
Building an Integrated Active OODBMS: Requirements,Architecture, and Design Decisions �A. P. Buchmann J. Zimmermann J. A. Blakeley D. L. WellsDept of Computer Science Computer Science LaboratoryTech. University Darmstadt Texas Instruments, Inc.Darmstadt, Germany 64293 Dallas, TX 75265AbstractActive OODBMSs must provide e�cient supportfor event detection, composition, and rule execution.Previous experience, reported here, building active ca-pabilities on top of existing closed OODBMSs hasproven to be ine�ective. We propose instead an activeOODBMS architecture where event detection and rulesupport are tightly integrated with the rest of the coreOODBMS functionality. After presenting an analy-sis of the requirements of active OODBMSs, we dis-cuss event set, rule execution modes, and lifespan ofevents supported in our architecture. We also discussthe coupling of event composition relative to transac-tion boundaries. Since building an active OODBMSex nihilo is extremely expensive, we are building theREACH active OODBMS by extending Texas Instru-ment's Open OODB Toolkit. Open OODB is particu-larly well suited for our purposes because it is the �rstDBMS whose architecture closely resembles the activedatabase paradigm. It provides low-level event detec-tion and invokes appropriate DBMS functionality asactions. We describe the architecture of the event de-tection and composition mechanisms, and the rule �r-ing process of the REACH active OODBMS, and showhow these mechanisms interplay with the Open OODBcore mechanisms.1 IntroductionActive database systems have been proposed as anew data management paradigm to satisfy the needsof many applications that require a timely response tocritical situations. Frequently mentioned examples ofsuch applications are power and communication net-work management, computer-integrated manufactur-ing, commodity trading, air-tra�c control, plant and�This work is sponsored in part by the ACT-NET researchnetwork on active databases which is part of the program "Hu-man Capital and Mobility" of the European Community.

reactor control, tracking, monitoring of toxic emis-sions, and multimedia applications. Common to allis the need to respond in a timely manner to exter-nal events. Other applications that could bene�t fromactive database technology are applications in whichlarge volumes of data must be analyzed to detect rele-vant situations although time constraints are less im-portant, as is the case with intelligence applicationsand the monitoring of environmental pollutants andtheir long-term e�ects. Work
ow management is an-other application domain of active databases that israpidly gaining importance. It combines the need forevent-driven activities with temporal constraints. Fi-nally, a domain for active database technology is theDBMS itself, since the same mechanisms can be ap-plied for uni�ed handling of consistency constraints inhomogeneous as well as heterogeneous systems, mate-rialized views, access control, and complex transactionmodels required for heterogeneous systems and work-
ow management.So far, the promises of active database technol-ogy have not been realized, particularly in an OO-framework. The main reason, in our opinion, is thelack of a readily available and stable platform thatincorporates all the functionality identi�ed to be rele-vant for many of the above applications. Many goodbut partial solutions have been proposed to individualaspects of active database technology, such as eventdetection and composition, rule execution strategiesand execution models, and the application of activedatabase techniques for limited domains, such as con-sistency enforcement and materialized views. Many ofthe systems that have been built address subsets of thefunctionality that has been identi�ed as relevant. Forexample, most implemented systems use sequentialrule execution with one coupling mode, either imme-diate or deferred. They are limited in the set of eventsthat can be detected to basic database operations,

and the actions are constrained to database updatesor transaction aborts (e.g., Postgres [SHP88, SHP89],Starburst [WF90], Ariel [Han92], Exact [DPG91]).Other systems, such as HiPAC [DBB88, CBB89], al-though ambitious in the de�ned functionality, have notbeen fully implemented.The implementation of an active DBMS with fullfunctionality requires the availability of a full-
edgedDBMS into which the active capabilities can be in-tegrated. This fact makes the entry price very high,particularly for active OODBMSs. Building the activecapabilities as a layer on top of an existing commercialsystem, results in di�culties when trying to modifythe underlying transaction model or trapping methodexecution events. Further, basic requirements for ef-�cient implementation of active capabilities, such asthreads and their parallel execution, are not providedby many popular operating system implementations.The REACH project1 [BBK92, BBK93] attemptsto provide a stable research platform based on anextensible object-oriented DBMS, Texas Instruments'Open OODB [WBT92]. Open OODB uses the EXO-DUS storage manager [CDR86] and is implemented inan extensible way that follows closely the event-drivenparadigm of active databases. In this paper we de-scribe the architecture and basic design decisions thatare required for a seamless integration of a wide rangeof active database capabilities into an object-orientedDBMS. The driving motivation behind many of thesedecisions is to provide an e�cient and stable platformwithout sacri�cing essential active capabilities, such asa rich event set with temporal and composite eventsin addition to the basic database operations, multi-ple coupling modes, and parallel rule execution. Thecontributions of this paper are threefold:1. We clarify the semantics of event composition rel-ative to transaction execution. This issue has notbeen properly addressed previously, but is essen-tial for e�cient event detection and composition.2. We present an experience report summarizing thedi�culties we faced when trying to build an ac-tive OODBMS on top of two closed commercialOODBMSs. We conclude from that experiencethat it is necessary to build the active capabil-ities into the OODBMS and identify importantfeatures of the underlying system.3. We show how the Open OODB sentry mechanismis a key feature in the e�cient support of active1REal-time ACtive and Heterogeneous mediator system un-der development at T.H. Darmstadt

