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ABSTRACT 
Spatial  indexing has been one of the active focus ar- 
eas in recent database research. Several variants of 
Quadtree and R-tree indexes have been proposed in 
database literature. In this paper,  we first describe 
briefly our implementation of Quadtree and R-tree 
index structures and related optimizations in Ora- 
cle Spatial.  We then examine the relative merits of 
t h e  two structures as implemented in Oracle Spatial  
and compare their performance for different types of 
queries and other operations. Finally, we summarize 
our experiences with these different structures in in- 
dexing large GIS datasets in Oracle Spatial. 

1. INTRODUCTION 
Spatial  searching is a fundamental  primitive in non- 
t radi t ional  databases such as GIS, CAD/CAM and 
mult i -media applications. Wi th  the rapid prolifera- 
tion of these databases in the past  decade, extensive 
research has been conducted on the design of efficient 
da ta  structures to enable fast spatial  searching. Sev- 
eral da ta  structures have been developed in this con- 
text.  These include Quadtrees [26, 27, 31], R-trees [13, 
2S], hB-trees [19], WV-trees [lS], SS-trees [33], and SR- 
trees [15]. Subsequent research has improved these ba- 
sic structures further by proposing new techniques for 
query processing [4, 5, 9, 14, 16, 20, 21, 22, 30], faster 
and bet ter  index creation [12, 17, 29, 32], and bet- 
ter split-strategies in dynamic updates  [2, 3]. These 
techniques are especially effective for low-dimensional 
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spatial  da t a  such as those in GIS and CAD/CAM ap- 
plications. Commercial  database vendors like IBM, 
and Oracle have also s tar ted implementing these in- 
dexing techniques to cater to the large and diverse GIS 
and C A D / C A M  application markets. In this paper  we 
examine different approaches supported by Oracle for 
indexing such low-dimensional da ta  and present our 
experiences with their relative performance on large 
GIS datasets.  

For indexing low-dimensional spatial  data,  Oracle Spa- 
tial allows users to choose between one of two spatial  
indexes: a (Linear) Quadtree [27] or an R-tree [13, 
28, 2, 3, 17, 11]. These indexes are implemented us- 
ing the extensible indexing framework of Oracle [24] 
and incorporate and enhance some of the best propos- 
als from existing spatial  indexing research. The Lin- 
ear Quadtree (or Quadtree for short) computes tile 
approximations for geometries and uses existing B- 
tree indexes for performing spatial  search and other 
DML operations. This approach results in simpler 
index creation, faster updates  and inheriting of built- 
in B-tree concurrency control protocols. The R-tree 
is implemented logically as a tree and physically us- 
ing tables inside the database and the search involves 
recursive SQL for traversing the tree from root to rel- 
evant leaves. This approach may be more efficient for 
queries due to bet ter  preservation of spatial proxim- 
ity but  may be slow in updates  or index creation and 
implements its own concurrency protocols on top of 
Oracle's table-level concurrency mechanisms. In the 
following sections, we describe these implementations 
in more detail and compare their relative behavior pri- 
marily with respect to query performance (since up- 
dates are not high in most GIS applications). Such a 
comparison of two popular indexing strategies, inside 
a commercial database, provides useful insight into the 
following aspects of indexing: (1) the strengths and 
weaknesses of the Quadtree and the R-tree implemen- 
tations for indexing spatial  data, and (2) whether a 
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"true" tree-based structure in a database could be as 
efficient as structures implemented using built-in in- 
dexes like B-trees or hash tables. 

The rest of the paper is organized as follows: Sec- 
t ion 2 describes how Oracle Spatial  supports  spatial  
da ta  and presents the model for query processing us- 
ing either of its two indexes, Quadtrees and R-trees. 
Sections 3 and 4 present implementation details of 
Quadtrees and R-trees in Oracle Spatial. Section 5 de- 
scribes the tes tbed and compares the two index struc- 
tures. The final section summarizes the results. 

2. ORACLE SPATIAL 
Oracle Spatial models 2-4 dimensional spatial  da ta  us- 
ing an sdo_geometry data  type. For the 2-dimensional 
case, this da ta  type models all the spatial  da ta  types 
defined by the Open GIS Consortium (OGC) and caters 
to most data  occurring in GIS, CAD/CAM applica- 
tions. Supported spatial da ta  includes simple prim- 
itive elements such as points, lines, curves, polygons 
(with and without holes), and complex elements that  
are made up of a combination of primitive elements. 
The sdo_geometry da ta  type is implemented as an Or- 
acle object datatype.  This approach extends all the 
benefits of Oracle's object-relational database technol- 
ogy including replication to spatial  data. 

