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Abstract

We present a novel streaming algorithm for evaluating XPath expressions that use backward axes

(parent and ancestor) and forward axes in a single document-order traversal of an XML document.

Other streaming XPath processors, such as YFilter, XTrie, and TurboXPath handle only forward axes.

We show through experiments that our algorithm significantly outperforms (by more than a factor of

two) a traditional non-streaming XPath engine. Furthermore, since our algorithm only retains relevant

portions of the input document in memory, it scales better than traditional XPath engines. It can process

large documents; we have successfully tested documents over 1GB in size. On the other hand, the

traditional XPath engine degrades considerably in performance for documents over 100 MB in size and

fails to complete for documents of size over 200 MB.

1 Introduction

XPath 1.0 [8], a language for addressing parts of XML [4] documents, is an integral component of languages

for XML processing such as SQLX [13], XSLT [7] and XQuery [10]. The performance of implementations

of these languages depends on the efficiency of the underlying XPath engine. XPath expressions have also

been used as a general-purpose mechanism for accessing portions from XML documents, for example, an

XPath-based API is provided in DOM 3 [16] for traversing DOM [11] trees. XPath expressions have found

use in publish-subscribe systems as a mechanism for specifying content-based subscriptions [1, 5]. Given

the central role that XPath plays in the XML stack, algorithms for improving the performance of evaluating

common XPath expressions are essential.

In many environments, it is natural to treat the data source as a stream, processing queries on the data

source as it is parsed. Examples include XML filtering systems [1, 9, 5], Continuous Query Systems [6],
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Figure 1: Structure of a streaming XPath processor.

and systems where high-volume XML data sources are integrated in a federated manner [12]. An XPath

engine that operates on a streaming data source is structured as shown in Figure 1. An XPath expression is

analyzed and represented as an automaton. The XPath engine consumes events (for example, SAX events)

produced by a parser. For each event, the automaton may make state transitions, and if necessary, store the

element. At the end of processing the stream (or document), the XPath engine returns the list of elements

that is the result of the evaluation of the XPath expression.

Most current XPath engines, for example, the one provided with Xalan [2], require that an entire docu-

ment be in memory before evaluating an XPath expression. For large documents, this approach may result

in unacceptable overhead. Furthermore, the XPath engine in Xalan evaluates XPath expressions in a naive

manner, and may perform unnecessary traversals of the input document. For example, consider an expres-

sion such as/descendant::x/ancestor::y, which selects ally ancestors ofx elements in the document. The

Xalan XPath engine evaluates this expression by using one traversal over the entire document to find all the

x elements, and for eachx element, a visit to each of its ancestors to find appropriatey elements. As a result,

some elements in the document may be visited more than once.

The premise of streaming XPath is that in many instances XPath expressions can be evaluated in one

depth-first, document-order traversal of an XML document. The benefits of streaming XPath are twofold.

First, rather than storing the entire document in memory, only the portion of the document relevant to the

evaluation of the XPath is stored. Second, the algorithm visits each node in the document exactly once,

avoiding unnecessary traversals.
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In this paper, we present theχαoς1 algorithm, which can evaluate XPath expressions containing both

backward (such asparent andancestor) and forward axes (such aschild anddescendant) in a streaming

fashion in time linear in the size of the document. Other streaming XPath processors, such as YFilter [9],

XTrie [5], and TurboXPath [12] handle only forward axes.

Central to theχαoς algorithm is the conversion of an XPath expression into a representation, called the

x-dag, in which all uses of backward axes are converted into forward constraints — a key step in making

streaming XPath processing possible. This representation is used to perform the two major operations of

the algorithm: filtering incoming events to select those that affect the evaluation of the XPath expression,

and recording information in a data structure called thematching structurewhen parts of the input XPath

expression have been satisfied. These two operations are interleaved so that at the end of processing the

document, the matching structure contains the solution of the evaluation of the XPath expression. This

paper makes the following significant contributions:

1. A novel streaming algorithm for handling both backward and forward axes, which can be extended to

handle all XPath axes. Theχαoς algorithm can handle both recursive and non-recursive documents.

2. A concise representation of an XPath expression, called x-dag (Section 3.2) in which all backward

constraints are converted into forward constraints. The x-dag is also a convenient representation for

intersections and joins of XPath expressions, which we shall discuss only briefly in this paper.

3. A data structure called the matching structure (Section 4.2) that compactly represents all matchings

(Section 3.3) of an XPath expression in a document. The result of the evaluation of the XPath expres-

sion can be computed easily and efficiently from this data structure.

This paper is structured as follows. We first present background on XPath expressions in Section 2.

Then, in Section 3, we introduce a convenient tree-based representation of XPath expressions, called the

x-tree, and explain how it can be converted into an x-dag. The x-dag is the central data structure of our

algorithm. We also define the semantics of the evaluation of XPath expressions in terms of the notion of

matchingson the x-tree and the x-dag. In Section 4, we present an overview of our algorithm and describe

extensions to our algorithm in Section 5. Our experimental results are discussed in Section 6, and finally,

we conclude in Section 7.
1χαoς (Xaos, pronounced Chaos) is an acronym for XML Analysis, Optimization, and Stuff
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1.1 Related Work

Our work is most closely related to theXFilter [1], YFilter [9], XTrie [5], andTurboXPath[12] systems, all of

which involve evaluation of XPath/XQuery-based queries on streaming XML documents. XFilter, YFilter,

and XTrie are XML filtering systems where documents are routed and filtered based on subscriptions that

are expressed as queries. The TurboXPath system has been used for XML-enabled data integration where

user queries can operate over a mixture of locally stored data in a relational database and data streamed

from external sources. The XFilter system handles simple XPath location path expressions (straight-line

path expressions without any branching and predicates) by transforming them into a Deterministic Finite

Automaton. The YFilter system is an extension of XFilter in which a group of simple XPath location path

expressions are combined into a single Nondeterministic Finite Automaton (NFA), which corresponds to

the union of these path expressions. Both XTrie and TurboXPath can handle tree-shaped path expressions

involving predicates (which are internally represented as trees called the XTrie and ParseTree respectively).