database management, and present the architec-ture of the REACH ECA-managers.Section 2 characterizes the essential features we expectin an aDBMS. Section 3 discusses events and rule exe-cution in REACH. Section 4 reports and analyzes ournegative experiences trying to build a layered systemon top of two closed, commercial OODBMSs. Sec-tion 5 introduces the Open OODB meta-architectureas the basis for the REACH implementation. Section6 addresses the architectural decisions needed to per-form e�cient event monitoring and rule �ring, whileSection 7 addresses open issues, future work and con-clusions.2 Characterization of Active DatabaseFeaturesThe concept of an active database system is elusive.With commercial relational DBMSs o�ering basic trig-ger capabilities and the standards bodies planningon adding them to the SQL-3 standard, the questionarises what the basic features of an aDBMS are. InREACH we aim at supporting complex applications,possibly in open environments, for which the primitivetriggers o�ered by today's RDBMSs are not su�cient.In the HiPAC project [DBB88,CBB89], one authorparticipated in the requirements analysis of complexapplications (process control, network management,command and control, CIM, and air-tra�c control).As a result of that analysis, the primitives and ba-sic abstractions of HiPAC were de�ned. Recently, westarted a study of applications in the areas of power-plant maintenance and operations and telecommuni-cation network management. Preliminary results con-�rm the validity of the HiPAC primitives and havelead to the identi�cation of some additional capabilityneeded to deal with recovery in open systems [BBK93].We therefore require from an aDBMS the following ba-sic features:Flexible rule invocation/triggering: The
exibilityof rule invocation is achieved through a clear separa-tion of the triggering event from the condition and ac-tion parts of the rule, the richness of the event set, andthe power of the algebra that composes those events.In an aOODBMS an event set must comprise arbi-trary method invocation events, temporal events, and
ow-control events. These events must be compos-able through an event algebra [DBM88]. While therequired richness of the event algebra may be appli-cation dependent, we specify that basic compositions,such as, sequence, conjunction, disjunction, negation,closure and history be provided. Good examples ofsuch an algebra are [GD93a, GD93b, CM91, GJ92].

However, a sophisticated event composition algebra isof little use if a rich collection of event types cannot bedetected and composed e�ciently. Therefore, a bal-ance must be found between the expressiveness andcomplexity of the event algebra and the e�ciency withwhich expressions of this algebra can be evaluated.E�cient rule invocation/triggering: The e�ciencyof rule triggering depends on the e�ciency of primi-tive event detection, the e�ciency of event composi-tion, and the overhead incurred in deciding whether arule must be triggered or whether normal processingcan proceed. E�cient event detection depends on theavailability of a low level trapping mechanism, suchas hardware interrupts, virtual memory page faulting,dispatch rede�nition, or in-line wrappers. It dependson being simple and parallelizable. Further, over-head derived from storing parameters and garbage-collecting incomplete events must be minimized. Fi-nally, the event composition process should be exe-cuted asynchronously with normal processing to avoidunnecessary delays while a decision is made whethernormalmethod execution can proceed or if a rule mustbe executed.Flexible rule execution: The
exibility of rule exe-cution is guaranteed through the de�nition of variouscoupling modes that de�ne the execution of rules orparts thereof relative to the triggering user-submittedtransaction. HiPAC recognized four coupling modes,namely immediate, deferred, detached and paralleldetached causally dependent [HLM88, CBB89]. In[BBK93] we showed that for closed database appli-cations these coupling modes are su�cient. For openenvironments, i.e., situations in which rules may causenon-recoverable side e�ects, two additional couplingmodes are required, namely sequentially detachedcausally dependent and exclusive detached causally de-pendent.Full database capability: An active database sys-tem by de�nition is a full-
edged DBMS. Therefore,persistence, query processing, concurrency control andrecovery are essential features.E�ciency and tight integration of DBMS function-ality and ECA-rule execution: The complex appli-cations that are targeted require a tight integrationof the active capabilities with the DBMS. The loosecoupling between rule management at the applica-tion level and a passive DBMS, as has been providedby expert system shells that interface with relationaldatabase systems, has proven to be rather ine�cientbecause of the expert system's rule invocation modus(either explicit or through a recognize-act cycle) andthe frequent crossing of the application and database

interfaces.De�nition of timing constraints: Many applicationsdo require the speci�cation and enforcement of timingconstraints. Although we do not view this as an es-sential requirement of an active database system, weconsider timing constraints an important feature forwhich the necessary provisions should be made earlyon.The goal of the REACH project is to provide astable platform that satis�es the above requirements.Such a stable platform is a necessary condition for thedevelopment of meaningful applications using activedatabase technology.3 Events and Rule ExecutionThe above requirements determine many of the de-sign decisions that were made for REACH. This sec-tion summarizes four important aspects related to ruleinvocation and execution:� the primitive and composite events, that are han-dled;� the composition of events relative to transactionboundaries;� the lifespan of composite events;� the event consumption policies.Space limitations preclude a full discussion of all theseissues. Therefore, we refer to previously published re-search whenever possible.3.1 Event SetThe event structure of REACH has been describedelsewhere [BBK92]. It is similar in many aspects toother event hierarchies and algebras [DBM88, CM91,GD93b, GJ92]. We describe only brie
y the main fea-tures needed for a better understanding of the follow-ing sections.REACH recognizes both primitive and compos-ite events. Primitive events can be either method-invocation events, state-change events,
ow-controlevents (such as transaction-related events), and ab-solute temporal events. Explicit user signals canbe modelled as method-invocation events. Temporalevents can be either absolute or relative, periodic oraperiodic. A good characterization of primitive eventsis given in [GD93a].Events can further be composed through an eventalgebra. A variety of event algebras of varying com-plexity have been proposed [DBM88, CM91, GD93b,GJ92]. The REACH algebra inherits the sequence,disjunction and closure of the HiPAC algebra with thesame semantics [DBM88]. In addition, it takes fromSAMOS the notion of validity interval for an event