2.1 Indexing Framework 
Quadtree and R-tree indexes on spatial  da ta  are im- 
plemented using the extensible indexing framework of 
Oracle [6, 24]. This framework allows for the cre- 
ation of new domain-specific indexes and associated 
query operators and provides for the integration of 
user-specified query, update  and index creation rou- 
tines inside Oracle server. Oracle Spatial supports  a 
"spatialAndex" indextype for indexing spatial  data. 
Quadtree and R-tree indexes are supported as part  
of this "spatial_index" indextype. Since these indexes 
are implemented as part  of the extensible indexing 
framework, spatial indexes can be easily created on 
"sdo_geometry" columns of database tables using an 
extended SQL syntax. As part  of such index creation, 
the corresponding spatial  index creation routines are 
executed and the constructed spatial  index is stored 
in the database as a "spatial.index" table. The index 
table stores index information such as R-tree nodes 
in the case of R-trees and Quadtree tiles in the case 
of Quadtrees. The metada ta  for the entire index is 
stored as a row in a separate me tada ta  table. This 
me tada ta  includes the name of the index table storing 
the index, dimensionality, root pointer fanout param- 
eters for an R-tree and the tiling level parameter  for 
a Quadtree index. 

In addition to SQL-level index creation, inserts and 

updates  to database tables that  have a spatial  in- 
dex also automatical ly trigger an update  of the cor- 
responding spatial  indexes. In addit ion to these ad- 
vantages, extensible indexing also ensures s ta tement  
or session-level concurrency and table-level recovery. 

To query the constructed spatial indexes, new pred- 
icates, referred to as operators, are defined. These 
operators can be included in the "where" clause of 
a SQL sta tement  to select da ta  tha t  satisfy a speci- 
fied query criterion with respect to a specified query 
window. Such operators are executed using index- 
associated procedures for query processing and allow 
for incremental processing of queries (see [24, 6] for 
more details). In what follows, we describe the query 
operators supported by Oracle Spatial. These opera- 
tors have identical semantics irrespective of whether 
they are executed using underlying Quadtree or R-tree 
indexes. 

2.2 Queries on Spatial Indexes 
Oracle Spatial  provides an operator called sdo_relate 
that  identifies da ta  geometries that  interact with the 
query geometry for a specified criterion, in Oracle Spa- 
tial  terms, a mask. These masks or criteria are based 
on the 9-intersection model of [7, 8] and the sdo_relate 
operator  is equivalent to the ST_relate operator  of 
SQL/MM. 1 

• anyinteract:  identify da ta  geometries that  inter- 
sect the specified query geometry 

• inside: identify da ta  geometries tha t  are "com- 
pletely inside" the query geometry 

• coveredby: identify da ta  geometries tha t  "touch" 
on at least one boundary and are inside the query 
geometry otherwise 

• contains: reverse of inside 

• covers: reverse of coveredby 

• touch: identify geometries whose boundary "touches" 
the boundary of the query geometry but  disjoint 
otherwise 

• equal: identify geometries that  are exactly the 
same as the query geometry 

• overlapbdyintersect:  identify geometries tha t  over- 
lap each other and boundaries intersect. 

• overlapbdydisjoint:  identify geometries that  over- 
lap with the query geometry but  the boundaries 
are disjoint. 

1Most SQL/MM suggested methods are available in 
one form or the other in Oracle Spatial. 
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Since indexes for geometries work with approxima- 
tions, Oracle Spatial  provides the sdo_filter operator  
which returns results directly from the index without 
performing geometry-level comparisons. This opera- 
tor gives a fast but  approximate answer for geometries 
intersecting a query window. In addit ion to these op- 
erators, Oracle spatial  also provides the following set 
of metric (or distance) operators: 

• sdo_within_distance (or within-distance) queries: 
identify geometries tha t  are within a specified 
distance from the query geometry 

• sdo_nn (nearest-neighbor) queries: identify the 
k nearest neighbors [14, 25] for a specified query 
geometry. 

In this paper,  we focus mostly on sdo_relate and 
sdo_within_distance operators since they are the most 
frequently used operators in GIS applications. In what  
follows, we describe the general methodology for pro- 
cessing such queries in Oracle Spatial.  The techniques 
described are applied for both  types of indexes, Quadtrees 
or R-trees. 

