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Abstract

This paper describes a new method to segment printed mathematical documents

precisely and extract formulas automatically from their images.  Unlike prior methods, it

is more directed towards the segmentation rather than the recognition, isolating

mathematical formulas outside and inside text-lines. Our ultimate goal is to delimit parts

of text that could disturb OCR application, not yet trained for formula recognition and

restructuring. The method is based on a global and a local segmentation. The global

segmentation separates isolated formulas from the text lines using a primary labeling. The

local segmentation propagates the context around the meted mathematical operators to

discard embedded formulas from plain text. The primary labeling identifies some

mathematical symbols by models created at a learning step using fuzzy logic. The

secondary labeling reinforces the results of the primary labeling and locates the subscripts

and the superscripts inside the text.  Some heuristics has been defined that guides this

automatic process. In this paper, the different modules making up the automated

segmentation of mathematical document system are presented with examples of results.

Experiments done on some commonly seen mathematical documents, show that our

proposed method can achieve quite satisfactory rate making mathematical formula

extraction more feasible for real-world applications. The average rate of primary labeling
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of mathematical operators is about 95.3% and their secondary labeling can improve the

rate about 4%. The formula extraction rate, evaluated with 300 formulas and 100

mathematical documents having variable complexity, is close to 93%

Keywords : Mathematic formula extraction, document segmentation, symbol labeling,

fuzzy logic,  context propagation

1. Introduction

With the ultimate objective of a high-level understanding of mathematical document

content, the need for advanced formulas extraction and recognition technologies is on the

rise, so as to take full advantage of the semantics conveyed by the formulas as an

important and the crucial part of mathematical document. This paper is devoted to

mathematical formula extraction.

Formulas are involved in mathematical documents, either as isolated formulas, or

embedded directly into a text line. They have a number of features, which distinguish

them from conventional text. These include structure in two dimensions (summations,

products, integrals, roots, fractions, etc.), frequent font changes, symbols with variable

shape and size according to the context (brackets, fraction bars, subscripts, superscripts,

etc. ), and substantially different notational conventions from source to source. When

compounded with more generic problems such as noise and merged or broken characters,

printed mathematical expressions offers a challenging area for formula extraction and

recognition.

Formula recognition has gained research importance in recent years. In the past few

decades, many researchers have developed a promising number of approaches for

mathematical document recognition [1-11]. But, most works we survey focus on

mathematical formulas themselves and do not recognize the whole mathematical
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document. They assume that the regions containing mathematical formulas are already

known. OKAMOTO and MIYAZAWA [11] note that in their tests, table and picture areas

were excluded and the distinction between text lines and mathematical expressions was

specified manually. Additionally, most papers delve into recognizing two-dimensional

mathematical expressions, without being specific, can not handle all kind of formulas.

They generally recognize simple equations but not matrix or system of equations. This

paper describes current results of a system that separates mathematical formulas from

ordinary text on a scanned page of mixed material. We explore the extend to which this

separation can be automated in the context of printed mathematical documents. Our aim

is to start from digitally scanned images of documents containing mathematical formulas

and to extract them in order to not disturb the OCR application not yet trained for formula

recognition and restructuring. Such a tool could be really useful to be able to recognize

mathematical documents and re-use them in other applications.

In this paper, we will provide in section 2, a survey of existing work in mathematical

formula extraction. Besides, we will describe in section 3, our proposal approach which is

then detailed in sections 4 and 5. Afterwards, we will discuss some experimental results in

section 6 and 7. We will close the paper with some conclusions and prospects.

2. State of art

So far, to the best of our knowledge, papers that provide literature survey of the area of

mathematical formula extraction research are very rare. A paper by LEE and WANG [12]

is directed to our task, but uses somewhat different techniques. They present a system for

extracting both isolated and embedded mathematical expressions in a text document. Text

lines are labelled as isolated expressions based both on internal properties and on having

increased white space above and below them. There are good first-cut heuristics but make
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mistakes : titles are often labelled as isolated formulas. The remaining text lines consist of a

mixture of pure text and text with embedded expressions. They treat embedded

expressions, by first recognising the characters. Characters that are known to be

mathematical are used as seeds for growing geometric “trees” of mathematical

expressions, heuristically attaching symbols that are adjacent including those in super or

subscripting or matrix structures. The embedded mathematical expressions are then

extracted from text based on some primitive tokens. The system determines whether a

primitive token belongs to an embedded mathematical expression according to some basic

expressions forms. The major errors are due to similar symbols. The authors not attempt to

confirm that the localised sections contain mathematical expressions, leaving a parser and

future corrective procedures for future work.