and uses SAMOS's negation, conjunction and historyoperators [GD93b]. In addition, we de�ned a specialkind of temporal event, milestones, which are usedfor time-constrained processing and can be applied totracking the progress of a transaction relative to itsdeadline. If the transaction does not reach a milestonein time, the probability of missing its deadline is highand a contingency plan can be invoked [BBK93]. The�rst REACH prototype supports the event classes formethod events, DB-internal events (e.g. commit orpersist), time events, and composite events. Futureextensions will consider special events, such as mile-stones, and state change events, which require otherlow-level event detection mechanisms, such as virtual-memory faults.It is not the goal of this paper to expand on thesemantics of events and the event algebra, as thesehave been described elsewhere. However, we providemore detail on the semantics of event composition rel-ative to transaction boundaries, as this has not beenproperly addressed in the literature.3.2 Event Composition Relative to Trans-action BoundariesEvents can be composed using either �nite state au-tomata [GJS92], (colored) Petri nets [GD93b] or syn-tax graphs (e.g., [CKA93], [Deu94]).A crucial issue for the architecture is the composi-tion of events relative to transaction boundaries andthe valid execution strategies of rules, depending onthe kind of event. This issue has not been properlyaddressed elsewhere. Events can be:� Simple method events (both application-methodinvocations and transaction-related events, suchas BOT, EOT, Commit, Abort).� Simple temporal events (absolute points in time).� Complex events where all the primitive method-events originate in the same transaction.� Complex events where the primitive events origi-nate in di�erent transactions.REACH distinguishes six coupling modes. In the im-mediate mode a rule is executed, possibly as a sub-transaction, at the point at which an event was de-tected within another transaction. In deferred mode,the rule is executed as a subtransaction after the trig-gering transaction completes its execution but beforeit commits. In detached mode the rule is executedin an independent transaction. In parallel causally de-pendent mode, the rule executes in a separate transac-tion which may begin in parallel but may not commitunless the triggering transaction commits. In sequen-tial causally dependent mode, the rule executes in a

separate transaction which may initiate only after thetriggering transaction has committed. Finally, in ex-clusive causally dependent mode a rule may execute asa separate transaction which may commit only if thetriggering transaction aborts [BBK93].Not all the combinations of the four kinds of eventsand the six coupling modes are semantically meaning-ful. Some that are semantically correct may not bepractical for performance reasons. Therefore, we �rstidentify which combinations are reasonable to supportin the REACH architecture. Table 1 summarizes thesupported combinations.Single-method events can always be related to thetransaction in which they were raised. Therefore, rulestriggered by a single-method event can be executedunder any coupling mode. Conversely, simple tempo-ral events occur independently of transactions. There-fore, rules triggered by purely temporal events mayonly be executed in a detached mode.Composite events where all primitive events orig-inate in a single transaction can be related to thattransaction. Therefore, any coupling mode would besemantically correct. However, if a method-event israised and composite events are allowed to triggerrules in immediate mode, the normal
ow of execu-tion must be stopped every time a method event israised until the event composers have signaled thatno complex event that triggers an immediate rule hasbeen completed. This overhead is prohibitive (andcollides with our requirement that event compositioncan be carried out asynchronously). Therefore, wedo not support in REACH the combination of com-plex, single-transaction events with immediate cou-pling mode.If the composite event is composed of events orig-inating in more than one transaction, immediate anddeferred coupling modes are not well de�ned, sincean ambiguity exists as to which transaction is meant.Therefore, this combination is disallowed. The variousdetached coupling modes are allowed, provided thatthe commit/abort dependencies are respected for alltransactions from where the primitive method eventsoriginated.It should be observed that for any of the detachedexecution modes, references to persistent objects aswell as values can be passed as parameters. Referencesto transient objects are not allowed since these objectsmay disappear as soon as the originating transactioncompletes. However, transient objects may be passedby value.

Single Method Purely Temporal Composite 1 TX Composite n TXsImmediate Y N (N) NDeferred Y N Y NDetached Y Y Y YPar.caus.dep. Y N Y Y (all commit)Seq.caus.dep. Y N Y Y (all commit)Exc.caus.dep. Y N Y Y (all abort)Table 1: Supported combinations of event categories and coupling modes.3.3 Event Life-SpanThe next important issue when dealing with com-posite events is to determine how long to keep alivea partially composed event. We distinguish betweencomposite events that are composed from primitiveevents originating in a single transaction and thosethat are composed across transactions. The life-spanfor composition of events that originate within a sin-gle transaction is the duration of a transaction. Oncethe transaction is either committed or aborted, theevent composition is discarded. This avoids clutteringthe system with semi-composed events. For eventsthat are composed from primitive events that origi-nate in di�erent transactions we require a validity in-terval. This may be given either for the whole com-posite event, or it may be determined by the smallestvalidity interval of the composing events. Compositeevents without an explicit or implicit validity intervalare illegal. Clearly de�ning the life-span of events en-ables to clean the system from semi-composed eventsin an e�cient manner.3.4 Event Consumption PolicyThe third important issue when composing eventsis the event consumption policy. The problem arisesfrom multiple instances of primitive events arriving atan event composer and the resulting ambiguity. Let usconsider that the sequence E3 = (E1;E2) of primitiveevents E1 and E2 is being composed. The primitiveevent instances e1, e01, e2 arrive in this order. Shouldthe composer use e1 or e01 in the composition? Thisproblem was addressed in SNOOP [CM91], de�ningfour contexts: recent, chronicle, continuous, and cu-mulative. In recent mode, typical for sensor monitor-ing, the most recent occurrence of a primitive event isused in the composition. In chronicle mode, typicallyused in work
ow applications, the primitive events areconsumed in chronological order. In continuous mode,useful in �nancial applications, such as monitoring ofthe Dow Jones index, each occurrence of a primitiveevent opens a new window that stays open for a spec-

i�ed period. Finally, in cumulative context all occur-rences are used up to the point where the compositeevent is raised. For details see [CM91]. We considerthese consumption policies to be the best so far de-�ned. Although complex, they all appear to be usefulfor some application. As a minimum, a system mustsupport recent and chronological event consumptionpolicies. These are the consumption policies currentlysupported in REACH. The issues of consumption pol-icy and life-span of the event composition process areorthogonal.4 Limitations of Layered ArchitecturesBecause an aDBMS combines full database func-tionality with active capabilities the entry price onemust pay in terms of infrastructure before any mean-ingful applied research can be done is extremely high.A layered implementation of active database capabil-ity on top of a commercialOODBMS appeared, at �rstsight, to be a reasonable compromise between func-tionality and e�ort. Giving up the e�ciency of a tightcoupling between the OODBMS and the rule man-ager, one could try to implement the active databasecapabilities on top of a closed commercial system hop-ing that the provided functionality would eventuallybe migrated into the system by its developers. We at-tempted this route using two well-known OODBMSs,O2 and ObjectStore, for which we had licenses butno source code available, and encountered a series oflimitationswhich would have resulted in too many sac-ri�ces of functionality and prompted us to abort thiscourse of action in favor of an integrated approach.Here we summarize the main problems.Event detection: Method invocations are basicdatabase events in an OODBMS . To detect method-calls it becomes necessary to wrap the methods andmodify the dispatcher to signal the pertinent eventswhenever the method is called. Implementing the de-tection of method events in a closed OODBMS is dif-�cult at best. It requires rede�nition of all the classesfor which method invocations generate events. This