2.3 Query Processing in Oracle Spatial 
To efficiently process the above queries on complex 
spatial  data,  Oracle Spatial  uses a multi-stage query 
model as shown in Figure l (a) .  In the first stage, re- 
ferred to as the primary filter, the spatial  index is used 
for query filtering. Candidate  geometries tha t  may 
satisfy a given query criterion are first identified in this 
stage with the help of the exterior approximations in 
the spatial  index. In the case of a Quadtree,  Quadtree 
tiles [27] are used as the exterior approximations and 
in the case of an R-tree, minimum bounding rectan- 
gles (MBRs) are used. In the intermediate stage, can- 
didate geometries are compared with the query using 
the interior approximations of both  query and can- 
didate geometries and some candidate geometries are 
either accepted or el iminated based on the query cri- 
terion. The rest of the geometries whose interaction 
is not determined in the intermediate filter are then 
passed through to the final stage, referred to as the 
secondary filter, and the exact result set is determined 
and returned to the user. Whereas the secondary filter 
uses computat ional  geometry algorithms to determine 
interaction between query and candidate geometries, 
the pr imary and intermediate filters use exterior and 
interior approximations of query and da ta  geometries 
(from the index). In what  follows, we il lustrate the 
processing of these two filters with a simple example. 
More detailed explanation in the context of specific 
indexes is discussed in the subsequent sections. 

Next, we illustrate the processing of pr imary and in- 
termediate filters for an R-tree index. Similar process- 
ing is performed for Quadtrees.  Consider the query 
geometry Q and da ta  geometry G of Figure l (b) .  We 
assume the query is finding all geometries tha t  inter- 
sect the query geometry (window query with anyin- 
teract  (intersection)-type of interaction).  The exte- 
rior approximations, which are MBRs for Oracle Spa- 
tial R-trees [24], are shown as dashed boxes and the 
interior rectangles are shown as solid boxes for the ge- 
ometries. The pr imary filter determines tha t  query 
Q may interact with geometry G using their exterior 
approximations, the MBRs, which happen to inter- 
sect each other. Next, the intermediate  filter is used 
which determines tha t  the exterior of the geometry G 
is inside the interior of the query Q. It  then deter- 
mines tha t  the geometry satisfies the anyinteract cri- 
terion of the query and includes the geometry directly 
in the result set thus bypassing the secondary filter. 
Since comparison of two geometries (query geometry 
and a candidate da ta  geometry) in the  secondary fil- 
ter is expensive due to both loading of geometry da ta  
and the expensive computat ional  geometry required 
to determine the relationship between the two geome- 
tries, e l iminat ion/acceptance in the intermediate  filter 
reduces query processing t ime considerably. Experi- 
mental  results validating this theory are presented in 
[23] for the case of R-trees. Similar results are also 
reported for Quadtrees in [1]. 

3. INDEX-BASED FILTERING IN OR- 
ACLE SPATIAL 

In this section, we first describe the implementat ion of 
pr imary and intermediate filters using Quadtree and 
R-tree indexes. Then, we describe the implementat ion 
of intermediate filter for each of these indexes. 

3.1 Quadtree as the Primary Filter 
Oracle Spatial  uses the following s t rategy in Quadtree 
indexing: a user-specified tiling level is chosen and 
each da ta  geometry is approximated by a minimal 
set of covering tiles. Each tile is associated with a 
tile-code obtained by using z-ordering of all tiles at 
the specified level. During tessellation, the tiles for 
the geometry are divided into interior and boundary 
based on whether or not they are completely interior 
to the geometry. All the covering tiles for a geometry 
are then inserted into the spat ia l . index table along 
with the rowid of the geometry. As a result of this 
approach, a geometry may have mult iple rows in the 
spat ial . index table where each row stores a (different) 
tile-code, in ter ior /boundary status,  and the rowid of 
the geometry. A B-tree index on the tile_code, rowid, 
s tatus is then constructed for speeding up queries. 
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F i g u r e  1: (a) M u l t i - s t a g e  Q u e r y  P r o c e s s i n g  in  Oracle  Spat ia l .  
geometries. 
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At query time, the query geometry is likewise tessel- 
lated into a set of tiles. Using each tile of the query ge- 
ometry, the rowids of all geometries whose tiles match 
the query tiles are identified by a tile-code join using 
the B-tree index on the tile-codes. 

The above approach also makes updates much easier 
to handle. When a new geometry is inserted into the 
dataset, it is tessellated into the user-specified-level 
tiles and the tiles are inserted into the spatial.index ta- 
ble. The B-tree index is automatically updated to in- 
clude the tiles for the new geometry. Likewise, when a 
geometry is deleted the corresponding rows are deleted 
from the spatial.index table and the B-tree index is 
once again internally updated by the server. In spite 
of these advantages, Quadtree has one drawback: the 
need to choose an appropriate tiling level for tesse- 
luting the data and query geometries. Much experi- 
mentation with different levels is needed in order to 
optimize performance for a specific dataset. 