To find mathematical expressions on a scanned page, FATEMAN [13] proposes a

system that identifies all connected components by observing character size and their font.

Based on such identification, the system separates all items into two bags : math and text.

The text bag includes all Roman letters, Italic numbers. The math bag includes

punctuation, special symbols, Italics letters, Roman digits, and other marks (horizontal

lines, dots), etc. The math bag components are then grouped into zones according to their

proximity. But some components such as dots, commas and parentheses, that correctly

belong in text, might be absorbed in a math zone. After this grouping within math bag,

some symbols (isolated dots, commas, and parentheses, etc. ) could remain isolated. These

symbols might be attributed either to math or text given appropriate context. If they

appear to be too far from other math symbols to be grouped together with them, they will

be moved to text bag. Isolated italic letters or isolated Greek letters remain as math. Next,

the system joins up the text bag into groups according to their proximity. Some text words
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which are relatively isolated from other text, but are within zones that have been

previously  established in the math bag, will be moved into the math bag. Finally, the bags

of math vs. text, must be reviewed and corrected. With this method, italic words will

generally be recognised as mathematical expressions although they may be either

mathematical expressions or text. The strings of numbers and symbols are considered as

mathematical expressions although sometimes appear in text. Figures or line-drawings

that include dotted or dashed lines may contain connected components that look like

mathematical expressions. The problem of separating these out and treating them like

figures is not yet solved.

INOUE and al [14] describe a new system of OCR, which can handle Japanese scientific

documents. After the extraction of text lines, including mathematical formulas from a

scanned page image, the system segments each line into Japanese text area and

mathematical formula area. The Japanese area contains only Japanese characters, while the

mathematical area covers the complement. The segmentation and the recognition of the

Japanese characters are done at the same time using an adapted OCR (for kanji, kana and

Japanese punctuation symbols). Even though the OCR always gives correct results, the

segmentation remains a simplest task considering as mathematical what is not recognised

by the OCR, which is not always true.

 To separate the mathematical text from plain text, TOUMIT et al. [15] recently proposed

another approach based on a physical and a logical segmentation methods. Physical

segmentation is achieved to extract the document layout such as blocks, lines, characters

and words. Logical segmentation consists in formula detection by following two steps: 1)

detection of “big formulas” considering their centred position in the page and the lack of
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abandon text, 2) location of “small formulas” in the text lines by finding  special symbols

such as =, +, <, > and specific context extension from these symbols.

This paper addresses the issue of locating mathematical formulas in paper documents

for both cases: isolated formulas and embedded formulas in the text lines. The

segmentation processes are performed directly on the document image without using any

OCR system.  The main reasons are : 1)  current OCRs are not capable to furnish

acceptable segmentation  rate on mathematical documents because they are more adapted

to linear writing (text lines) than to two-dimensional writing, 2) the embedded formulas

within the text create hostile context for general recognition by OCR manifested by

formulas compression leading to different font variation, 3)  OCRs are incapable to

produce the exact structure of the formulas.

 Another aim of the propose approach is to accompany OCR (which is generic in nature)

on uncommon part of the content obtained by a generic segmentation approach: extraction

of specific symbols, extension of the context around these symbols and segmentation of

the material containing these contexts. The need of such methodology can be formulated

for different heterogeneous documents like mechanical, chemical and geographical

documents.

3. Propose approach

It is obvious that separating mixed materials should help the accuracy of commercial

OCR programs. We propose to improve the OCR success rate on mixed material by

separating mathematical expressions from the usual text. To find where formulas are

located on the document, a top down approach (global to local segmentation)  is

performed. The extraction of isolated formulas is less complex in principle because there is

some helpful information like vertical spaces which identify the mathematical expressions
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directly. They have distinctive lower density compared to a normal text  paragraph and

unusual line statistics. Embedded formulas are extracted, by location of their most

significant mathematical operators, then extension to adjoining operands and operators

using contextual rules until delimitation of the whole formulas spaces.