results in a parallel class hierarchy of active classesthat must be maintained by the application program-mer. Since active classes also require system-providedclasses, it requires the reimplementation of many ofthese classes as well. Alternately, each single method-body must be modi�ed to signal invocation and re-turn. None of these alternatives is satisfactory since iteither imposes a large overhead or forces applicationsto announce the events. More details on this issue aregiven in Section 6.Another major problem results from the distinc-tion between values and objects made by some ob-ject models. Smalltalk, for example, supports strictencapsulation. Therefore, all the interaction occursthrough methods. C++ and other object models be-ing used in OODBMSs include state in their public in-terface. While objects are modi�ed through methodsonly, value changes are detected through low-level sys-tem functions that could not be modi�ed by us. Thus,changes of state could not be detected as events.Transaction model and manager: The implementa-tion of the coupling modes that we identi�ed as es-sential to satisfy the more demanding applications re-quires a
exible transaction model. For parallel ruleexecution it is necessary to have a nested transactionmodel. Without a nested transaction model only se-rial execution of triggered rules is possible in the im-mediate and deferred modes. One of the commercialsystems we attempted to use only provides
at trans-actions, while the other does provide closed nestedtransactions. For the implementation of the detachedand the detached causally dependent modes (paral-lel, sequential, and exclusive) it becomes necessaryto spawn new top-level transactions. All four modesrequire the forking o� of a new transaction, whichcaused problems with one OODBMS's license man-ager. Furthermore, to enforce the dependencies inthe three detached causally dependent modes, it isnecessary to have access to information handled bythe transaction manager, such as transaction identi-�er, commit and abort signals, and in the case of theexclusive causally dependent mode it becomes neces-sary to transfer resources from one transaction to theother once it is determined that the spawning trans-action is to be aborted. Neither of the commercialOODBMSs we used provided us with the necessary ac-cess to transaction-manager information nor did theyallow us to gain control as needed, or to rede�ne thecommit and abort methods.Persistence model: The persistence model used byan OODBMS has a major impact on the couplingmode in which rules can be executed upon deletion

of an object. In the case of O2 that implements per-sistence by reachability without an explicit delete weencountered serious problems in triggering rules ondelete of an object. This problem, although not insur-mountable, requires much additional information to becarried (externally) to support the �ring of deletion-triggered rules. In the case of persistent C++ systemsthis problem does not exist since invocation of the de-structor methods can be detected by the event detec-tor (provided the issues discussed under detection ofmethod-events have been solved).Closed environments: When implementing the rulesystem on top of a closed OODBMS one is forced, inmany cases, to work in the OODBMS's proprietaryprogramming and run-time environment. The closednature of the O2 programming environment causedmajor problems, since access to the operating systemlevel was not possible whenever we needed it.We were initially encouraged by UBILAB [KOT93],a prototype that was implemented in a layered archi-tecture in a Smalltalk environment. However, this im-plementation has a reduced functionality in terms ofevents, execution model and performance and its ar-chitecture hinges on some features that are Smalltalk-speci�c. The kind of applications that we want toaddress, the compatibility with existing applicationsand the performance requirements push us to a C++object model. None of the commercial OODBMSs wehave access to provides us with the necessary featuresand access to internal levels that is required for ro-bust and e�cient implementation of the full range ofactive capabilities. We have therefore turned to TexasInstruments' Open OODB, an extensible C++ basedOODBMS as the basic platform we want to extendwith our active DBMS capabilities in an integratedarchitecture.5 The Open OODB PlatformTexas Instruments' Open OODB system [WBT92]is based on an open, extensible architecture for con-structing a family of DBMSs. By abstracting orthog-onal dimensions of database functionality, the OpenOODB system allows tailoring each of these dimen-sions for particular applications within a common, in-crementally improvable framework that can serve as acommon platform for research.The Open OODB system is based on a computa-tional model that transparently extends the behaviorof operations in application programming languages[WBT92]. Invocations of these operations are exam-ples of primitivemethod events. Open OODB uses thetype systems of conventional object-oriented program-ming languages, currently C++ and Common Lisp, as

alternative data models for applications. The compu-tational model is realized by a meta-architecture mod-ule that implements the concepts of event, sentry, andpolicy manager interface.Figure 1 illustrates the architecture of the OpenOODB. The meta-architecture module provides theextensibility mechanisms in Open OODB. It plays therole of a \software bus" on which database compo-nents (policy managers) can be plugged in. This meta-architecture module is philosophically close to the ac-tive database paradigm. An event is the entry pointto extensibility in Open OODB. Any operation per-formed within the context of a programming languagecan be an event. Object dereference and method in-vocation are two operations whose behavior is oftenextended to enable persistence, distribution, or accesscontrol support. A mechanism, the sentry, tracks pri-mitive events and invokes (activates) the appropriatepolicy manager (PM) which implements the extendedbehavior. Di�erent sentries (see Section 6) may invokea variety of policy managers, e.g. a Persistence PM,a Transaction PM, a Distribution PM, a Change PM,and an Indexing PM. There must be at least one policymanager per database function, but one of the inter-esting features of this architecture is the possibility ofexchanging or adding new policy managers and thusevolve and extend the system. A Nested TransactionsPM and a Rule PM to support active database capa-bilities can be added. The meta architecture also con-tains a collection of support modules including addressspace manager (ASM), communications, translation,and data dictionary. ASMs may be passive or active.A passive ASM is simply a data repository (e.g., a �lesystem). An active ASM allows computation which,in an object-oriented environment, is essential to theexecution of methods. In an Open OODB system con-�guration, at least one ASM must be active. If morethan one address space exists, there must be commu-nications and translation mechanisms to e�ect objecttransfer between them. A data dictionary serves asa globally known repository of system, object, name,and type information.Open OODB does not implement all its modulesfrom scratch. The Exodus storage manager [CDR86]is used as an ASM for permanent storage of objects,and the Volcano optimizer generator to generate thequery optimizer [BMG93]. For our purposes, the useof multiple threads, preferably on a multiprocessorplatform, for event composition and rule �ring in theactive DBMS is essential. Therefore, we committedearly to a Solaris 2.x platform. This required the port-ing of Exodus to the Solaris environment. Currently,