3.2 R-tree as the Primary Filter 
In Oracle Spatial, R-trees maintain their logical tree 
structure and are implemented as a table where each 
node of the R-tree corresponds to a row in the table 
and a child pointer in the R-tree corresponds to the 
rowid of child row in the same table. The root rowid 
(pointer) of the R-tree is stored in the metadata for 
the index and allows navigation from the root of the 
R-tree to the leaf nodes. Leaf nodes of the R-tree store 
one MBR for each data geometry along with the ge- 
ometry rowid. Queries and updates obtain the root of 
the R-tree and navigate down the tree to the leaves. 
More details on this implementation can be obtained 
from [24]. Note that each time an R-tree node is vis- 
ited, the corresponding row from the spatial.index is 
selected using a SQL statement internally. This means 
query and update processing in R-trees involves pro- 
cessing of more recursive SQL statements than in the 
case of Quadtrees. As a result, some DML operations 
especially updates are likely to be more costly. 

The algorithms used for R-trees in Oracle Spatial in- 

volve scalable adaptations of existing research solu- 
tions and a set of in-house optimizations and enhance- 
ments. The details are not in the scope of this paper. 
Major optimizations such as the interior approxima- 
tions for intermediate filter are described in the next 
subsection. 

3.3 Intermediate Filter in Oracle Spatial 
In the primary filter, the spatial index uses the ex- 
terior approximations of query and candidate data 
geometries to determine whether or not they inter- 
act. If they do interact, then the query and the ge- 
ometry along with any interior approximations are 
passed on to the intermediate filter. The interme- 
diate filter takes the query q, and a candidate ge- 
ometry g and returns true if the geometry is to be 
included in the result set, false if not, and unknown 
if it cannot determine the relationship, in which case 
the query-candidate pair is passed to the secondary- 
filter to determine the exact relationship. These paths 
from the intermediate filter are shown with unknown, 
true, false labels in Figure l(a). To determine these 
relationships, the intermediate filter uses the interi- 
ors of the query and the candidate geometries (passed 
on from the primary filter). In the case of quadtrees, 
the interior and the boundary tiles of the candidate 
geometries are compared with the interior and the 
boundary tiles of query geometry. In the case of R- 
trees, only the interior of the query geometry is used 
and the interiors of the candidate data geometries are t 
not computed. The operational behavior of the inter- 
mediate filter for different queries for both Quadtree 
and R-tree indexes are described in [23]. 

3.4 Interior Approximations in Quadtrees 
In the case of Quadtrees, interior tiles for data geome- 
tries are identified at index creation time. The tiles 
for each geometry are labeled with a "status" indicat- 
ing whether they are interior tiles or boundary tiles. 
If any part of the boundary of a geometry touches a 
tile, the status is set to "boundary". Otherwise, if the 
tile is completely inside the geometry, the status is set 
to "interior". These status labels along with the tile- 
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codes axe compared with those of the query tiles at 
query time to implement the intermediate filtering as 
described above. Note that  such labeling of the tiles 
that  cover query and da ta  geometries imposes very lit- 
tle overhead (one byte per row) on storage space, and 
does not effect query or update  performance. 

3.5 Interior Approximations in R-trees 
In the case of R-trees, we decided to compute inte- 
rior approximations for query geometries only and use 
them in the intermediate filter. This approach allevi- 
ates the need for changing existing indexes (only the 
query behavior will change and not the physical R-tree 
storage), and avoids any ill-effects of decreasing the 
fanout for a fixed block-size. In addition, since da ta  
geometries are generally much smaller than query ge- 
ometries, the loss of any improvements from using the 
da ta  interiors will be relatively small compared to the 
gains of using the query interior. 

R-trees take a two-pronged approach to finding in- 
terior approximations. For convex geometries, they 
divide the geometry into 4 pieces using the x- or the 
y-extent (whichever is larger) and compute the largest 
inscribed rectangle for each of these pieces using the 
technique of [10]. Several interesting properties from 
[23] show that  the interior MBRs could be used as one 
single contiguous geometry. 

The above approach for finding interiors of convex 
polygons cannot be effectively extended to concave 
geometries as described in [23]. For concave geome- 
tries, an al ternate technique for finding the interior 
approximations for concave query windows is used. 
The idea is to first recursively divide the MBR of the 
concave geometry into quadrants  4 times i.e., perform 
a level-4 tiling using the MBR as the tiling domain. 
Then among the tiles tha t  cover the geometry tiles 
that  are interior to the geometry are identified. Can- 
didate MBRs are also tiled and the tiles for the can- 
didate MBR are searched among the interior tiles for 
the concave query window. Recent results [23] show 
that  this two-pronged approach for implementing the 
intermediate filter in R-trees achieves substantial  im- 
provements in query performance. As will be seen in 
the experiments, the interior area captured using this 
approach could be larger than tha t  for some quadtree 
indexes constructed using a tiling level of 14 since the 
tiling domain in tha t  case is the entire da ta  space 
whereas the tiling domain for the R-tree is just the 
MBR of the concave geometry. 

3.6 Interior Approximations Summary 
Table 1 summarizes the use of interior approximations 
for Quadtrees and R-trees. As described, Quadtrees 
use interior tiles for both  query and da ta  geometries. 