In addition, TurboXPath can also handle multiple output nodes. However, all of these systems are limited to

handling location path expressions that only contain forward axes (e.g.child, descendant, forward-sibling).

Theχαoς system improves upon these systems by adding the ability to handle both backward (e.g.parent,

ancestor) and forward axes in the context of streaming XML. Our approach also handles multiple output

nodes but we will discuss it only briefly in this paper.

Tozawa and Murata [15] describe a method for converting an XPath expression into modal logic formu-

las with past modalities. They present an algorithm for converting such formulas into tree automata, which

can be used to evaluate XPath expressions on an input document. Their paper describes a theoretical ap-

proach that can handle all XPath axes. The current status of the implementation of their algorithm is unclear.

It would be interesting to compare the performance of their implementation with that ofχαoς.

The NiagaraCQ[6] system is a continuous query system that supports querying of distributed XML

datasets using an XML query language. Continuous queries allow users to receive new results as they

become available. The focus of the NiagaraCQ project is on exploiting similarities in structure of queries

to share computation across groups of queries, and use of incremental group optimization and incremental

evaluation techniques. However, the queries that they focus on involve simple structural pattern matching

rather than XPath/XQuery-based queries that we deal with in this paper.
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2 Background

We describe the tree model of XML documents that is the basis of the definition of XPath. We then describe

the event stream that drives theχαoς algorithm. Finally, we present the subset of XPath that we focus on in

this paper.

2.1 Tree Model for XML Documents

An XML document can be represented as a tree whose nodes represent the structural components of the

document — elements, text, attributes, comments, and processing instructions. Parent-child edges in the

tree represent the inclusion of the child component in its parent element, where the scope of an element

is bounded by its start and end tags. The tree corresponding to an XML document is rooted at a virtual

element,Root, which contains the document element. We will, henceforth, discuss XML documents in

terms of their tree representation;D represents an XML document, andVD andED denote its nodes and

edges respectively. Figure 2 illustrates the tree representation of an XML document.

For simplicity of exposition, we focus on elements in this paper, and ignore attributes, text nodes, etc.

The tree, therefore, consists of the virtual root and the elements of the document. To avoid confusion

between the XML document tree and the tree representation of the XPath (described later), we useelements

to refer to the nodes of the XML tree. We assume that the following functions are defined on the elements

of an XML document:

• id : VD → Integer: Returns a unique identifier for each element in a document.

• tag : VD → String: Returns the tag name of the element.

• level : VD → Integer: Returns the distance of the element from the root, wherelevel(Root) = 0.

We usexi,l to denote an element withtag = x, id = i, level = l.

2.2 Event-Based Parsing

An event-based parser, for example, a SAX parser, scans an XML document, producing events as it rec-

ognizes element tags and other components of the document. We register functions that are invoked by

the parser on start and end element events. Each event conveys the name and level of the corresponding

element. The production of events is equivalent to that of a depth-first, pre-order traversal of the document
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Figure 2: (a) An XML Document (b) Tree representation of the same document. The number in parentheses
next to the tag of each element is theid of the element.

Table 1: XPath subset addressed in paper.

AbsLocationPath := ′/′ RelLocationPath
RelLocationPath := Step ′/′ RelLocationPath | Step
Step := Axis :: NodeTest | Step ′[′ PredicateExpr ′]′

PredicateExpr := RelLocationPath and PredicateExpr | AbsLocationPath and PredicateExpr |
RelLocationPath | AbsLocationPath

Axis := ancestor | parent | child | descendant
NodeTest := String

tree, where for each element, a start element event is generated, then its subtree is processed in depth-first

order, and finally, an end element event is generated.

2.3 XPath

The XPath language defines expressions for addressing parts of an XML document. We focus onlocation

pathexpressions which evaluate to a set of elements in the document. A location path is a structural pattern

composed of sub-expressions calledStep, joined by the ’/’ character. Each step consists of anaxis specifier,

a nodetest, and zero or more predicates. Location paths areabsoluteif they begin with a ’/’; otherwise they

are relative. Table 1 provides the BNF for the XPath subset that we shall use in this paper (we refer to

expressions satisfying this grammar as Restricted XPaths –Rxp).2

XPath expressions are evaluated relative to a context node in the document tree. The context node for an
2For simplicity, we do not include abbreviated XPath expressions in the grammar.
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absolute location path is always the root element. To evaluate a relative location path,Step / RelLocation-

Path, with respect to a context node,c, one first computesSteprelative toc, yielding a set of elements,N .

The meaning ofStep / RelLocationPathis the union of the sets of elements obtained by evaluatingRelLoca-

tionPath in contextd, whered ranges overN . The rightmostNodeTestnot contained in aPredicateExpr

determines the output of the XPath expression.

The set of elements searched in the evaluation of aStepat a context node,c, depends on its axis specifier.

For example, the result of evaluatingdescendant::section is the subset of the proper descendants of the

context node that have the tagsection. While theχαoς algorithm is extensible to handle all thirteen axis

specifiers in XPath 1.0, in this paper we only focus on four: child, descendant, parent, and ancestor.