a version of Open OODB runs on top of Solaris 2.3and Exodus 2.2.6 The ECA-Oriented ArchitectureThe e�ciency of an aDBMS depends critically onthe e�ciency of event detection, event composition,and rule triggering after the event is raised. Thesemechanisms must be well integrated with the typesystem of the DBMS. At the same time they shouldbe implemented in a modular way since there aremany architecturally equivalent alternatives for each.Speci�cally, there are many ways to detect primitiveevents, each of which can be made compatible withany of a number of algebras. Similarly, depending onthe predominant kind of rule and process topology of aparticular system, di�erent organizations of rules canbe exploited by the rule dispatcher. Further, detec-tion, composition, and triggering interact with otherparts of the system in distinct ways. Event detectionmust be tightly integrated with the type system andoperations of the programming language of the appli-cation being monitored or with the hardware platformon which it runs. By contrast, event composition is in-dependent. Rule triggering must have some capabil-ity to execute operations, possibly spawning processesand transactions.This section describes the need for orthogonalityof event monitoring relative to the type system, thelow-level primitive event detection mechanism used inOpen OODB, the event composition and rule execu-tion mechanisms of REACH, and their interplay.6.1 Event monitoring orthogonal to typeThe REACH system uses the C++ type system asits underlying data model. To illustrate how REACHrules are mapped onto C++ classes we use an envi-ronmental rule that must be enforced in power-plantoperation. Whenever the water level of the river fromwhich the cooling water is drawn reaches a lower markand the water temperature is above a maximum tem-perature and the heat-load given o� is above a thresh-old, then the Planned Power Output must be reducedby 5%:#include "River.h"#include "Reactor.h"rule WaterLevel {prio 5;decl River *river, int x, Reactor *reactor named "BlockA";event after river->updateWaterLevel(x);cond imm x < 37 and river->getWaterTemp() > 24.5and reactor->getHeatOutput() > 1000000;action imm reactor->reducePlannedPower(0.05);}; This rule is mapped onto one rule object and twoC functions for condition evaluation and action exe-cution. All those functions are archived in a shared

Transaction
PM PM

Translation

PM
Distribution

Application Programming Interface

PM
Change

PM
Persistence

Address

PM
Indexing Query

key:

Meta Architecture Modules

Extender ModulesData
Dictionary

...
Meta Architecture Support (Sentries)

Space Communication

Support Modules Figure 1: Open OODB Architecture.library and are extracted using the naming conven-tion that the rule's name is appended by \Cond" and\Action", respectively. The base class Rule containsmethods evalCond() and execAction() which callthe C functions belonging to the relevant rule object.Specialized rule classes for consistency management,replication management, and so forth can be derivedfrom this base class.#include "Reach.h"#include "River.h"#include "Reactor.h"extern "C" boolean_t WaterLevelCond (void **args) {River *river = (River*) args[0];int x = (int) *args[1];Reactor *reactor = (Reactor*) OpenOODB->fetch("Block A");boolean_t rc;if (x < 37 && river->getWaterTemp() > 24.5 &&reactor->getHeatOutput() > 1000000) rc = B_TRUE;else rc = B_FALSE;args[0] = (void*) reactor; // reorganize argument listargs[1] = (void*) NULL;return rc;} This example reveals several requirements when ex-tending an existing programming language type sys-tem with active capabilities:� Rich data types must be sentried. The sentrymechanism must be able to monitor instancesof C++ classes, structs, arrays, and unions uni-formly, since irregularities make systems very dif-�cult to use properly.� Monitoring of events must be possible regardlessof other object properties such as persistence, dis-tribution, or versioning.� Trapping member function invocation must besupported. We require that C++ virtual memberfunctions of classes, and class and struct accessorsbe trappable.There are several places where a poorly designed sen-try could become apparent. It is better to \trans-parently" detect events than to force applications to

\announce" them, since the former does not clutter aprogram or force changes in existing code. Further, itis not always known in advance which events may beof interest to a particular Open OODB extension oraDBMS rule set. Therefore, we require that:� Type declarations for monitored types must bethe same as for the equivalent unmonitored types.� Object manipulation and function invocationmust be the same for monitored types and forthe equivalent unmonitored types. The mech-anism must support all C++ pointer conver-sions, accessibility of state variables (public,private or protected), inheritance hierarchy in-cluding multiple inheritance and base class in-formation, friend functions/classes, copy con-structors and assignment operators, construc-tor/destructor functions, and function propertiessuch as virtual, non-virtual, and static.6.2 E�cient Detection of PrimitiveEventsDetection of events is performed by the OpenOODB sentry mechanism which is used internally byOpen OODB as described in Section 5. Because OpenOODB relies heavily on sentries, both in support ofapplications and for its own internal activities, per-formance overhead associated with sentries is critical.The same holds for active DBMSs. There are threecategories of overhead associated with sentries: use-ful overhead is caused by a sentry that must alwaystrigger an extension; useless overhead is caused by asentry that will never trigger an extension; potentiallyuseful overhead is caused by a sentry that is not cur-rently triggering an extension but might in the future.Ideally, useless overhead should be avoided. This canbe achieved by �ltering low-level events and aggregat-ing them before invoking a rule or policy manager.