The tiles for each da ta  geometry in the spat ial . index 
table are labeled interior or boundary based on whether 
or not they are interior to the da ta  geometry. Like- 
wise, the interior tiles to a query are also identified. 
Together, the interiors of the query and candidate ge- 
ometries are used in the intermediate filter to bypass 
the secondary filter whenever possible (as described 
in Section 3.1). In contrast, R-trees only use interiors 
of the queries. As a consequence, bypassing the sec- 
ondary filter is not possible in all cases but  will still be 
effective in most cases (as described in Section 3.5). 

Convex Query 

Concave Query 

Quadtree ] R - t r e e  [ 

Interior None 
tiles 

Interior Interior 
tiles MBRs 

Interior Interior 
tiles tiles 

Table 1: Summary  of  the use o f  interior ap- 
proximations  for Quadtree and R-trees  

With  all these optimizations incorporated into the in- 
dexes, we compare the performance of both  Quadtrees 
and R-trees for different queries. 

4. EXPERIMENTS 
In this section, we describe experimental  results tha t  
compare the performance of Quadtrees and R-trees. 
We used two datasets: the US Blockgroup (USBG) 
dataset  consisting of about 230K arbi t rar i ly-shaped 
polygon geometries, and the US Business Area (ABI) 
dataset  consisting of over 10M da ta  points. 

For both datasets,  Quadtree and R-tree indexes are 
created. In order to optimize performance, Quadtrees 
need to be fine-tuned by choosing an appropria te  tiling 
level. Unlike Quadtrees, no specific tuning is required 
for R-trees. In the next subsection, we demonstra te  
the dependence of Quadtree performance on the tiling 
level using a subset of USBG data. 

4.1 Impact of Tiling level on the Perfor- 
mance of Quadtrees 

To determine the impact of tiling level on the per- 
formance of Quadtrees, we choose a subset of USBG 
dataset .  This subset consists of all geometries in 100- 
mile radius from the center of Manhat tan,  NY and 
contains 23982 geometries (i.e., 10% of the original 
size of the USBG dataset) .  Table 2 shows the index 
creation performance as the tiling level increases. For 
small tiling levels of 2 to 8, each geometry fits com- 
pletely inside a single tile and the index creation times 
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are small. As tiling level increases from 12 to 14 and 
then from 14 to 16, the number of tiles per geometry 
increase by a factor of 3 and 7. Although this means 
the storage and the index creation costs increase as 
the tiling level increases (as shown in Table 2), the 
benefit is tha t  finer and better tile approximations 
are obtained for geometries. As a result, fewer and 
fewer (tile approximations of) da ta  geometries will in- 
teract  with (the tile approximations of) a query ge- 
ometry  improving query performance of the quadtree 
index. However, increasing the tiling level beyond a 
certain level makes the tile approximations too fine 
and too many: potentially affecting the query times 
adversely. Finding the right tiling level is critical to 
the performance of quadtree. This phenomenon is il- 
lus t ra ted in Figure 2 using a 5-mile and a 10-mile ra- 
dius window around the Manhat tan  center. Figure 2 
(a) shows the results for a 5-mile-radius query win- 
dow. As the tiling level increases, the pr imary filter 
s tar ts  returning fewer and fewer results due to bet ter  
t i le-approximations of the da ta /query  geometries: at 
level 2, the tiles are too coarse and hence all 23982 ge- 
ometries are returned whereas at level 14, only 2216 
geometries are returned. Due to the decrease in the 
number of returned geoemtries the query times de- 
crease substantially. However, as the tiling level in- 
creases to 16 and then to 18, the number of tile ap- 
proximations increase substantially (as shown in Ta- 
ble 2) and the associated searching costs on the large 
number of tiles outweigh any further gains from bet ter  
tile approximations (and reduced data-query interac- 
tions). The same phenomenon also occurs for the sec- 
ondary filter query wherein the resulting candidates 
from the index (primary filter) are checked with the 
query geometry for intersection. Similar results are 
also obtained for a 10-mile-radius query window. In 
all these results, a tiling level of 14 obtains best  query 
performance for the subset of USBG data.  This ex- 
periment illustrates tha t  picking the right tiling level 
is critical to the performance of a quadtree. 

In the next subsection, we compare the performance 
of Quadtree and R-tree indexes on the USBG and the 
ABI datasets.  

4.2 Quadtree and R-tree Comparison 
For the ABI dataset,  the Quadtree is tessellated at 
level 18 and for the USBG dataset  it is tessellated at 
level 14. These tiling levels for the Quadtree are cho- 
sen after much experimentation to optimize the over- 
all query performance. In contrast, R-tree requires 
no such fine-tuning. We conducted the experiments 
using Oracle Release 9.2.0 running on a Sun 400MHz 
machine with 1GB memory (note: the tests do not 
need so much memory) First,  we present the times for 
index creation and index updates  for both indexes and 

then describe the results for queries. 