Steps may contain predicates, which restrict the set of elements selected. For example, the expression

descendant::chapter[ancestor::book and child::table] selects allchapter descendants of the context node that

have abook element as an ancestor and atable element as a child. Note that eachchapter element is used

as a context node in evaluating the subexpressions,ancestor::book andchild::table.

3 X-tree, X-dag, and Matchings

Theχαoς algorithm operates on two representations of an XPath expression called x-tree and x-dag. The

x-dag is a key construct in our algorithm since it converts backward constraints, such asparent, into forward

constraints, thus making streaming processing possible. We use an alternate semantics of XPath expressions

defined on x-trees and x-dags based on the notion ofmatchings. It can be shown that our semantics is

equivalent to the semantics provided in the XPath 1.0 specification.

3.1 X-tree

We represent anRxp expression as a rooted treeT = (VT , ET ), called x-tree, which has labels on both

vertices and edges. The root of the tree is labeledRoot. We use the term x-node to refer to the vertices of

an x-tree. For everyNodeTestin the expression, there is an x-node in the x-tree labeled with the nodetest.

Each x-node (with the exception ofRoot) has a unique incoming edge, which is labeled with theAxis

specified before theNodeTest. The x-node corresponding to the rightmostNodeTestwhich is not contained

in a PredicateExpris designated to be the output x-node. There are functions,label : VT → String, and

axis : ET → {ancestor, parent, child, descendant} that return the labels associated with the x-nodes
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Figure 3: (a) X-tree representation of/descendant::Y[child::U]/descendant::W[ancestor::Z/child::V] (b)
X-dag representation of the same XPath expression. The circles corresponding toW has a thick edge to
represent the fact that it is the output node.

and edges respectively. The x-tree data structure is similar in spirit to XPE trees [5], and theparse treeof

TurboXPath [12]. We provide rules for building an x-tree from anRxp in Appendix A for the interested

reader. Figure 3a provides an example of an x-tree.

3.2 X-dag

We also use a directed, acyclic graph representation of anRxp called an x-dag. The x-dag is obtained from

the x-tree by reformulating the ancestor and parent constraints in the tree as descendant and child constraints.

More precisely, it is a directed, labeled graph,G = (VG , EG), with the same set of vertices asT , and edges

defined as follows:

1. Edges inT labeledchild or descendant are also edges ofG.

2. For each edge inT labeledparent, there is an edge joining the same nodes but with direction reversed

and label changed tochild. Similarly,ancestor edges are reversed and relabeled asdescendant edges.

3. For any non-root x-nodev ∈ G that has no incoming edges, adescendant edge is added fromRoot

to v.

Figure 3b gives the x-dag corresponding to the x-tree in Figure 3a.
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3.3 Matchings

Let v1 andv2 be two x-nodes in an x-treeT connected by an edgee, and letd1 andd2 be two elements

in a documentD, wheretag(d1) = label(v1) andtag(d2) = label(v2). We say that the pair(v1, d1) is

consistentwith (v2, d2) (relative to x-treeT and documentD) if d1 andd2 satisfy the relationaxis(e). For

example, ifv1 andv2 are connected by an edge labeledancestor, thend2 must be an ancestor ofd1 in D. A

matching forT , m : VT → VD, is a partial mapping from x-nodes of x-treeT to elements of documentD

such that the following conditions hold.

1. For all x-nodesv ∈ domain(m), label(v) = tag(m(v)), i.e. all mapped vertices satisfy the nodetest.

2. For all x-nodesv1 andv2 connected by an edge inT such thatv1, v2 ∈ domain(m), (v1,m(v1)) is

consistent with(v2,m(v2)).

A matching isat an x-nodev if and only if its domain is contained in the sub-tree rooted atv. A

matching atv is total if its domain contains all the vertices of the subtree rooted atv. LetT denote the x-tree

corresponding to anRxpr. It is easy to show that a document elementn is in the result of the evaluation of

Rxpr, if and only if, there exists a total matching forT atRoot in which the output x-node ofT is mapped

to n. χαoς evaluates anRxpr precisely in this manner. It finds all total matchings forT atRoot, and emits

the document elements that correspond to the output x-node.

The notion of a matching can be analogously extended to an x-dag. A matching isat an x-nodev of

x-dagG if and only if its domain is contained in thesub-dagrooted atv. Once again, it is easy to show that a

total matching at the root of a x-treeT is also a total matching at the corresponding x-dagG, and vice-versa.

4 Theχαoς Algorithm

Central to theχαoς algorithm is the observation that a total matching at an x-node,v, is composed of

total matchings at each of the children ofv in T . Let w1, w2, . . . , wn denote the children ofv in T (in an

arbitrary, but fixed order) and letm1,m2, . . . ,mn be total matchings atw1, w2, . . . , wn respectively. Let

e be an element in a documentD such that 1)tag(e) is the same aslabel(v), and 2) for each childwi of

v, (v, e) is consistent with(wi,mi(wi)). Then, a total matching atv can be obtained trivially by taking a

disjoint union of all the mapsmi and the singleton map[v 7→ e]3. For example, looking at the x-tree in
3The singleton map[v 7→ e] refers to a partial map which mapsv to e and is undefined everywhere else.
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Figure 3a and document in Figure 2, a total matching atZ i.e. [Z 7→ Z4,3, V 7→ V5,4], together with the fact

that(W,W7,4) is consistent with(Z, Z4,3), yields the total mapping[W 7→ W7,4, Z 7→ Z4,3, V 7→ V5,4] at W.

We can make a similar observation about a total matching at x-nodev of an x-dagG, but it is more

complex than the case of an x-tree. In particular, the existence of a total matching atv implies the existence

of total matchings at each of its children inG but the converse is not true. The complication arises from the

fact that the set of x-nodes in the sub-dags rooted at each of the children ofv are not necessarily disjoint.