Many sentry-like mechanisms exist in a variety ofdomains. Examples are hardware interrupts, illegaltype tags, virtual memory traps, languagemechanismsand rede�nition of function dispatch, traps de�ned inroot classes, and in-line wrappers. The goal is �ndinga sentry mechanism that is applicable in a wide vari-ety of situations and adopting it as the prime sentrymechanism. However, the architecture must allow theuse of other sentry mechanisms for special purposes.Hardware interrupts and illegal type tags can beused to interrupt the
ow of machine instructions.Such interrupts are machine-speci�c, only cover asmall category of possible events and are de�ned ata di�erent level of abstraction (machine language in-structions) than the application programs to be ex-tended, which are written in C++.Virtual memory traps [LLOW91] allow objects tobe transparently retrieved. This technique, while fast,has three drawbacks: it is hardware-speci�c; it cannottrap function invocation, precluding its use for sev-eral kinds of extensions; and it is dependent upon thephysical memory layout of data.Programming languages like Lisp and its extension,the Common Lisp Object System (CLOS), providelanguage mechanisms to dynamically modify the be-havior of certain functions associated with particularclasses of objects. The CLOS Meta Object Protocol,which allows rede�nition of function dispatch, can beused to ensure that any declared extensions are ex-ecuted as part of \normal" dispatch. In C++, it ispossible [BCL93] for di�erent instances of a class tohave distinct virtual function dispatch tables (insteadof the usual one per class), each of which can be inde-pendently populated with modi�ed virtual functionsthat extend or change behavior. This is compiler-dependent, and cannot trap memory access, whichprecludes its use to ensure residency of objects whosestate is accessed without using a virtual function; how-ever, it does appear to have excellent properties forother kinds of language extensions. Managing a widevariety of such tables can make the application's codesize increase dramatically.Traps de�ned in a root class(es) can be inherited byapplication classes. Unfortunately, this changes sim-ple single inheritance into more complex multiple in-heritance, which, while supported by C++, is idiosyn-cratic in de�nition and implementation, thus makingcertain operations that are legal under single inheri-tance not work under multiple inheritance. A surro-gate object stands in for some other object that may ormay not be present, intercepts all messages directed atthe actual object, and performs any necessary actions

before forwarding the original message to the actualobject for execution (possibly including instantiatingthe object by retrieving it from a database). Since inC++ the state of an object can be manipulated with-out using a member function, it is possible to a�ectthe object without activating the sentry, a semanticerror that would cause the behavioral extensions tobe omitted.Open OODB implements, for C++, a sentry viain-line wrappers, that treats all extendible classes aslogically inheriting from a conceptual base class ofextendible-objects. This conceptual base class de-�nes the structures and functions necessary to makeall classes inheriting from it sentried. Unlike the useof normal inheritance to implement sentries, the classextendible-objects is never seen by a C++ com-piler. Rather, all classes logically inheriting it aremodi�ed by a language preprocessor to insert thede�ned structures and functionality into each actualclass. These augmented classes are then compiled asusual. By placing the sentrying code before the com-piler sees the application, it is possible to avoid ar-ti�cially created multiple inheritance, and to use nor-mal C++ compilers to ensure that pointer conversion,base class o�sets, friend functions, etc. work properly.They work properly because, as far as the compileris concerned, it is compiling a normal C++ program,not an augmented one. The generation process takesa C++ program as input and preprocesses it to col-lect type information and to generate an equivalentprogram with extensions added.Preliminary performance �gures for the implemen-ted sentry mechanism in Open OODB comparing use-ful overhead, useless overhead, and execution of un-monitored types is reported in [WSTR93].6.3 E�cient Event CompositionThe clue for an e�cient event management is tokeep event composition simple and to execute it inparallel. We believe that large, monolithic event man-agers that are based on a single graph should beavoided. Instead, many small compositors that canbe executed by parallel threads should be supported.This approach makes the garbage-collection of semi-composed events much simpler. Since in REACH thelife-span of composite events is well-de�ned, when thelife-span of a semi-composed event elapses, the wholecomposition graph instance for that event occurrenceis simply removed. Many small event composers arealso a necessary step toward distributed event detec-tion/composition.Event hierarchy: Each ECA-manager for a primi-tive event type contains two kinds of information: the

rules that are directly �red by the primitive event andthe composite events that contain the primitive event.Primitive events are thus passed �rst to the rules for�ring and then to other ECA-managers for compo-sition of the corresponding composite events. ECA-managers know what parameters must be passed witha primitive event, such as OID of the object to be actedupon, transaction-id, timestamp, and other attributesthat can be taken from the method invocation mes-sage. The collection of all the ECA-managers servesas a repository of event speci�cations.Event history: ECA-managers create an event ob-ject and keep local histories of the created event oc-currences. The maintenance of a highly distributedhistory eliminates the bottleneck that would resultfrom centrally logging the occurrence of events. Theprice one pays for the distributed histories is an over-head when the e�ects of a rule must be compensated.Therefore, a global history is maintained by a back-ground process after a transaction has committed orhas been aborted.6.4 E�cient Rule FiringTo make rule �ring e�cient the crucial part is tominimize the search for the rule that is to be �red,reduce the levels of indirection (messages) needed be-tween the point of event detection and the �ring of therule, and to eliminate unnecessary delays in the �ringof rules triggered by simple events due to the presenceof rules waiting for the composition of complex events.To provide an e�cient and highly selective rule �r-ing mechanism, we use the ECA-managers. ECA-managers are dedicated to a given event type. There-fore, they know which set of rules is �red by an event.If a rule can be triggered by a simple event, the ECA-manager passes the event and �res the rule. The cou-pling mode between a rule and the user-submittedtransaction is speci�ed as part of the rule but theECA-manager is aware of what rules are �red and inwhat mode. If a primitive event is part of a compos-ite event, the primitive event is passed along to thecorresponding event composer. To eliminate a majorperformance-killer we decided that only rules that are�red by primitive events can be executed in an im-mediate coupling mode, because otherwise the execu-tion of a program must be halted until it is clear thatno composite event that could �re an immediately-coupled rule will be completed by the detected primi-tive method event. This wait for negative acknowl-edgements is not acceptable. In the case of the rulesthat are triggered by the primitive events, the primi-tive event ECA-manager knows whether a rule mustbe executed in an immediate coupling mode and can

