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Abstract 
 

In this paper we present a well designed method that 
makes use of edge information to extract textual blocks 
from gray scale document images. It aims at detecting 
textual regions on heavy noise infected newspaper images 
and separate them from graphical regions. The algorithm 
traces the feature points in different entities and then 
groups those edge points of textual regions. From using 
the technology of line approximation and layout 
categorization, it can successfully retrieve directional 
placed text blocks. Finally feature based connected 
component merging was introduced to gather 
homogeneous textual regions together within the scope of 
its bounding rectangles. We can obtain correct page 
decomposition with efficient computation and reduced 
memory size by handling line segments instead of small 
pixels. The proposed method has been tested on a large 
group of newspaper images with multiple page layouts, 
promising results approved the effectiveness of our 
method. 
 

1. Introduction 
 

The stated work is part of the project that facilitates 
the news article retrieval from the microfilm archives of 
the Singapore National Library. As the requirement of 
automatic processing on large sum of scanned newspaper 
images in microfilm format, we demand an automated 
image processing system to handle the case. Actually the 
processing of document image segmentation and 
classification is an OCR pre-processor, as well as pre-
processing for understanding document page layout with 
structured formats. Through this stage page segmentation 
will need to accurately partition images into blocks of 
text, figure, table, frame, and other entities. 

Despite the many efforts spent on the subject (see [2] 
for thorough review) there is still much room for 
improvement in document segmentation techniques, which 
is the key factor to improve the overall performance of an 
automatic reading/processing system. Even very good 
OCR system can be almost useless when text-extraction is 

performed poorly, which is often the case in existing 
systems for documents with multiple layouts.  

Techniques for document segmentation and layout 
analysis are traditionally subdivided into three main 
categories: bottom-up, top-down and hybrid techniques. 
Some other up-to-date methods are introduced by recent 
progresses in this area, so as to expand the scope of above 
categorization [15].  

Bottom-up techniques [7,8,13] progressively merge 
evidence at increasing scales to form, e.g., words from 
characters, lines from words, columns from text lines. 
They are usually more flexible than top-down methods, 
but they may suffer from the accumulation of mistakes 
when going from the small-scale details up to the large-
scale features. 

Top-down techniques [5,6,9] start by detecting the 
large-scale features of the image (e.g., columns) and 
proceed by successive splitting until they reach the 
smallest-scale features (i.e., individual characters, or text 
lines). For the procedure to be effective, a priori 
knowledge about the structure of the page is necessary. 
These techniques are therefore particularly useful when 
the layout is constrained, such as is often the case when 
considering pages from scientific journals. 

Most methods do not fit into one of these two 
categories and are therefore called hybrid. Among these 
we can find methods based on texture analysis [4] and 
methods based on background analysis [3]. In methods 
based on texture analysis the problem of reconstructing 
the document layout is seen as a problem of texture 
segmentation. The document page is subdivided into small 
regions each of which is classified as belonging to one of 
a few categories (text, drawing, image, etc) according to 
an analysis of its texture. Once each region in the image 
has been tentatively classified, a globally consistent 
segmentation is carried out by the usual techniques of 
machine vision. Examples of methods using texture 
analysis are those based on Gabor filtering and mask 
convolution, fractal signature, and wavelet analysis. All 
these methods are quite general and flexible but they are 
also computationally demanding. 



After a brief review of previous approaches to 
document segmentation, the following part of this paper 
describes a somewhat novel algorithm based on edge 
detection and line approximation analysis to extract text 
from document pages. This method is comparatively 
flexible and fast, and it deals successfully with documents 
with a relatively complex layout, documents where 
graphical features and text are interwined, skewed at some 
degree and infected with heavy noise in scanning process. 
In this paper we assume that the character strings on the 
image are mainly aligned horizontally or vertically, but 
theoretically it may also be modified and then adapted to 
other directions as well.  

The organisation of this paper is as follows: Section 2 
is devoted to outline of our method. In section 3 we 
present a detailed characterisation of our algorithm. The 
illustrated experimental examples and results are shown in 
Section 4. Finally we give some discussion and conclusion 
in Section 5. Time performance and time complexity are 
reported. 
 

2. An overview of the method 
 

Our system takes advantage of the distinctive 
characteristics of text that make it stand out from other 
image material. For example, by looking at the comic 
page of a newspaper a few feet away, one can probably 
tell quickly where the text is without actually recognizing 
individual characters. Intuitively, text has the following 
distinguishing characteristics:  

1) Text possesses certain frequency and orientation 
information;  

2) Text shows spatial cohesion—characters of the 
same text string (a word, or words in the same 
line) are of similar heights, orientation, and 
spacing.  

