
Text Extraction from Gray Scale Document Images
Using Edge Information

Q. Yuan, C. L. Tan

Dept. of Computer Science, School of computing
National University of Singapore

3 Science Drive 2, Singapore 117543
Email: {yuanqing, tancl}@comp.nus.edu.sg

Abstract

In this paper we present a well designed method that
makes use of edge information to extract textual blocks
from gray scale document images. It aims at detecting
textual regions on heavy noise infected newspaper images
and separate them from graphical regions. The algorithm
traces the feature points in different entities and then
groups those edge points of textual regions. From using
the technology of line approximation and layout
categorization, it can successfully retrieve directional
placed text blocks. Finally feature based connected
component merging was introduced to gather
homogeneous textual regions together within the scope of
its bounding rectangles. We can obtain correct page
decomposition with efficient computation and reduced
memory size by handling line segments instead of small
pixels. The proposed method has been tested on a large
group of newspaper images with multiple page layouts,
promising results approved the effectiveness of our
method.

1. Introduction

The stated work is part of the project that facilitates
the news article retrieval from the microfilm archives of
the Singapore National Library. As the requirement of
automatic processing on large sum of scanned newspaper
images in microfilm format, we demand an automated
image processing system to handle the case. Actually the
processing of document image segmentation and
classification is an OCR pre-processor, as well as pre-
processing for understanding document page layout with
structured formats. Through this stage page segmentation
will need to accurately partition images into blocks of
text, figure, table, frame, and other entities.

Despite the many efforts spent on the subject (see [2]
for thorough review) there is still much room for
improvement in document segmentation techniques, which
is the key factor to improve the overall performance of an
automatic reading/processing system. Even very good
OCR system can be almost useless when text-extraction is

performed poorly, which is often the case in existing
systems for documents with multiple layouts.

Techniques for document segmentation and layout
analysis are traditionally subdivided into three main
categories: bottom-up, top-down and hybrid techniques.
Some other up-to-date methods are introduced by recent
progresses in this area, so as to expand the scope of above
categorization [15].

Bottom-up techniques [7,8,13] progressively merge
evidence at increasing scales to form, e.g., words from
characters, lines from words, columns from text lines.
They are usually more flexible than top-down methods,
but they may suffer from the accumulation of mistakes
when going from the small-scale details up to the large-
scale features.

Top-down techniques [5,6,9] start by detecting the
large-scale features of the image (e.g., columns) and
proceed by successive splitting until they reach the
smallest-scale features (i.e., individual characters, or text
lines). For the procedure to be effective, a priori
knowledge about the structure of the page is necessary.
These techniques are therefore particularly useful when
the layout is constrained, such as is often the case when
considering pages from scientific journals.

Most methods do not fit into one of these two
categories and are therefore called hybrid. Among these
we can find methods based on texture analysis [4] and
methods based on background analysis [3]. In methods
based on texture analysis the problem of reconstructing
the document layout is seen as a problem of texture
segmentation. The document page is subdivided into small
regions each of which is classified as belonging to one of
a few categories (text, drawing, image, etc) according to
an analysis of its texture. Once each region in the image
has been tentatively classified, a globally consistent
segmentation is carried out by the usual techniques of
machine vision. Examples of methods using texture
analysis are those based on Gabor filtering and mask
convolution, fractal signature, and wavelet analysis. All
these methods are quite general and flexible but they are
also computationally demanding.

After a brief review of previous approaches to
document segmentation, the following part of this paper
describes a somewhat novel algorithm based on edge
detection and line approximation analysis to extract text
from document pages. This method is comparatively
flexible and fast, and it deals successfully with documents
with a relatively complex layout, documents where
graphical features and text are interwined, skewed at some
degree and infected with heavy noise in scanning process.
In this paper we assume that the character strings on the
image are mainly aligned horizontally or vertically, but
theoretically it may also be modified and then adapted to
other directions as well.

The organisation of this paper is as follows: Section 2
is devoted to outline of our method. In section 3 we
present a detailed characterisation of our algorithm. The
illustrated experimental examples and results are shown in
Section 4. Finally we give some discussion and conclusion
in Section 5. Time performance and time complexity are
reported.