We refer to these x-nodes that are shared by more than one sub-dag asjoin points. For example, consider

the x-dag in Figure 3b. The sub-dags atY andZ share a common x-nodeW, which is therefore a join point.

Consider total matchings atY and atZ in our example. The existence of these matchings do not necessarily

imply the existence of a total matching atRoot. For there to be a total matching atRoot, the two total

matchings atY andZ must agree onW, i.e., must mapW to the same element in the document. For example,

the total mappings[Y 7→ Y10,2, W 7→ W12,4, U 7→ U13,3] and[Z 7→ Z4,3, W 7→ W7,4, V 7→ V5,4] at Y andZ

respectively cannot be combined to form a total matching atRoot.

In general, an algorithm that constructs a total matching at an x-nodev of x-dagG, from total matchings

at each of the children ofv in G must ensure that the total matchings at the children agree on the join points.

This verification can be expensive computationally. Furthermore, total matchings at each of the children

must be retained until they are composed, at which time it may be determined that these matchings do not

agree on the join points, and therefore, cannot contribute to a total matching atv. To minimize storage, we

would like to be able to discard such matchings as early as possible.

Consider the special situation when there are no join points in the x-dag, that is, when the x-dag is a

tree (theRxp does not use theparent or ancestor axis). In this case, there is a relatively straightforward

algorithm for constructing total matchings by composition. For an x-nodev, the algorithm starts looking

for a total matching at a childv′ of v once it finds elementse ande′ that matchv andv′ respectively such

that (v, e) is consistent with(v′, e′). It can be easily verified that when the event corresponding to the end

of elemente is seen, if one has found at least one total matching at each child ofv, then there must exist at

least one total matching atv in which v is mapped toe. Conversely, if one has not found a total matching

for one or more children ofv, then there does not exist a total matching atv in whichv is mapped toe.

One can extend this algorithm to handle general x-dags as long as we ensure that when the algorithm

constructs total matchings from children total matchings, the consistency of the assignments to join points is

checked. To avoid this verification step, we use the x-tree rather than the x-dag as the basis for constructing
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total matchings from subordinate total matchings. The algorithm cannot, however, be applied to x-trees

directly — it is not always possible to determine at the end of an elemente that matches x-nodev ∈ T

whether there exists a total matching atv, wherev is mapped toe. For example, consider the x-tree in

Figure 3a. Lete ande′ be elements in the document that matchW andZ respectively such thate′ is an

ancestor ofe. When the event corresponding to the end of elemente is seen, the absence of a total matching

atZ does not imply the non-existence of a total matching atW in whichW is mapped toe. It is possible that

an elemente′′ (which is a child of elemente′) matchingV will be seen later, which will contribute to a total

matching atZ, and consequently, to a total matching atW.

Thus, our final algorithm uses a subtle combination of both the x-tree and the x-dag to compute total

matchings at the root. The x-dag is used to filter out the relevant events from the input event stream and

determine when matchings stored at the children of an x-nodev can be safely discarded,i.e. are guaranteed

not to contribute to a total matching atv. The x-tree is used as the basis for determining when and what to

compose to avoid the expensive verification of join point assignments in the x-dag. In this section, we shall

describe these two components of our algorithm and a data structure called thematching-structure, which

represents a set of matchings, in greater detail. The first component deals with determining when to start

looking for a total matching at a x-node. The second component is regarding the composition of matchings

to construct a matching-structure that represents the set of all total matchings at the root.

In Table 2, we have provided a walk through of the execution of the algorithm on theRxp of Figure 3

and the document of Figure 2.

4.1 First Component: Looking For Total Matchings

At any point during execution,χαoς has processed a prefix of the input document. An infinite number of

XML documents share the same prefix, andχαoς cannot predict the future sequence of events that will

be generated by the parser. An element,e, is relevantif there exists some document completion wheree

participates in a total matching atRoot. All relevant elements must be processed. As events are processed,

new relevant elements may be seen, or elements that were earlier deemed relevant may no longer be relevant.

The x-dag representation of theRxp is used to determine if an element is relevant.

An element that does not match any x-node is not relevant trivially since it cannot participate in any

matching. Moreover, even some elements that match an x-node can be discarded. Consider the start element

event forW3,3. This element matches theW x-node in the x-dag, but is not relevant because it has noZ
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Table 2: Walk through of evaluation of XPath of Figure 3 on document of Figure 2.S (E): Ax,y denotes the
start (end) element event for an element,Ax,y. The Looking-for set column showsL at the end of processing
the event.

Event Matches Comments Looking-for Set
1 S: Root0,0 (Root, 0) Add (Y, ∗) and(Z, ∗) toL, sinceRoot matches their ancestors

in the x-dag.
{(Y, ∗), (Z, ∗)}

2 S: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
3 S: Y2,2 (Y, ∗) Add (U, 3) to L becauseU is connected toY by a child edge

in the x-dag, andY is matched at level 2. Do not addW to
L because there is no element that matches itsZ parent in the
x-dag. Continue looking for(Y, ∗) because any element with
tagY in the subtree of this element will also be a candidate for
matchingY.

{(Y, ∗), (Z, ∗), (U, 3)}

4 S: W3,3 Discarded. ThisW is not relevant because it has no match inL. {(Y, ∗), (Z, ∗)}
5 E: W3,3 Discarded. {(Y, ∗), (Z, ∗)}
6 S: Z4,3 (Z, ∗) Start looking for(V, 4) since we have relevant elements match-

ing Z andRoot in the x-dag. Look for it at level 4 because the
(Z, V ) edge is labeledchild.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

7 S: V5,4 (V, 4) Stop looking for(V, 4) because until the end of this element,
level > 4.

{(Y, ∗), (Z, ∗), (W, ∗)}.