Tiling Level  A v g .  ~ o f  ti les 
p e r  g e o m e t r y  

2 1 

I n d e x i n g  
t ime(s )  

21 
21 

6 1.01 21 
8 1.03 21 
10 1.16 24 
12 1.59 26 
14 4.35 46 
16 29.81 259 
18 359.01 3031 

T a b l e  2: A s  t i l i ng  leve l  i n c r e a s e s ,  n u m b e r  o f  
ti les per g e o m e t r y  increase  as  wel l  as  the  in- 
dexing t ime.  

4.2.1 Creation and Update times 
In Table 3, we describe the t ime for creation of these 
indexes. The table indicates tha t  the creation t ime for 
the Quadtree index on the ABI dataset  is one-fourth 
of that  for the R-tree. This is because the t ime for 
clustering in the R-tree for a large dataset  of 10M is 
relatively expensive. The multiple SQL statements 
for selecting subsets of the dataset  and writing R-tree 
nodes one by one takes a substantial  portion of this 
creation time. In the case of the Quadtree,  the cost is 
considerably less since tessellation of each da ta  geome- 
t ry  into a single tile (ABI da ta  is point data),  insertion 
into the spat ial . index table, and creation of the B-tree 
index on the spat ial . index table take much less time. 
The next row in table 1 indicates that  the Quadtree 
creation time for USBG dataset  is several times higher 
than the R-tree creation time. This is because tessel- 
lation of each block group geometry into level-14 tiles 
is quite expensive and dominates the overall creation 
time. 

The table also indicates the t ime for inserting rows 
into the Blockgroup indexes. We insert three sets of 
geometries: The first set consists of 10000 simple point 
da ta  obtained from the ABI dataset .  The second set 
consists of 20000 simple polygon geometries obtained 
from the USBG dataset  (New York region) and the 
third set consists of 10000 complex polygon geome- 
tries also obtained from the USBG da ta  (Alaska re- 
gion). This is to examine the variation of the quadtree 
times with the complexity of the geometries. For in- 
sertion of point data,  the Quadtree is nearly twice as 
fast as the R-tree. Since tessellation of points is very 
fast, all the Quadtree needs to do is insert the tile into 
the spatial_index table and have the associated B-tree 
updated.  For these inserts, the quadtree inherits the 
relative fastness of B-tree updates  and gains from be- 
ing implemented on top of built-in indexes. Similar 
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results are also reported for 20000 small-polygon in- 
serts. However, when inserting 10000 large and com- 
plex polygons from the USBG data, the tessellation 
time dominates for the Quadtree and it is several times 
slower than the R-trees. Also note that  the insertion 
times for R-tree increase almost linearly as the dataset 
is increased from 10000 to 20000 and is independent 
of the complexity and sizes of the polygons. 

Per formance  
Criter ion 
ABI Index 
Creation 

USBG Index 8330s 
Creation 

10K-point 67s 
inserts (ABI) 

20K-small-polygon 183s 
inserts (USBG) 

3600s 10K-large-polygon 
inserts (USBG) 
Storage(ABI) 

Storage(USBG) 

Quadtree  R- tree  

4203s 20406s 

454s 

131s 

330s 

166s 

909MB 824MB 
728MB 24MB 

Tab l e  3: C o m p a r i s o n  of  Quadtree  and R - t r e e  
create  and update  t i m e s  and storage  character-  
istics: Quad-tree  is faster for A B I  (po in t )  data 
in  i n d e x  c r e a t i o n / u p d a t e .  R - t r e e  is faster for 
l a r g e - p o l y g o n  U S B G  da t a .  R - t r e e  needs  less 
space  in  b o t h  cases.  

The last two rows of Table 3 present the storage space 
consumed by the Quad-tree and R-tree indexes. For 
the ABI (point) data, both indexes require almost the 
same amount of memory whereas for the USBG (poly- 

gon) data, R-tree storage consumption is 1/30 th of 
that  for the Quadtree. This is because the Quadtree 
is tiled at level 14 to optimize query performance and 
this generates many tiles for each data geometry con- 
suming a lot of storage space. 