2. An overview of the method

Our system takes advantage of the distinctive
characteristics of text that make it stand out from other
image material. For example, by looking at the comic
page of a newspaper a few feet away, one can probably
tell quickly where the text is without actually recognizing
individual characters. Intuitively, text has the following
distinguishing characteristics:

1) Text possesses certain frequency and orientation
information;

2) Text shows spatial cohesion—characters of the
same text string (a word, or words in the same
line) are of similar heights, orientation, and
spacing.

Therefore, the most intuitive characteristics of text are

its regularity. Printed text consists of characters with
approximately the same size and line thickness that are
located at a regular distance from each other. Such
regularities can also be observed from edges being
detected on textual boundaries, we may easily find the
elongation tendency when take run-length smearing
operation on textual areas. The regular alignment of
characters into lines and columns let it be classified from
other functional regions distinctly. As a result, our
approach tried to find critical characteristics of text and
then make use of its edge features to segment the image
into text/non-text regions as best as possible, accordingly
higher accuracy can be achieved when OCR system do
recognition focusing on identified regions. In short, our
method includes several major steps such as
Preprocessing for noise reduction; Edge detection to form

directional edge plane; Edge merging and bounding line
approximation; Region classification by spatial grouping.
The detailed description is stated in next section, we omit
the pre-processing stage that just use standard filters to
sharpen the intensity of source image with noise
reduction.

3. Description of algorithm steps

One most important step of the algorithm is to find
approximate locations of text lines in a gray-scale image.
The main idea of this algorithm can be explained by
considering a printed page with Manhattan layout. If we
compute the spatial variance along each horizontal line
over the whole image, we see that regions with high
variance correspond to text lines, and regions with low
variance correspond to background or other textures.
Moreover, through run-length smearing operation we can
find that edges from textual regions may elongate to form
the approximate encircling rectangles. Text lines can then
be found by extracting the rows between two parallel
edges of the spatial variance – in specific distance of
average character height. This heuristic can be applied to
a more complex image, assuming that the spatial variance
in the background is lower than in the text. Since we need
to locate both the row coordinates of a text line and the
column coordinates of its beginning and end, the spatial
variance must be computed for each pixel over a local
neighborhood in the horizontal direction. This results in
an image of horizontal spatial variances with the same size
as the input image. From this image we need to find
significant horizontal edges and then pair the edges with
opposite directions into lower and upper boundaries of a
text line.

3.1. Directional edge plane acquisition

We choose Canny edge detector in our system to
detect edges from grayscale images. Canny operator has
several advantages: It has low probability of missing an
edge, at the same time it has some resistance to the
affection by the presence of noise.

Since we are currently interested only in horizontal
text lines, we select those edges that have horizontal
direction.

Following notations summarized the algorithm. Let
],[jiI denotes the image. The result from convolving the

image with a Gaussian smoothing filter using separable
filtering is an array of smoothed data,

],[];,[],[jiIjiGjiS ×= σ (1)

],[],[],[22 jiQjiPjiM += (2)

]),[],,[arctan(],[jiPjiQjiO = (3)

Where is the spread of the Gaussian and controls the
degree of smoothing, P and Q are approximated partial
directives on x and y direction.

The algorithm passes a 3×3 neighborhood across the
magnitude array],[jiM . The values for the height of

the ridge are retained in the nonmaxima-suppressed
magnitude. We use O[i, j] to control the filtration of major
directional edge pixels.

Our updated steps of directional edge detection
algorithm is outlined as follows:

1. Smooth the image with a Gaussian filter.
2. Compute the gradient magnitude and orientation

using finite difference approximations for the partial
derivatives.

3. Apply non-maxima suppression to the gradient
magnitude.

4. Use the double thresholding algorithm to detect and
link edges.

3.2. Edge merging by horizontal smoothing

Before finding pairs of edges with opposite directions,
small horizontal edge components need to be merged into
longer lines. The edge merging is performed by first
finding the connected components of the short edge
segments. Components that have a large vertical spread
are not good candidates for upper and lower boundaries of
a text line, thus can be removed. Among the remaining
segments, we find the ones that have similar row
coordinates within a threshold, and merge them into a
single line. The merged edges, of course, must have the
same orientations. In case some skew angles may exist at
those scanned microfilm images, we can also expand the
scanning angles to be around ±5 degrees. The method in
our implementation try to find length of projection on axis
for linked edge lines, retain those positions which
approximate the centroid of text lines. As a result we can
cluster the linked edges to form rows of text lines. The
final step is to group together pairs of lines with same
function as top and bottom line. The huge number of all
possible groupings is reduced by using the following
heuristics which are a bit similar to those provided by Jain
[1]:

1. There must be no other lines between the two
compelling edge lines in a pair.

2. A significant portion of the two lines must
overlap when they are projected vertically.

3. The distance between the upper and the lower
line should not be very small or very large. It can
be adapted with guidance of character size.