give the application program the go-ahead. Rules thatare �red by composite events can be executed in thecoupling modes deferred, detached, or detached withcausal dependencies.Figure 2 shows schematically the
ow of infor-mation between the actual primitive event detectors(implicitly sentried), the corresponding primitive andcomposite ECA-managers, and the rule objects. Ar-rows represent messages. For example, a method-event is detected and a message is sent to the corre-sponding ECA-manager. This manager produces thecorresponding event object, passes it to the rules thatare �red by it (if any) and to the composite ECA-managers (if any). The primitive ECA-manager sendsa message to the execution engine as soon as it is clearthat no immediately-coupled rules are �red.
Method Call

e.g. begin Transaction

EventE
ve

n
t

H
an

d
lin

g
C

A
 H

an
d

lin
g

Object

Composite ECAmanager
propagate

Rule

store

fire

Method ECAmanager

Rule PM
Non-Immediate

............

object
Event

create create

storefire

Message

lookupFigure 2: ECA-oriented architecture (method part).When rules are �red, there are two situations inwhich the system must deal with parallelism: a) whenmultiple rules are �red by the same event, and b) whenmultiple rules are �red by di�erent events and are tobe executed in deferred mode.In REACH we aim at providing parallel rule exe-cution. In this case, the triggered rules can execute assibling subtransactions. However, at present, Open-OODB does not provide nested transactions. There-fore, we are providing in the �rst prototype a mecha-nism for mapping a set of rules that could potentiallybe executed in parallel to an ordered �ring-sequence.This decision, taken out of necessity to proceed withthe implementation while the transaction model isbeing extended, has the advantage that we will beable to perform actual measurements comparing thegain of parallel rule execution with the overhead in-curred for setting up the parallel subtransactions. It

also enables us to provide the best execution strat-egy depending on the actual requirements of an ap-plication. At present, the issues of termination, theneed for determinism in rule execution and the devel-opment of correctness criteria, such as con
uence forrules in an object-oriented environment are still evolv-ing [AWH92], [BCW93], [VS93]. Tools for testing anddebugging are just emerging [DJ93]. Therefore, wewant to provide the possibility of enforcing di�erentrule execution strategies.When multiple rules are �red by a single event, inthe absence of nested transactions, the ECA-managermust determine the order in which they are to be �red.Since we do not consider rules �red by a compositeevent in immediate coupling mode, only one ECA-manager is involved at a time and control resides withit. Rules can be prioritized and the ECA-managerwill execute them in this order. Even if the rules areconceptually �red in parallel or no priorities have beende�ned, an ordering is required at a lower level forcreating child processes and the initialization of Solaristhreads. In the absence of priorities or in the case ofa tie, the ECA-manager uses the rule's timestamp toenforce an oldest rule �rst (default) or a newest rule�rst (optional) tie-break policy.When multiple rules are �red in deferred mode bymany di�erent events, the control over the executioncannot any longer reside with a single ECA-manager.Instead, the control now resides with the transactionpolicy manager who knows that at commit-time thedeferred rules can be executed. Again, priorities canbe enforced as the main ordering criterion, but in ad-dition to the previous two tie-breaking policies a thirdpolicy that �res rules with simple events ahead of ruleswith complex events can be enforced.7 Conclusions and Future WorkWe presented the architecture of REACH, a tightlyintegrated active OODBMS. We focused on a cleanintegration of database management and active capa-bilities. To this end we extended TI's Open OODB,an extensible DBMS that supports low-level event de-tection as the basic mechanisms for providing exten-sibility. The main contributions of this paper are:� A characterization of the requirements of activeOODBMSs.� A description of the crucial issues of
exible ande�cient event detection, composition, and ruleprocessing.� A clari�cation of the semantics of event composi-tion relative to transaction execution.

� An experience report summarizing the pitfallswe encountered while trying to build an ac-tive OODBMS on top of two closed commercialdatabase management systems.� A clean integration of the Open OODB sentrymechanism with the REACH ECA managers.This is the core architectural component of atightly integrated active OODBMS which we ex-pect to become a stable platform for future re-search.The REACH active OODBMS is being built at theTechnical University of Darmstadt. A �rst prototypebecame operational in August 1994 based on OpenOODB's alpha release 0.2. Open OODB is still evolv-ing, hence, to start working on the development ofthe active capabilities we had to make some designdecisions that accommodate some of the missing fea-tures, such as nested transactions. We are developinga nested transaction model for Open OODB which willprovide the parallel execution of rules that is part ofthe execution model, and enable us to obtain actualperformance results for sequential and parallel rule ex-ecutions. Ongoing work is concerned with e�cientevent composition comparing di�erent strategies, withe�cient garbage-collection of semi-composed events,performance measurement and the implementation ofa GUI for rule de�nition and management. We planon further developing Open OODB's intrinsic event-orientation to express other system properties suchas index maintenance PMs with the active databaseparadigm. This includes extending the set of sentrymechanisms to include virtual memory traps. Anotherarea of great interest is the combination of the ECA-rule description with Open OODB's query language,OQL[C++]. At the application level, di�erent appli-cations will be tested once an operational platform isavailable. Feedback from these applications will drivefurther development of the REACH prototype, partic-ularly the user interface and timing constraints.References[AWH92] Aiken, A., Widom, J., Hellerstein, J.M.; Be-havior of database production rules: termination, con-
uence, and observable determinism, Proc. ACM SIG-MOD 1992.[BCW93] Baralis, E., Ceri, S., Widom, J.; Better Termi-nation Analysis for Active Databases, in [PW93].[BMG93] Blakeley, J. A., McKenna, W. J., Graefe, G.;Experiences Building the Open OODB Query Opti-mizer. Proc. ACM SIGMOD, 1993.[BCL93] Bracha, G., Clark, C. F., Lindstrom, G., and Orr,D. B. Modules as values in a persistent object store.Dept. of CS, University of Utah.