4.2.2 Queries 
Next, we examine the performance of queries on the 
two indexes for the two datasets. We consider two 
types of queries: window queries and within_distance 
queries (R-trees are much faster than "Linear" Quad- 
trees for nearest-neighbor queries and are not pre- 
sented here). For the window queries, we first use 
the 3230 counties in the United States as a set of con- 
cave queries. Then, we generate convex windows using 
some of the most-densely populated areas and ran- 
domly generated query center points within the areas. 
For instance, for the ABI dataset we used the New 
York Manhat tan  center as one query center. Using 
such query centers, we generated a convex query win- 
dow of different radii from 0.25 miles width to 100 
miles width. For within-distance queries, we use sim- 
ilar queries by specifying the center and a distance of 
0.25 to 100 mile radius. All queries are of the form: 

select geometry from geom_tab 
where sdo_<operator>(geometry, 
<query_geom>, ...)='TRUE' 

Note that  the queries retrieve geometries as opposed 
to doing a "select count(*)". We have chosen to use 
these queries since this is how the GIS and CAD/CAM 
applications use Oracle Spatial in a realistic scenario. 
As a consequence, with the increase in the number  
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of result geometries, the query time grows and the 
geometry-retrieval t ime may dominate the actual in- 
dex response time. We will come across this phenom- 
ena for large queries that  retrieve a lot of geometries. 

Table 4 presents the average query response times 
for both Quadtree and R-tree indexes on the USBG 
dataset  using the 3230 county polygons as query win- 
dows. We observe that  R-tree performs bet ter  than 
the Quadtree for all masks. For anyinteract,  R-tree 
is faster by 35%; for inside by 65%. This is because 
the interior-tile optimization performed in R-trees for 
the (concave) county queries is more effective than 
that  for the Quadtree at level-14 for USBG. Specifi- 
cally, the interior area captured by the R-tree is more 
than that  in the Quadtree. By increasing the tiling 
level to more than 14 for the Quadtree, this interior 
area may improve but  that  will result in larger stor- 
age requirement for the Quadtree index and adversely 
affects the query performance. R-tree is faster by 90% 
for most of the other masks like contains, equal, and 
covers. This is because for these masks, R-tree first 
compares the "single" MBRs of query and da ta  geome- 
tries and eliminates most secondary filters. For exam- 
ple, for a contains mask, the query MBR is checked 
for containment in the da ta  MBR (which does not 
happen in most cases) in addition to regular inter- 
section. Such optimizations are not easily extended 
to Quadtrees since the exterior of the query /da ta  is 
split over multiple tiles. For overlap masks ("over- 
lapbdydisjoint" and "overlapbdyintersect"), both R- 
trees and quadtrees perform nearly the same. Similar 
results are also obtained for the ABI dataset.  Next, 
we examine the performance of the two structures for 
convex query windows. 

Q u e r y  m a s k  Q u a d t r e e ( s )  R t r e e ( s )  

anyinteract 0.81 0.49 
inside 0.80 0.28 

contains 0.85 0.04 
touch 1.52 1.13 

coveredby 0.88 0.66 
covers 0.44 0.05 
equal 1.53 0.04 

overlapbdydisjoint 1.77 1.41 
overlapbdyintersect 1.53 1.41 

Table  4: C o m p a r i s o n  o f  A v e r a g e  Q u e r y  t i m e s  
for Q u a d t r e e  and  R- tree  i n d e x e s  on  U S B G  
data: Quer ie s  are from c o u n t i e s  da tase t .  R- 
t ree  is faster  for all  m a s k s  - -  a n y i n t e r a c t ,  R-  
tree  faster  by  35~0; ins ide  by  65~0. 

• Figure 3 (a) shows the performance of R-tree and 
Quadtree indexes for the most common type: "anyin- 
teract" queries on the ABI dataset. The x-axis plots 
the query radius in miles and the y-axis the response 

time for each index. Both axes are on a logarithmic 
scale. As the query radius increases, the response 
times also increase. R-tree consistently outperforms 
Quadtree for small-medium radii: for small radii of 
0.25 miles, R-trees are 30% faster. As the radius in- 
creases to 100 miles, the number of retrieved geome- 
tries increases (to order of .5M) and the geometry- 
retrieval cost dominates the index cost. In such cases, 
both indexes perform the same. Figure 3 (b) shows 
similar results for the USBG dataset  for small query 
radii. R-trees dominate quadtrees for small to medium 
query radii. 

Figure 4 compares the performance of R-tree and 
Quadtree for the next most popular  query: the in- 
side query. Figure 4(a) plots the results for the ABI 
dataset  and Figure 4(b) plots the results for the USBG 
dataset.  Once again, the x-axis plots the query radius 
in miles and the y-axis the response time for each 
index. As the query radius increases, the response 
times also increase. R-tree consistently outperforms 
Quadtree for all radii: for small radii of 0.25 miles, 
R-trees are nearly 3-4 times faster than Quadtree; 
whereas for large radii of 100 miles R-trees are 2 times 
faster than Quadtrees. 