8 E: V5,4 (V, 4) There is a total matching atV, MV,5. This matching-structure
is propagated to the appropriate submatching ofMZ,4, the only
parent-matching ofMV,5.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}.

9 S: V6,4 (V, 4) {(Y, ∗), (Z, ∗), (W, ∗)}
10 E: V6,4 (V, 4) Again,MV,5 is added to the appropriate submatching ofMZ,4. {(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}
11 S: W7,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
12 S: W8,5 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
13 E: W8,5 (W, ∗) W in the x-dag has an outgoingancestor edge. All child-

matchings ofMW,8, in this case,MZ,4, are propagated into the
appropriate submatching ofMW,8. All submatchings ofMW,7

are now non-empty.MW,8 is propagated toMY,2

{(Y, ∗), (Z, ∗), (W, ∗)}

14 E: W7,4 (W, ∗) As above,MW,7 is propagated toMY,2. {(Y, ∗), (Z, ∗), (W, ∗)(V, 4)}
15 E: Z4,3 (Z, ∗) Z has an incoming edge labeledancestor. SinceMZ,4 is sat-

isfied, no clean up is necessary.
{(Y, ∗), (Z, ∗)(U, 3)}

16 S: U9,3 (U, 3) {(Y, ∗), (Z, ∗)}
17 E: U9,3 (U, 3) The total matching atU,MU,9 is propagated toMY,2. {(Y, ∗), (Z, ∗), (U, 3)}
18 E: Y2,2 (Y, ∗) MY,2 is satisfied since both submatchings, corresponding toU

andW are non-empty. PropagateMY,2, and we have a total
matching atRoot.

{(Y, ∗), (Z, ∗)}

19 S: Y10,2 (Z, ∗) {(Y, ∗), (Z, ∗), (U, 3)}
20 S: Z11,3 (Z, ∗) {(Y, ∗), (Z, ∗), (V, 4), (W, ∗)}
21 S: W12,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
22 E: W12,4 (W, ∗) SinceW has an outgoing edge labeledancestor, addMZ,11

optimistically to the appropriate submatching ofMW,12. Since
this matching is now satisifed, it is propagated toMY,10.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

23 E: Z11,3 (Z, ∗) MZ,11 is not satisfied — the submatching forV is empty. Undo
the propagation ofMZ,11 toMW,12. SinceMW,12 now is no
longer satisfied, undo the propagation fromMW,12 toMY,10.

{(Y, ∗), (Z, ∗), (U, 3)}

24 S: U13,3 (U, 3) {(Y, ∗), (Z, ∗)}
25 E: U13,3 (U, 3) The total matching,MU,13 is propagated toMY,10. {(Y, ∗), (Z, ∗)}
26 E: Y9,2 (Y, ∗) MY,10 is not satisfied. The submatching forW is empty. Noth-

ing is propagated.
{(Y, ∗), (Z, ∗)}

27 E: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
28 E: Root0,0 (Root, 0) There is one entry in the submatching corresponding toY,

MY,2. MRoot,0 is satisfied.
{(Root, 0)}
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ancestor element in the document; there is no total matching in whichW3,3 participates that assigns an

elementz to Z such thatz is an ancestor ofW3,3. Since the input document is processed in a depth-first

manner, by the time the start element event forW3,3 is processed, the algorithm has already received start

element events for all ancestors ofW3,3 in the input document. It can, therefore, determine if theW element

hasY andZ ancestors in the document, and discard theW element if does not satisfy these constraints.

The precise definition of when an element is relevant is as follows. An elemente that matches a x-node

v is relevant if and only if there exists a matching,m : V ′ → E′, whereV ′ is the set of x-nodes containing

v and all ancestors ofv in the x-dag, andE′ is the set of document elements containinge and all ancestors

of e in the document, such that ifv1, v2 ∈ V ′ are connected by an edge, then(v1,m(v1)) is consistent

with (v2,m(v2)). For efficient determination of whether the element associated with a start element event

is relevant, we maintain alooking-forset,L. The members ofL are(v ∈ VP , level) pairs, where level may

be an integer or∗. The looking-for setL is maintained in such a way that if the elemente associated with a

start element event is relevant, then, and only then, there exists(v, level) ∈ L such thatlabel(v) = tag(e),

and eitherlevel = level(e) or level = ∗. Integer levels are used to enforce the constraint that if(v1, e1)

and(v2, e2) are consistent and ifaxis(v1, v2) = child, thenlevel(e2) = 1 + level(e1). L is initially set to

{(Root, 0)}.

For example, at the end of Step 3 in the execution of the algorithm on the XPath expression in Figure 3 on

the document of Figure 2 (See Table 2), the looking for set is{(Y, ∗), (Z, ∗), (U, 3)}. (Y, ∗) is in the looking

for set because if the next start event were for an element,e, with tag Y , there would exist a matching

m : V ′ → E′ = {Root 7→ Root, Y 7→ e}. (Z, ∗) is in the looking for set for a similar reason.(U, 3)

is in the looking for set because if the next start element event for element,e, matched it, we would have

a matchingm : V ′ → E′ = {Root 7→ Root, Y 7→ Y2,2, U 7→ e}. e would have to be at level 3 for this

matching to be consistent, because there is an edge labeledchild betweenY andU in the x-dag. We do not,

however, have entries forW or V in the looking for set, because if the next start element event matched either

of them, we could not construct an appropriate matching (we would not have an appropriate assignment to

theZ x-node).