The system performs the following main tasks. First, the document is scanned, its image

is straightened and its connected components are extracted. Each of extracted connected

components is associated with a bounding box. Using the attributes deduced from the co-

ordinate of the bounding boxes, the system assigns a label to each of them according to the

role it can play in formula composition. This primary labeling allows a global

segmentation of the document by extraction of lines and their classification into lines of

text or lines of isolated formulas. For embedded formulas, a local segmentation of text

lines is necessary. It needs a finer labeling to locate some mathematical operators. All the

characters and operators, when grouped properly, allow to embedded formulas to be

separated from usual text. However, proper grouping of operators in mathematical

formula is not trivial. Firstly, there are many operators. Each of them has its own grouping

criteria. Secondly, there are two types of operators, namely, explicit and implicit operators.

Explicit operators are operators symbols (∑ , ∏ , ∫, =, +, etc.) while implicit operators are

spatial operators (subscripts and superscripts). Thirdly, some symbols may represent

different meaning in different contexts. These properties together make the extraction

process very difficult even when all characters and symbols can be recognized correctly.

An overview of the entire system is given in Figure 1.
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Figure1: System overview

The processing levels as they are shown, will be detailed in the following sections.

4. Global segmentation

The main goal of the global segmentation is to identify particularly isolated formulas.

This is based on symbol extraction, detection of lines containing these symbols and

consecutive line merging for fractions.  These procedures are detailed in the following

sections.

4.1. Connected component extraction

In many cases, the extracted connected components correspond to the characters on the

page image, although  they can be both character fragments or merged characters. Each

connected component (noted χ) is described by the co-ordinates of the upper left (Xmin,

Ymin) and the lower right (Xmax, Ymax) corners of its bounding box and the number of its

black pixels (nbp) (See Figure 2).

Document image Mathematical
operators

Text-lines Isolated formulas
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Plain text Embedded formulas

Models
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extraction

Line extraction

Context propagation

Global segmentation

Local segmentation
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Figure 2 : The bounding box of a connected component

Afterwards, the connected component filtering is taken to discard noise, some diacritical

and punctuation signs, large graphics, vertical and horizontal separators since they could

not be parts of mathematical formulas.

4.2. Features and spatial relations

Let W(χ) and H(χ) be respectively the width and the high of the bounding box of χ. The

aspect ratio R, the area A and the density D of each connected component χ is computed as

follows : R(χ)=W(χ)/H(χ), A(χ)=W(χ)*H(χ) and D(χ)=nbp/A(χ).

The relative size X(χl,χr) and position Y(χl,χr) of a pair of connected components (χl : the

left component and χr :the right component) are determined as follows (See Figure 3).

X(χl,χr)=H(χr)/H(χl) and Y(χl,χr)=(Ymax(χl)-Ymin(χr))/H(χl).

Figure 3 : The relative size and position of a pair of connected components

Let χi,j be the ith connected component belonging to the jth line Lj of the document image.

The connected component of the same line are sorted by ascending order of their Xmin.

nc(Lj) is the number of the connected components in Lj. Let D(χi,j,χi-1,j)=Xmin(χi,j)-Xmax(χi-1,j)

be the distance between two consecutive connected components.  We define the spatial

relations between a pair of connected components as follows :

(xmin,ymin)

(xmax,ymax)

X

Y

H

W

H(χr)

H(χl)
H(χl)

H(χr)

Ymax(χl)-Ymin(χr)
Ymax(χl)-Ymin(χr)
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- LN (Left Neighbourhood) : The list of the connected components in the left vicinity of χi,j.

LN(χi,j)= [∀ χk,j such as 1≤k≤i-1 and Xmax(χk,j)≥ Xmin(χi,j)]∪ [∀ χp,j such as 1<p≤k-1 and

D(χp+1,χp,j)=D(χp,j,χp-1,j)].