3.3. Use Thin Line Coding (TLC) to generate line
segments at less memory cost

As always, there would exist some spurious segments
from operation of last step. We need to filter out these
noise-like false segments. In our case, noisy lines might be
isolated lines, spurs, and loops that are shorter than given
thresholds.

We describe a versatile approach based on a
hierarchical representation called as Thin Line Code
(TLC) provided by O’Gorman. TLC operates on chains
and line features instead of pixels. When this encoding
scheme is used, noise reduction can benefit from the use
of contextual information to aid the analysis and can so
remove features whose size or type would make them
difficult to identify by a matched filter.

The TLC features marked for elimination are short
isolated lines and spurs. The contour image is coded in
PCC and subjected to filtering on the basis of structure
size. In addition to the advantage of feature-based and
contextual filtering, TLC also provides a computational
advantage over pixel-based processing because here are
many fewer TLC structures and features than there are
pixels. Take the example of image in Figure 1, the
document image contains 2550×3000, or 8.4 million
pixels. However, after TLC coding, the resultant
representation typically requires only ≅0.01% of the
memory that is required to store the original image.
Searching for a line type or feature in this representation is
of course much faster than doing so on the original image.

3.4. Strait-Line fitting to achieve bounding
rectangles

We can approximate the chain of edge segments with a
straight line running through most of the edge points,
finding the optimal straight-line fit to a given group of
edge points is our final goal. The most direct strategy to
fit a straight line to a set of points is simply to connect end
points. However, more sophisticated methods are required
to obtain the best fit using all points in the given chain,
but not only those end points. The least-squares method is
widely used in statistical analysis when one variable, y, is
dependent on the other, x. Above mentioned method that
is generally more appropriate to most image analysis
problems, which involve x and y not as statistical variables
but as locations of points in an image. From experiment
we found latter method is more suitable for our system.

At this moment we need to approximate line segments
that are compelling on horizontal and vertical directions,
as a result to filter out promising candidates by
characteristic shapes. In the last stage we group parallel
straight-line segments to find its bounding rectangles.

Paragraphs could be categorized for later page layout
analysis and content recognition.

4. Illustrative examples and results

In this section we illustrate the experimental results by
using our segmentation method. The test base includes

a large group of images at resolution ranging from
1888×2520 to 2552×3000 pixels. All test results come out
at average running time of 3.83± 0.45s per image on a
desktop PC with a Pentium-II CPU (400 MHZ), excluding
I/O operations. We chose Microsoft Visual C++ 5.0 as the
development platform and compiler. Optimisation was
introduced in programming stage for efficient memory
allocation and suitable data structures. Figure 1 and 2

 (a) (b)

 (c) (d)

present two typical images with the bounding rectangles
around extracted textual blocks according to the results of
page segmentation. Table 1 shows the running time for
major steps when handling these two typical images.

 (a) (b)

 (c) (d)

5. Discussion and Conclusion

The main benefits of our method falls on its
efficiency for less memory usage and fast running speed,
as we can see from the statistical data from last section.
The algorithm is also flexible with local adaptive
thresholds, which made it somewhat robust to skew being
introduced at less than 5 degrees. At the same time the

Figure 1: Experimental results. (a) Portion of
original gray level image which has mingled
graphics and text blocks; (b) Achieved image
after edge detection and edge merging in
horizontal direction; (c) Pairs of line
segments being retrieved by line fitting
process; (d) Output image from connected
component analysis for finding the bounding
rectangles.

Figure 2: Another experimental results. (a)
Portion of original gray level image which has
standard newspaper layout; (b) Edges being
detected and merged from horizontal
dominated direction; (c) Pair of bounding line
segments achieved by line approximation; (d)
Output image from connected component
analysis to locate textual area in their
bounding boxes.

presence of skew does not require extra pre-processing
steps.