[BBK93] Branding, H., Buchmann, A., Kudrass, T., Zim-mermann, J.; Rules in an Open System: The REACHRule System, in [PW93].[BBK92] Buchmann, A., Branding, H., Kudrass, T., Zim-mermann, J.; REACH: a REal-time ACtive and Het-erogeneous mediator system, Bulletin of the TC onDatabase Engineering, Vol. 15, Dec. 1992.[CDR86] Carey, M.J., DeWitt, D.J., Richardson, J.E.,Shekita, E.J.; Object and File Management in theEXODUS Extensible Database System, Proc. 12thVLDB, 1986[CW91] Ceri, S., Widom, J.; Deriving Production Rulesfor Incremental View Maintenance. Proc 17th VLDB,1991.[CBB89] Chakravarthy, S., Blaustein, B., Buchmann, A.,Carey, M., Dayal, U., Goldhirsch, D., Hsu, M.,Jauhari, R., Ladin, R., Livny, M., McCarthy, D., Mc-Kee, R., Rosenthal, A.; HiPAC: A Research Projectin Active, Time-Constrained Database Management.Final Tech Report, XAIT, July 1989.[CM91] Chakravarthy, S., Mishra, D. An Event Speci�ca-tion Language (SNOOP) for Active Databases and itsDetection. TR-91-23, U. Florida, 1991.[CKA93] Chakravarthy, S., Krishnaprasad, V., Anwar, E.,Kim, S.-K; Anatomy of a Composite Event Detector.TR-93-039, U. Florida, 1993.[DBB88] Dayal, U., Blaustein, B., Buchmann, A.,Chakravarthy, S. , Goldhirsch, D., Hsu, M., Ladin,R., McCarthy, D., Rosenthal, A.; The HiPAC Project:Combining Active Databases and Timing Constraints,SIGMOD RECORD, 17(1), March 1988.[DBM88] Dayal, U., Buchmann, A., McCarthy, D. Rulesare Objects Too: A Knowledge Model for an ActiveObject-Oriented Database System, 2nd Workshop onOODB, Bad M�unster, Germany, 1988[Deu94] Deutsch, A. Detection of Method and CompositeEvents in the Active DBMS REACH, Tech. UniversityDarmstadt, M.S. Thesis, 1994.[DJ93] Diaz, O., Jaime, A.; DEAR: A DEbugger for Ac-tive Rules in an O-O Context, in [PW93].[DPG91] Diaz, O., Paton, N.W, Gray, P. Rule Manage-ment in Object-Oriented Databases: A Uniform Ap-proach, Proc. 17th VLDB, 1991.[GD93a] Gatziu, S., Dittrich, K.R.; Eine Ereignissprachef�ur das aktive, objektorientierte DatenbanksystemSAMOS, Proc. BTW, Germany, 1993.[GD93b] Gatziu, S., Dittrich, K.R. Events in an ActiveObject-Oriented Database System, in [PW93].[GJ91] Gehani, N., Jagadish, H.V.; ODE as an Ac-tive Database: Constraints and Triggers, Proc. 17thVLDB, 1991.[GJS92] Gehani, N., Jagadish, H.V., Shmueli, O. Compos-ite Event Speci�cation in Active Databases: Model &Implementation, Proc. 18th VLDB, 1992.

[Han92] Hanson, E. N.; Rule Condition testing and ActionExecution in Ariel, ACM SIGMOD, 1992.[HLM88] Hsu, M., Ladin, R., McCarthy, D.; An Execu-tion Model for Active Database Management Systems,Proc. 3rd Int. Conf. on Data and Knowledge Bases,Jerusalem, 1988.[KOT93] Kotz-Dittrich A.; Adding Active Functionalityto an Object-Oriented Database System - a LayeredApproach, Proc. BTW, Germany, 1993.[LLOW91] Lamb, C., Landis, G., Orenstein, J., Weinreb,D.; The ObjectStore Database System. CACM 34(10),Oct. 1991.[OODB93] Open OODB Project. Open OODB Toolkit:Release 0.2 (Alpha). Texas Instruments, Inc., Sept.1993.[PW93] Paton, N., Williams, M. (Eds.); Rules in DatabaseSystems, Proc. 1st Int. Workshop on Rules in DatabaseSystems, Edinburgh, 1993.[SHP88] Stonebraker, M., Hanson, E., Potamianos, S.;The POSTGRES Rule Manager, IEEE TSE, Vol 14,No. 7, July 1988.[SHP89] Stonebraker, M., Hearst, M., Potamianos,S. ACommentary on the POSTGRES Rules System, SIG-MOD RECORD, Vol 18, No. 3, Sept., 1989.[VS93] van der Voort, M.H., Sibes, A.; Enforcing Con
u-ence of Rule Execution, in [PW93].[Wel91] Wells, D. L. ARPA Open Object-OrientedDatabase Meta Architecture Support Module Speci�-cation. TR Vers 6, ARPA Open OODB Project, CSL,Texas Instruments, Inc., Nov. 1991.[WBT92] Wells, D. L., Blakeley, J. A., Thompson, C. W.;Architecture of an Open Object-Oriented DatabaseManagement System. Computer 25(10), Oct. 1992.[WSTR93] Wells, D. L., Srivastava, A., Thompson, C. W.,Ramey, J.; A Mechanism for Extending and Evolv-ing C++ Programs. TR, ARPA Open OODB Project,CSL, Texas Instruments, Inc., Oct. 1993.[WB94] Wells, D. L., Blakeley, J. A.; Distribution andPersistence in the Open Object-Oriented DatabaseSystem. In Distributed Object Management, M. T.�Ozsu, U. Dayal, and P. Valduriez (Eds.), Morgan Kauf-mann, 1994.[WF90] Widom, J., Finkelstein, S.J. Set-Oriental Produc-tion Rules in Relational Database Systems, Proc. ACMSIGMOD, 1990.

