a convex
polygon. In Information Processing Letters, 51,
pages 189-194, 1994.

555

1 6 - . ,

5 ~u ' a ~ ~

4

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5 ' ' ~ I =
0 . 2 5 0 . 5 1 2 4 8 1 ' 6 3=2 614 1 2 8

Query radius (m i l e s)

i

1 6
~ u a d t r e ~ ' '

4

2

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

0 . 0 3 1 2 5 , I , , I / / I
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

Figure 6: Performance for U S B G dataset: (a) Touch Queries and (b) Coveredby Queries. R-trees
are faster for query windows of 10 mile radii. Quadtrees are faster for larger windows.

1 6 6 ~u"~:rr :~
4

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5 I I I I = 116 3 2 / I
0 . 2 5 0 . 5 1 2 4 8 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

1 6
~ u a b t r e ~ ' ' f

.j

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5 I I I I I 116 I 6 4 /
0 . 2 5 0 . 5 1 2 4 8 3 2 1 2 8

Query radius (m i l e s)

Figure T: Performance for U S B G dataset: (a) Overlapbdydisjoint queries and (b) Overlaphdyin-
tersect queries. R-trees are faster for query windows of 10 mile radii. Quadtrees are faster for
larger windows.

=~

J

6 4

3 2

1 6

8
4

2

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

0 . 0 3 1 2 5

' ' ' d u a ~ l t r e ; ' , '

i = i , i
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

=E

4

2

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

' ' ' d u a ~ l t r e ~ ' . '
R t r e e

J
0 . 0 3 1 2 5 ' ' ' , , , - - ,

0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8
Q u e l r ~ r a d i u s (m i l e s)

8

4

2

1

0 . 5

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

.
0 . 0 3 1 2 ~ = = = = = = = =

0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 6
Query radius (m i l e s)

Figure 8: Performance for U S B G dataset: (a) Contains queries, (b) Covers queries, and (c) Equals
queries. R-trees are faster than Quadtrees by at least a factor of 2.

5 5 6

E

2 0 4 8

1 0 2 4

5 1 2

2 5 6

1 2 8

6 4

3 2

1 6

' ' Q u a d t r e e ' 3, '
R t r e e ~

1 i i i i i = | i
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

6 4
~ u a & t r e e ' , ,

3 2

1 6

6

4

2

1

O . 6

0 . 2 5

0 . 1 2 5

0 . 0 6 2 5

0 . 0 3 1 2 5 I i I I , , J ,
0 . 2 5 0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8

Q u e r y r a d i u s (m i l e s)

F i g u r e 9: P e r f o r m a n c e for W i t h i n - d i s t a n c e q u e r i e s : (a) A B I d a t a s e t and (b) U S B G d a t a s e t . R-
t r e e s c o n s i s t e n t l y o u t p e r f o r m Q u a d t r e e s by at l eas t a fac tor o f 2. Th i s is b e c a u s e Q u a d t r e e s use
buffer ing around t h e q u e r y c e n t e r and R - t r e e s use use d i s t a n c e - b a s e d c o m p u t a t i o n b e t w e e n q u e r y
c e n t e r a n d i n d e x / d a t a g e o m e t r i e s t o a v o i d e x p e n s i v e buffer ing.

[11] V. Gaede and O. Gunther. Multidimensional access
methods. ACM Computing Surveys, 30(2), 1998.

[12] Y. J. Garcia, S. T. Leutenegger, and M. A. Lopez. A
greedy algorithm for bulk loading R-trees. In Proc.
of A C M GIS, 1998.

[13] A. Guttman. R-trees: A dynamic index structure for
spatial searching. Proc. A CM SIGMOD Int. Conf.
on Management of Data, pages 47-57, 1984.

[14] G. Hjaltson and H. Samet. Ranking in spatial
databases. In Symposium on Spatial Databases
(SSD), 1995.

[15] N. Katayama and S. Satoh. The SR-tree: An index
structure for high-dimensional nearest-neighbor
queries. Proc. A C M SIGMOD Int. Conf. on
Management of Data, pages 369-380, May 1997.

[16] M. Kornacker, C. Mohan, and J. Hellerstein.
Concurrency and recovery in GIST. In Proc. A C M
SIGMOD Int. Conf. on Management of Data, pages
62-72, Tucson, Arizon, June 1997.

[17] S. T. Leutenegger, M. A. Lopez, and J. M.
Edgington. STR: A simple and efficient algorithm
for R-tree packing. In Proe. Int. Conf. on Data
Engineering, 1997.

[18] K.-I. Lin, H. V. Jagdish, and C. Faloutsos. The
TV-tree: An index structure for high-dimensional
data. VLDB Journal, 3:517-542, 1994.

[19] D. B. Lomet and B. Salzberg. The hB-tree: A
multi-attribute indexing method with good
guaranteed performance. Proc. A CM Syrup. on
Transactions of Database Systems, 15(4):625-658,
December 1990.

[20] B. C. Ooi, C. Yu, K. L. Tan, and H. V. Jagadish.
Indexing the distance: an efficient method to knn
processing. In Procdf the Int. Conf. on Very Large
Data Bases, 2001.

[21] D. Papadis, T. Sellis, Y. Theodoridis, and
M. Egenhofer. Topological relations in the world of
minimum bounding rectangles: a study with r-trees.
In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 92-103, 1995.

[22] K. V. Ravi Kanth, D. Agrawal, Amr El Abbadi, and
Ambuj K. Singh. Dimensionality reduction for

similarity searching in dynamic databases. In Proc.
A CM SIGMOD Int. Conf. on Management of Data,
1998.

[23] K. V. Ravi Kanth and Siva Ravada. Efficient
processing of large spatial queries using interior
approximations. In Symposium on Spatial a n d
Temporal Databases (SSTD), 2001.

[24] K. V. Ravi Kanth, Siva Ravada, J. Sharma, and
J. Banerjee. Indexing medium-dimensionality data
in oracle. In Proc. A C M SIGMOD Int. Conf. o n
Management of Data, 1999.

[25] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proc. A CM SIGMOD Int. Conf.
on Management of Data, pages 71-79, May 1995.

[26] H. Samet. Recent developments in linear
quadtree-based geographic information systems.
Image and Vision Computing, 5(3):187-197, Aug.
1987.

[27] H. Samet. The design and analysis of spatial d a t a
structures. Addison-Wesley Publishing Co., 1989.

[28] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
r+-tree: A dynamic index for multi-dimensional
objects. Procdf the Int. Conf. on Very Large Data
Bases, 13:507-518, 1988.

[29] Y. Theodoridis and T. K. Sellis. Optimization issues
in r-tree construction. In Geographic Information
Systems (IGIS), pages 270-273, 1994.

[30] Y. Theodoridis and T. K. Sellis. A model for the
prediction of r-tree performance. In Proc. A C M
Syrup. on Principles of Database Systems, 1996.

[31] F. Wang. Relational-linear quadtree approach for
two-dimensional spatial representation and
manipulation. IEEE Trans. on Knowledge and Data
Engineering, 3(1):118-122, Mar. 1991.

[32] D. White and R. Jain. Algorithms and strategies for
similarity retrieval. Proc. of the SPIE Conference,
1996.

[33] D. White and R. Jain. Similarity indexing with the
SS-tree. Proc. Int. Conf. on Data Engineering,
pages 516-523, 1996.

557