4.2 Matching-Structure

The second part of the algorithm constructs a data structure called amatching-structurewhich is a com-

pact representation of all total matchings atRoot of theRxp relative to the input document. A matching-
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Root 0,0

Y 2,2

Z 4,3

W 7,4U 9,3 W 8, 5

V 5,4 V 6,4

Total Matchings at Root
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 5,W 7→ 7]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 5,W 7→ 8]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 6,W 7→ 7]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 6,W 7→ 8]

Solution: {W7,4, W8,5 }

Figure 4: Matching Structure at the end of processing the XPath of Figure 3. The boxes represent matching-
structures. For a matching-structure,Mv,e, the top half of the box shows the element that matchesv. Each
slot in the bottom half of the box corresponds to a submatching, which is represented as a list of pointers to
the child matchings.

structure,Mv,e, is associated with x-nodev, and represents a set of matchings atv in whichv is mapped to

the document elemente. The matching-structureMv,e additionally contains a submatching for every child

of v in the x-tree. A submatching at childw of v is a (possibly empty) set of matching-structures atw. For

any matching-structureMw,e′ in the submatching ofMv,e at w, we require that(v, e) be consistent with

(w, e′). A matching-structureMv,e is said to be aparent-matchingof a matching-structureMw,e′ if v is a

parent ofw in x-treeT and(v, e) is consistent with(w, e′). If Mv,e is a parent-matching ofMw,e′ , then we

say also thatMw,e′ is achild-matchingof Mv,e.

Figure 4 shows the matching structure at the end of processing the XPath of Figure 3 on the document

in Figure 2, and the four total matchings atRoot. The result is obtained by taking theW projection, that is

{W7,4,W8,5}.

4.3 Second Component: Composition of Matchings

We assume from now on that all events corresponding to elements that are not relevant have been discarded.

Whenχαoς processes a start element event for an elemente that matches a x-node,v, it creates a matching-

structure,Mv,e, to represent the match. Note thate may match more than one x-node in the x-tree; a

matching-structure is created for each such match. The submatchings for these matching-structures are

initially empty. Asχαoς processes events, it stitches together these matching-structures, so that when the

14



end of the document is seen,MRoot,Root encodes all total matchings atRoot in the document.

The key step in this process ispropagation. At an end element event for an elemente that matches

x-nodev, we attempt to determine ifMv,e represents a total matching atv. If there is a total matching, we

insertMv,e into the appropriate submatching of its parent-matchings. This propagation may be optimistic

in that one may have to undo the propagation as more events are processed. Let us first, however, consider

the simpler situation where no cleanup of propagation is necessary, when the x-tree does not contain any

edges labeledancestor or parent. This corresponds toRxp’s that use only thechild anddescendant axes.

When the x-tree contains onlychild and descendant constraints, any total matchingm at v, where

m(v) = e maps all x-nodes in the subtree ofv to elements that lie in the document subtree ofe. Since

the total matching is contained within the subtree ofe, by the time the end element event fore is seen, we

can determine conclusively ifMv,e represents a total matching atv. This leads naturally to an inductive

approach to building matchings. For an end element evente, whereMv,e is a matching-structure:

1. If v is a leaf in the x-tree,Mv,e represents a total matching atv by definition (v has no subtrees). We

propagateMv,e to the appropriate parent-matchings.

2. If v is not a leaf,Mv,e represents a total matching atv, if and only if, all submatchings are non-

empty. Otherwise, no total matching exists. If we had found appropriate total matchings for each

of the children ofv in the x-tree, they would have been propagated toMv,e by the time the end

element event fore is processed. As above, ifMv,e represents a total matching, we propagate it to all

appropriate parent-matchings.

If at the end of processing the document (when we receive the end element event forRoot), χαoς finds that

all the submatchings ofMRoot,Root are non-empty, we have a total matching atRoot.

The presence ofancestor andparent edges in the x-tree complicates this process because one may not

be able to determine conclusively whether a total matching exists for aMv,e by the end of elemente. For

example, in Figure 3a, one might not find a total matching for the subtree rooted atZ, until after one sees

the end of an element matchingW. The propagation process remains the same, except for a x-node that has

an incoming or an outgoing edge labeledancestor or parent. For aMv,e, the modified steps are as follows:

• If there is an outgoing edge(v, v′) labeledancestor or parent, and the submatching forv′ is empty,

we cannot assert that there exists no total matching atv. We, optimistically, propagate each child-

matching,Mv′,e′ , into the appropriate submatching ofMv,e. We then proceed as before. If all
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submatchings are satisfied,Mv,e is propagated to its parent-matchings. For an example, please refer

to Steps 13 and 22 in Table 2.

• If there is an incoming edge(v′, v) labeled ancestor or parent, thenMv,e may have been propagated

optimistically to its parent-matchings. If we can determine conclusively thatMv,e cannot represent a

total matching atv, we undo the propagation ofMv,e. The removal ofMv,e from a submatching of

a parent-matchingMv′,e′ may result in that submatching becoming empty —Mv′,e′ is no longer a

total matching atv′. We then recursively undo the propagation ofMv′,e′ from its parent-matchings.

For an example, please refer to Step 23 in Table 2.

4.4 Emitting Output

At the end of processing the document, if the submatchings ofMRoot,Root are all non-empty, we have at

least one total matching atRoot. The output is emitted by traversing the matching structure, and emitting

an elemente when we visitMv,e, wherev is the output x-node of theRxp. For example, in Figure 4, we

outputW7,4 when we first visitMW,7 andW8,5, when we first visitMW,8.

5 Extensions

In this section, we discuss optimizations to our algorithm, and extensions to handle features such asor

expressions, multiple outputs, and intersections and joins of XPath expressions.