 
Therefore, the most intuitive characteristics of text are 

its regularity. Printed text consists of characters with 
approximately the same size and line thickness that are 
located at a regular distance from each other. Such 
regularities can also be observed from edges being 
detected on textual boundaries, we may easily find the 
elongation tendency when take run-length smearing 
operation on textual areas. The regular alignment of 
characters into lines and columns let it be classified from 
other functional regions distinctly. As a result, our 
approach tried to find critical characteristics of text and 
then make use of its edge features to segment the image 
into text/non-text regions as best as possible, accordingly 
higher accuracy can be achieved when OCR system do 
recognition focusing on identified regions. In short, our 
method includes several major steps such as 
Preprocessing for noise reduction; Edge detection to form 

directional edge plane; Edge merging and bounding line 
approximation; Region classification by spatial grouping.  
The detailed description is stated in next section, we omit 
the pre-processing stage that just use standard filters to 
sharpen the intensity of source image with noise 
reduction. 

 

3. Description of algorithm steps 
 

One most important step of the algorithm is to find 
approximate locations of text lines in a gray-scale image. 
The main idea of this algorithm can be explained by 
considering a printed page with Manhattan layout. If we 
compute the spatial variance along each horizontal line 
over the whole image, we see that regions with high 
variance correspond to text lines, and regions with low 
variance correspond to background or other textures. 
Moreover, through run-length smearing operation we can 
find that edges from textual regions may elongate to form 
the approximate encircling rectangles. Text lines can then 
be found by extracting the rows between two parallel 
edges of the spatial variance – in specific distance of 
average character height. This heuristic can be applied to 
a more complex image, assuming that the spatial variance 
in the background is lower than in the text. Since we need 
to locate both the row coordinates of a text line and the 
column coordinates of its beginning and end, the spatial 
variance must be computed for each pixel over a local 
neighborhood in the horizontal direction. This results in 
an image of horizontal spatial variances with the same size 
as the input image. From this image we need to find 
significant horizontal edges and then pair the edges with 
opposite directions into lower and upper boundaries of a 
text line.  
 
3.1. Directional edge plane acquisition 
 

We choose Canny edge detector in our system to 
detect edges from grayscale images. Canny operator has 
several advantages: It has low probability of missing an 
edge, at the same time it has some resistance to the 
affection by the presence of noise. 

Since we are currently interested only in horizontal 
text lines, we select those edges that have horizontal 
direction. 

Following notations summarized the algorithm. Let 
],[ jiI denotes the image. The result from convolving the 

image with a Gaussian smoothing filter using separable 
filtering is an array of smoothed data, 

],[];,[],[ jiIjiGjiS ×= σ    (1) 

],[],[],[ 22 jiQjiPjiM +=   (2) 



]),[],,[arctan(],[ jiPjiQjiO =   (3) 

Where  is the spread of the Gaussian and controls the 
degree of smoothing, P and Q are approximated partial 
directives on x and y direction. 

The algorithm passes a 3×3 neighborhood across the 
magnitude array ],[ jiM . The values for the height of 

the ridge are retained in the nonmaxima-suppressed 
magnitude. We use O[i, j] to control the filtration of major 
directional edge pixels. 

Our updated steps of directional edge detection 
algorithm is outlined as follows: 

1. Smooth the image with a Gaussian filter. 
2. Compute the gradient magnitude and orientation 

using finite difference approximations for the partial 
derivatives. 

3. Apply non-maxima suppression to the gradient 
magnitude.  

4. Use the double thresholding algorithm to detect and 
link edges.  

 
3.2. Edge merging by horizontal smoothing 
 

Before finding pairs of edges with opposite directions, 
small horizontal edge components need to be merged into 
longer lines. The edge merging is performed by first 
finding the connected components of the short edge 
segments. Components that have a large vertical spread 
are not good candidates for upper and lower boundaries of 
a text line, thus can be removed. Among the remaining 
segments, we find the ones that have similar row 
coordinates within a threshold, and merge them into a 
single line. The merged edges, of course, must have the 
same orientations. In case some skew angles may exist at 
those scanned microfilm images, we can also expand the 
scanning angles to be around ±5 degrees. The method in 
our implementation try to find length of projection on axis 
for linked edge lines, retain those positions which 
approximate the centroid of text lines. As a result we can 
cluster the linked edges to form rows of text lines. The 
final step is to group together pairs of lines with same 
function as top and bottom line. The huge number of all 
possible groupings is reduced by using the following 
heuristics which are a bit similar to those provided by Jain 
[1]: 

1. There must be no other lines between the two 
compelling edge lines in a pair. 

2. A significant portion of the two lines must 
overlap when they are projected vertically. 

3. The distance between the upper and the lower 
line should not be very small or very large. It can 
be adapted with guidance of character size. 

 

3.3. Use Thin Line Coding (TLC) to generate line 
segments at less memory cost 
 

As always, there would exist some spurious segments 
from operation of last step. We need to filter out these 
noise-like false segments. In our case, noisy lines might be 
isolated lines, spurs, and loops that are shorter than given 
thresholds. 