One of major weakness of our algorithm reside on its
assumption that all text is oriented in the same direction,
which is by default horizontal. This makes the algorithm
not suitable to deal with documents with multiple layout
styles, which means modification is still needed to cope
with more sophisticated cases. From experiments we
found the ratio of successful detection dropped down
sharply under cases when textual paragraphs interwined
heavily with irregular graphical blocks. Other than that,
there also exist hightly demands to increase the accuracy
ratio on handling textual block extraction with complex
background. Compared with other methods, our algorithm
relied more on adaptbility of predefined cretiria, it is also
one of our funture aims to enhance self-learning ability for
more robust detection mechnism.

Table 1: Running time of major steps

 Sample Image
1

Sample Image
2

Resolution
(pixels)

1936 × 2864 1944 × 2872

Overall
Processing (s)

3.96 3.72

Edge Detection &
Linking (s)

0.29 0.27

Horizontal
Smoothing (s)

0.81 0.74

Straight Line
Approximation

(s)

1.47

1.53

Bounding
Rectangle Finding

(s)

1.39

1.18

References

1. Anil K.Jain and BinYu, “Automatic Text Location in

Images and Video Frames”, Pattern Recognition, Pattern
Recognition, Vol.31, No. 12, pp. 2055-2076, 1998.

2. L. O’Gorman, R. Kasturi.: Document Image Analysis.
IEEE Computer Society, 1995

3. W.S. Baird, S. E. Jones, S. J. Fortune.: Image segmentation
by shape directed covers. Proc. Of ICPR, pp. 820-825,
1990

4. A. K. Jain and S. Bhattacharjee, “Text Segmentation Using
Gabor Filters for Automatic Document Processing,”
Machine Vision and Applications, 5(3), pp. 169-184, 1992.

5. D. X. Le and G. R. Thoma, “Document classification using
connectionist models,” Proc. of IEEE International
Conference on Neural Networks, Orlando, Florida, vol. 5,
pp. 3009-3014, June 1994.

6. J. Ohya, A. Shio and S. Akamatsu, “Recognizing
Characters in Scene Images”, IEEE Transaction on PAMI,
Volume 16, No. 2, pp. 214-224, February 1994.

7. T. Pavlidis and J. Zhou, “Page Segmentation and
Classification,” Computer Vision Graphics Image
Processing, 54(6), pp.484-496, November 1992.

8. D. Wang and S. N. Srihari, “Classification of newspaper
image blocks using texture analysis,” Computer Vision,
Graphics, and Image Processing, vol. 47, pp. 327-352,
Jan. 1989.

9. F. M. Wahi, K. Y. Wong, and R. G. Casey, “Block
segmentation and text extraction in mixed text/image
documents,” Computer Graphics and Image Processing,
vol. 22, pp. 375-390, Feb. 1982.

10. Y. K. Ham, I. K. Kim, H.K. Chung, R. H. Park, C. B. Lee,
S. J. Kim, and B. N. Yoon, “A study on the recognition of
mixed documents consisting of texts and graphic images,”
Journal of KITE, vol. 31, no. 7, pp. 76-89, July 1994.

11. S. Imade, S. Tatsuta, and T. Wada, “Segmentation and
classification for text/image documents using neural
network,” Proceeding of the Second International
Conference on Document Analysis and Recognition,
Tsukuba, Japan, pp.930-934, Oct. 1993.

12. J. S. Kim, J. C. Shim, J. H. Lee, and H. M. Choi,
“Classification of document image blocks based on textual
features and BP,” ISPACS ’94, Seoul, Korea, pp. 104-108,
Oct.1994.

13. L. A. Fletcher and R. Kasturi, “A robust algorithm for text
string separation from mixed text/graphics images,” IEEE
Transaction on Pattern Analysis and Machine Intelligence,
vol. 10, no. 6, pp. 910-918, Nov. 1988.

14. Y. Hirayama, “A block segmentation method for document
images with complicated column structures,” Proc. of the
second International Conference on Document Analysis
and Recognition, pp. 91-94, Tsukuba, Japan, Oct. 1993.

15. C. H. Chan, L. F. Pau and P. S. P. Wang, “Handbook of
Pattern Recognition & Computer Vision”, (2nd Edition),
1999.