In Figures 3 and 4, R-trees obtain bet ter  perfor- 
mance due to capturing a lot of interior using in- 
terior rectangles/tiles. However, in " touch ' - type  of 
queries, the boundaries of query and da ta  items are 
checked for touch-type of interaction. In this case, 
the boundary area for an R-tree query is the MBR 
approximation minus the interior approximations of 
R-tree. This boundary for an R-tree covers more area 
than the "boundary" tiles of a Quadtree (as the MBR 
is a coarser approximation than quadtree tiles). As 
a result, the number of da ta  exclusively intersecting 
the boundary area is more with an R-tree than with 
a Quadtree. This is especially evident (1) for large 
query windows, and (2) more predominant for point 
layers (since more points can fit in the boundary area 
than non-point data).  Since the number of candidate 
da ta  resulting from the index determines the num- 
ber of secondary filter comparisons and the result- 
ing query performance, R-tree performance could be 
worse than that  of Quadtree for these queries. Fig- 
ure 5 (a) and (b) illustrates this for the ABI dataset 
(a point dataset).  Figure 5(a) plots the touch-query 
response time for both R-tree and Quadtree whereas 
Figure 5(b) plots the number of candidates passed on 
to the secondary filter from the primary filter (spatial 
index). For small query windows the R-tree is faster 
but  as the query size increases, the boundary tiles of 
the query window in a quadtree intersect fewer data  
points in contrast to the R-tree. As shown in Fig- 
ure 6(a), for non-point da ta  of the USBG dataset  this 
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phenomena does not occur until  the query window 
becomes relatively much larger than the data, i.e, for 
large query windows. Similar elimination strategy also 
applies to "coveredby" and "overlap" masks. These 
results for the USBG dataset are shown in Figures 
6(b) and 7. These masks are not applicable for point 
data (all "coveredby" and "overlap" mask queries on 
ABI dataset return 0 results right away). To sum- 
marize the results for "touch", "overlap", and "cov- 
eredby" queries that use boundary-area-based filter- 
ing, R-trees could be slower than Quadtrees for touch- 
type queries on point data layers. For non-point data, 
R-trees are faster for most query sizes. 

Next we present the results for other masks using 
the USBG dataset. Figure 8 compares R-tree and 
Quadtree for "contains" and "covers"-type of queries. 
Since R-trees have only one exterior approximation for 
both query and data geometries, optimizations such 
as "traverse an index path only if the index/geometry 
MBR contains or covers the query MBR". Such an op- 
timization is not easily enforceable in Quadtrees. As a 
result, the performance of Quadtrees degrades as the 
query radius increases although at most 2 objects are 
retrieved in the query. In contrast, R-tree response 
times stay flat with the increase in query radius for 
both "contains" as well as "covers"-type of queries. 
Similar results are also obtained for "equals" masks 
in Figure 8(c). 

Next, we present the results for within_distance queries 
for USBG and ABI datasets. Figure 9(a) plots the re- 
sults for the ABI dataset and Figure 9(b) plots the 
results for the USBG dataset. Once again, R-tree 
consistently outperforms Quadtree for all radii: for 
small radii of 0.25 miles, R-trees are nearly 3-4 times 
faster than Quadtree; whereas for large radii of 100 
miles R-trees are 2 times faster than Quadtrees. This 
is because Quadtrees have an additional cost of cre- 
ating buffers around the query center and tiling it 
whereas R-trees internally use distance-based compu- 
tation between query center and index/data  geome- 
tries to avoid expensive buffering. 

5. CONCLUSIONS 
In this paper, we compared Quadtree and R-tree in- 
dexes supported in Oracle Spatial. We briefly de- 
scribed their implementations along with some opti- 
mizations. We evaluated their relative performance on 
large GIS datasets using different query, insert, and 
index-creation operations and compared their storage 
requirement. For these datasets, R-trees consistently 
outperformed Quadtrees by 2-3 times for upto 10- 
mile radius windows for almost all query types. For 
larger query windows, the performance gap between 
the two indexes decreased and the gap even reversed 

for some masks such as touch, overlapbdyintersect and 
overlapbdydisjoint where Quadtrees performed better 
due to finer approximation of "boundary" area in a 
query window. For distance queries such as within- 
distance (and nearest-neighbor), R-trees consistently 
outperformed Quadtrees by a factor of 3. Update 
times for R-trees are almost linear in the number of 
updates, whereas for quadtrees they depend on the 
size and complexity of the geometry. Storage require- 
ments for a Quadtree are nearly the same as those 
for R-trees when the data is points and more oth- 
erwise. In short, a quadtree could be recommended 
for update-intensive applications using simple poly- 
gon geometries, high concurrency update databases, 
or when specialized masks such as touch are frequently 
used in queries. However, users have to fine-tune the 
tiling level to obtain best performance. R-trees, which 
do not require any such tuning, could be used in all 
other cases to obtain nearly equivalent or better per- 
formance. 
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