We describe a versatile approach based on a 
hierarchical representation called as Thin Line Code 
(TLC) provided by O’Gorman. TLC operates on chains 
and line features instead of pixels. When this encoding 
scheme is used, noise reduction can benefit from the use 
of contextual information to aid the analysis and can so 
remove features whose size or type would make them 
difficult to identify by a matched filter.  

The TLC features marked for elimination are short 
isolated lines and spurs. The contour image is coded in 
PCC and subjected to filtering on the basis of structure 
size. In addition to the advantage of feature-based and 
contextual filtering, TLC also provides a computational 
advantage over pixel-based processing because here are 
many fewer TLC structures and features than there are 
pixels. Take the example of image in Figure 1, the 
document image contains 2550×3000, or 8.4 million 
pixels. However, after TLC coding, the resultant 
representation typically requires only ≅0.01% of the 
memory that is required to store the original image. 
Searching for a line type or feature in this representation is 
of course much faster than doing so on the original image.  

 
3.4. Strait-Line fitting to achieve bounding 
rectangles 
 

We can approximate the chain of edge segments with a 
straight line running through most of the edge points, 
finding the optimal straight-line fit to a given group of 
edge points is our final goal. The most direct strategy to 
fit a straight line to a set of points is simply to connect end 
points. However, more sophisticated methods are required 
to obtain the best fit using all points in the given chain, 
but not only those end points. The least-squares method is 
widely used in statistical analysis when one variable, y, is 
dependent on the other, x. Above mentioned method that 
is generally more appropriate to most image analysis 
problems, which involve x and y not as statistical variables 
but as locations of points in an image. From experiment 
we found latter method is more suitable for our system.  

At this moment we need to approximate line segments 
that are compelling on horizontal and vertical directions, 
as a result to filter out promising candidates by 
characteristic shapes. In the last stage we group parallel 
straight-line segments to find its bounding rectangles. 



Paragraphs could be categorized for later page layout 
analysis and content recognition. 

 

4.  Illustrative examples and results 
 

In this section we illustrate the experimental results by 
using our segmentation method. The test base includes  

a large group of images at resolution ranging from 
1888×2520 to 2552×3000 pixels. All test results come out 
at average running time of 3.83± 0.45s per image on a 
desktop PC with a Pentium-II CPU (400 MHZ), excluding 
I/O operations. We chose Microsoft Visual C++ 5.0 as the 
development platform and compiler. Optimisation was 
introduced in programming stage for efficient memory 
allocation and suitable data structures. Figure 1 and 2 
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present two typical images with the bounding rectangles 
around extracted textual blocks according to the results of 
page segmentation.  Table 1 shows the running time for 
major steps when handling these two typical images. 
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5. Discussion and Conclusion 
  

The main benefits of our method falls on its 
efficiency for less memory usage and fast running speed, 
as we can see from the statistical data from last section. 
The algorithm is also flexible with local adaptive 
thresholds, which made it somewhat robust to skew being 
introduced at less than 5 degrees. At the same time the 

Figure 1: Experimental results. (a) Portion of 
original gray level image which has mingled 
graphics and text blocks; (b) Achieved image 
after edge detection and edge merging in 
horizontal direction; (c) Pairs of line 
segments being retrieved by line fitting 
process; (d) Output image from connected 
component analysis for finding the bounding 
rectangles. 

Figure 2: Another experimental results. (a) 
Portion of original gray level image which has 
standard newspaper layout; (b) Edges being 
detected and merged from horizontal 
dominated direction; (c) Pair of bounding line 
segments achieved by line approximation; (d) 
Output image from connected component 
analysis to locate textual area in their 
bounding boxes. 



presence of skew does not require extra pre-processing 
steps.  

One of major weakness of our algorithm reside on its 
assumption that all text is oriented in the same direction, 
which is by default horizontal. This makes the algorithm 
not suitable to deal with documents with multiple layout 
styles, which means modification is still needed to cope 
with more sophisticated cases. From experiments we 
found the ratio of successful detection dropped down 
sharply under cases when textual paragraphs interwined 
heavily with irregular graphical blocks. Other than that, 
there also exist hightly demands to increase the accuracy 
ratio on handling textual block extraction with complex 
background. Compared with other methods, our algorithm 
relied more on adaptbility of predefined cretiria, it is also 
one of our funture aims to enhance self-learning ability for 
more robust detection mechnism. 

 
 

Table 1: Running time of major steps 
 

 Sample Image 
1 

Sample Image 
2 

Resolution 
(pixels) 

1936 × 2864 1944 × 2872 

Overall 
Processing (s) 

3.96  3.72 

Edge Detection & 
Linking (s) 

0.29 0.27 

Horizontal 
Smoothing (s) 

0.81 0.74 

Straight Line 
Approximation 

(s) 

                  
1.47 

                   
1.53 

Bounding 
Rectangle Finding 

(s) 

                  
1.39 

                    
1.18 
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