5.1 Optimizations

We have described our algorithm in terms of storing all total matchings, and subsequently, traversing the

matching structure to emit elements. We do not, however, need to build matching-structures for many of the

x-nodes in the x-tree. For example, if the x-tree contains a subtree that does not contain the output node, it

is not necessary to store matching structures for the nodes in that subtree. It is sufficient to store a boolean

value as to whether a total matching exists at that subtree. Furthermore, often it is not necessary to wait

until the end of a document to emit output, but emit elements more eagerly. A detailed discussion of these

optimizations is beyond the scope of this paper.
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5.2 Or expressions

Or expressions can be handled by converting an XPath expression into an equivalent one in “disjunctive

normal form.” χαoς can be run on each of the operands of the top-level ’or’ independently. While this

process may be exponential in terms of the size of the XPath expression, we do not expect this to be an issue

since XPath expressions are, in general, of small size.

5.3 Multiple Outputs

One extension of XPath expressions is to allow for more than one output node in an XPath. If we use

“$” to mark output nodes, the extended XPath expression,$a/$b returns all(a, b) pairs in an input docu-

ment such thata is the parent ofb. These expressions have use in the compilation of XQuery and SQLX

statements [12]. Our algorithm can handle these extended expressions easily. Given an extended XPath

expression in this form, we generate an x-dag in the same manner as before, except that it may now contain

more than one x-node marked as an output node. Our matching semantics are independent of the number of

output nodes in the x-dag, and the matching structure allows easy production of the resultant tuples — the

only change is in the output traversal. A detailed description is beyond the scope of this paper.

5.4 Intersections and Joins of XPath expressions

The x-dag representation can also be viewed as a representation of the intersection of two XPath expressions.

For example, the x-dag of Figure 3b can be interpreted as//Y[U]//W ∩ //Z[V]//W. In other words, it returns all

W elements that are in the solution set of both XPath expressions when they are evaluated on an input XML

document.

An x-dag with multiple output nodes, derived from an extended XPath as described previously, can also

be used as a representation for joins of XPath expressions. For example, assume that the x-nodes,U, W and

V were marked as output nodes in Figure 3b. The x-dag then could be interpreted either as:

/descendant::Y[child::$U]/descendant::$W[ancestor::Z/child::$V], or

/descendant::Y[child::$U]/descendant::$W ./W /descendant::Z[child::$V]/descendant::$W

Since these joins and intersections can be expressed as an x-dag with multiple output nodes, as mentioned
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previously, we can handle these expressions in our framework. The x-dag representation of intersections and

joins allows these expressions to be evaluated in a single pass during parsing. In contrast, TurboXPath [12]

advocates a more complex two-phased approach in which the burden of evaluating the intersections or joins

is shifted to a backend database.

6 Experimental Results

Theχαoς algorithm examines each element event exactly once and the processing of an event involves only

constant-time operations. We would, therefore, expect the execution time ofχαoς algorithm to be linear in

terms of the input document size. Furthermore,χαoς stores only those elements relevant to the calculation

of the final solution. We would, therefore, expect theχαoς algorithm to show better memory utilization than

Xalan [2], which stores the whole document in memory. In this section, we provide experimental results that

validate these claims. We, first, provide results using documents generated by XMark [14]. To gain further

insight into the relative performance ofχαoς and Xalan, we also run experiments using a custom XPath and

XML document generator.

All experiments were run on a 550 MhZ, 256 MB, Pentium III box, running Linux 2.4.χαoς was written

in C++, and we use Xalan-C++ 1.3.1. Bothχαoς and Xalan were compiled using gcc -O (version 2.92).

6.1 Experiments using XMark

Using XMark, we generated documents with scale factors .03125, .0625, .125, .25, .5, 1, 2, and 4, respec-

tively. These correspond to documents ranging in size from 3.5 MB to 446 MB. We then evaluate the XPath

expression,//listitem/ancestor::category//name on these documents, using bothχαoς and Xalan. Figure 5

reports the results of these experiments.

Note that Xalan fails to complete on the two largest documents (approx. 222 MB and 446 MB), and

furthermore, that there is a sharp spike in going from 55 MB to 111 MB. These effects can be attributed

to the memory requirements of Xalan (the spike is the region where Xalan exhibits thrashing behavior in

memory). On the other hand,χαoς scales linearly, as is expected. Table 3 reports the number of elements

discarded by the algorithm as not being relevant. As can be seen from the results, a very small percentage

of elements in a document (less than .2 %) is stored and processed, resulting in a signficant reduction in

storage requirements.
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Figure 5: Time in seconds on XMark-generated documents:χαoς versus Xalan. The XPath expression
executed is//listitem/ancestor::category//name

Table 3: Number of elements discarded byχαoς in processing of XMark-generated documents

Scale Factor Document Size Total Elements Percentage Discarded
.03125 3.49 MB 52069 99.8 %
.625 6.88 MB 103999 99.8 %
.125 13.86 MB 210538 99.8 %
.25 27.87 MB 417160 99.8 %
.5 55.32 MB 832911 99.8 %
1 111.12 MB 166311 99.8 %
2 222.90 MB 3337649 99.8 %
4 446.71 MB 6688651 99.8 %

19



6.2 Custom XPath generator

We use a custom XPath generator to generate a set of random XPath expressions (of size 6 – six node tests in

the expression), and for each XPath expression, we generate a random XML document based on the XPath

expression. The generated XML document has the characteristic that, for large document sizes, the XPath

expression will have many matches (and near matches) in the document.

We use two versions ofχαoς in our comparison. The first,χαoς(SAX), uses the Xerces SAX parser [3],

which is also used by Xalan. To factor out the costs of parsing and building a tree from the time to evaluate

an expression, we also implemented a version ofχαoς on top of Xalan. χαoς(DOM) builds an internal

version of the input document in the same way that Xalan does. We then traverse this tree in a depth-first

fashion and generate events that a SAX parser would. By subtracting the parsing and tree-building time

from the overall time, we get an accurate measure of the time spent in evaluating the expression.

We vary the XML document size from 20,000 elements to 640,000 elements (200K - 6.7 MB). At each

document size, we execute 10 runs of the following:

1. Generate an XPath expression.

2. Generate an XML document from the XPath expression.

3. Evaluate the XPath expression usingχαoς and Xalan.

We report the average execution time and the standard deviation of the 10 runs at each XML document

size.

6.2.1 Overall Execution Time

We first compare the performance ofχαoς to that of using the Xalan XPath engine (SimpleXPathAPI).

Figure 6 plots the average execution time (average over the 10 runs at each document size) versus document

size (in number of elements). The error bars represent the standard deviation from the mean. All times

include the cost of parsing.

As can be seen from the graph,χαoς(SAX) is roughly 25% faster than the Xalan XPath engine. With

documents of size 640,000 elements (6.7 MB) the average times areχαoς: 39.0 seconds, Xalan XPath:

52.28 seconds. Note the difference in the standard deviations between the two lines (the error bars in the
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Figure 6: Overall Time in seconds:χαoς versus Xalan

plot). Whereas the standard deviation forχαoς is relatively constant, that of Xalan XPath is fairly high. We

shall discuss the cause of this behavior in the next section.

6.2.2 Comparison Excluding Parsing Times

Excluding parsing costs, the performance of our XPath engine is more than twice that of the Xalan engine

(Figure 7). This is mainly due to avoiding unnecessary traversals of the tree. Note that the difference in stan-

dard deviation is much more apparent in this graph. The cause of this high variance is the bimodal behavior

of the Xalan XPath engine. On “good” XPath expressions, where it does not perform many unnecessary

traversals, the performance of the Xalan XPath engine is similar to that of ours. On “bad” XPath expres-

sions, such as those involving the use of the descendant axes, its performance can be four times worse. Our

XPath engine’s performance, however, is linear in the size of the XML document and shows little variance.

7 Summary

We have presented a novel algorithm for handling backward and forward XPath axes in a streaming fashion.

Our experiments reveal that significant performance benefits can be obtained by using theχαoς algorithm

for evaluating XPath expressions on XML documents in a streaming fashion. Furthermore,χαoς has sig-

nificantly lower storage requirements. The ideas presented in this paper can be applied to other XPath
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Figure 7: Searching Time in seconds:χαoς versus Xalan

processors. For example, TurboXPath is currently integrating our algorithm into their system. We are work-

ing on extending theχαoς engine to handle more of XPath, including predicate evaluation, position and

count functions, etc., building on the framework we have described in this paper.
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A Rules for Building an X-tree

We represent anRxp expression as a rooted tree, called X-tree, with labeled vertices and edges,T =

(VT , ET ), where the root is labeledRoot. For eachNodeTestin the expression, there is an x-node in the

x-tree labeled with the nodetest. Each x-node (with the exception ofRoot) has a unique incoming edge,

which is labeled with theAxisspecified before theNodeTest. One of the x-nodes is designated to be the out-

put x-node. There are functions,label : VT → String, andaxis : ET → {ancestor, parent, child, descendant}

that return the labels associated with the x-nodes and edges respectively. An x-tree-like structure is also de-

fined for aRelLocationPath. We will call this structure an x-forest because it consists of two rooted trees,

one rooted atRoot, and the other rooted at a special x-node labeledcontext, which, like Root, has no

incoming edges. The structure corresponding to aPredicateExprmay either be an x-tree or an x-forest, but

none of the x-nodes is designated as an output x-node.

The following rules can be used inductively (based on the structure of theRxp) to build a x-tree from

anRxp.

Step ::= Axis :: NodeTest The x-forest forStep contains three x-nodes labeledRoot, context, and

NodeTest (designated as the output node), and an edge fromcontext to NodeTest labeledAxis.

Step ::= Step1
′[′ PredicateExpr ′]′ Let T1 refer to evaluatethe x-forest resulting fromStep1, andT2

refer to the x-forest or x-tree resulting fromPredicateExpr. The x-forest forStep is obtained by

merging the output x-node ofT1 with thecontext x-node ofT2 (if any), and merging the root x-nodes

of T1 andT2. The output x-node ofT1 is designated as the output x-node of the resulting x-forest.

RelLocationPath ::= Step ′/′ RelLocationPath1 Let T1 and T2 refer to the x-forests obtained from

Step andRelLocationPath1 respectively. The x-forest forRelLocationPath is obtained by merg-

ing the output x-node ofT1 with thecontext x-node ofT2, merging the root x-nodes ofT1 andT2,

and designating the output x-node ofT2 as the output x-node of the resulting x-forest.

PredicateExpr ::= RelLocationPath and PredicateExpr1 Let T1 refer to the x-forest obtained from

RelLocationPathandT2 refer to the x-tree or x-forest obtained fromPredicateExpr1. The x-forest

for PredicateExpr is obtained by merging thecontext of T1 with the context of T2 (if any), and

merging the root x-nodes ofT1 andT2. None of the x-nodes is designated as an output vertex.
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PredicateExpr ::= AbsLocationPath and PredicateExpr1 similar to the previous case.

AbsLocationPath ::=′ /′ RelLocationPath The x-tree is obtained by mergingRoot and context x-

nodes of the x-forest obtained fromRelLocationPath.

25