- RN (Right Neighbourhood) : The list of all the connected components in the right

vicinity of χi,j. RN(χi,j)= [∀ χk,j such as i+1≤k≤nc(Lj) and Xmin(χk,j)≤Xmac(χi,j)]∪ [∀ χp,j such

as k+1≤p<nc(Lj) and D(χp,j,χp-1,j)=D(χp+1,j,χp,j)]

- DLM (Delimitation) :  The list of all the connected components enclosed inside χi,j, and

χn,j. DLM(χi,j, χn,j)=[ ∀ χk,j such as i+1≤k≤n-1 and Xmin(χk,j)≤ Xmax(χn,j)]

4.3. Primary labeling

Mathematical formulas are represented with various kind of entities. Such entities

include all possible alphabetic characters (English, Greek, Hebrew, etc.), numerals (1,2,3,

etc.), math operators ( +, *, -, ∑ , ∏ , ∫, (, [, etc.) and so on. Though extraction of such objects

is the first step to locate mathematical formulas. Some special mathematical operators are

useful to locate formulas. The most obvious example is the “equal” symbol, which appears

χi,j

χi,j

χi,j χn,j
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in many formulas. Other useful characters are the symbols of summations, products,

integrals, roots, fraction bars, brackets and parenthesis, etc. To proceed with our system,

we must tentatively identify many of the connected components as particular characters.

Characters that are known to be mathematical (such as ∑ , ∏ , ∫, etc.)  are used as tokens for

formula extraction. While we do not expect 100% separation, with some training

(especially on the character set in use for mathematical expressions) we expect that only a

modest amount of text will be confused with mathematics.

To learn mathematical symbols, the system must analyse the large number of symbols

extracted from different mathematical documents. For each instance of symbol, values of

the aspect ratio, area and density are computed, observed and only the lower and the

upper bounds are considered. We have study 1182 instances of mathematical symbols: 263

summation and product symbols (SP),  83 integrals (IS), 101 roots (RS), 109 horizontal

fraction bars (HFB), 177 great delimiters (GD great brackets and parenthesis), 205 small

delimiters (SD usual brackets and parenthesis)  and 244 operators composed of  small

horizontal lines such as equal and subtraction signs (OP).

This difference in the sample size reflects the use frequency of those symbols in

mathematical documents. We do not consider other operators such as ‘+’, ‘*’, ‘/’, ‘<’, ‘>’ in

the class of operators because they are often confused with some alphanumeric characters.

Let P={R, A, D} be the set of parameters used for mathematical symbol classification,

MS={SP, IS, RS, HFB, VD, SD, OP}, the set of labels assigned to mathematical symbols,

TS(MS) the training sample size of an element of MS and LBP(MS) and UBP(MS) are

respectively the lower and the upper bounds of a MS element according to a parameter P.

- LBP(MS) = Min(P(MSi))i=1,… ,TS(MS).

- UBP(MS) = Max(P(MSi))i=1 ,… ,TS(MS).

In the Table 1, we give the obtained results of the training step.
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Table 1. Training results

R(MSi) i=1,… ,TS(MS) A(MSi) i=1,… ,TS(MS) D(MSi) i=1,… ,TS(MS)

MS TS(MS) LBR(MS) UBR(MS) LBA(MS) UBA(MS) LBD(MS) UBD(MS)
SP 263 0,30 1,57 78 841 0.24 0.53
RS 101 0,57 8,96 303 10000 0.05 0.21
IS 83 0,17 0,79 136 1852 0.10 0.29

BFH 109 8,09 100 27 1317 0.16 0.99
GD 177 0,07 0,31 92 1094 0.15 0.65
SD 205 0,08 0,47 24 205 0.22 0.92
OP 244 3,18 14,75 5 28 0.53 1.00

The values of ratios and area of mathematical symbols have been normalised

respectively according to the greatest ratio and the largest area.

Given the training results, we might be to assign a label to each component according to

the role it could play in formula composition. The first idea to label a component consisted

in computing the intersection of symbols sets such as their value parameter intervals

includes those of the component. However some ambiguities could be observed when the

intersection result leads to more than one label. An example of labeling a great bracket is

shown in the Table 2. Two possible labels : IS and GD are provided by the system.

Table 2. Results of the primary labeling of a great parenthesis

R(χ) A(χ) D(χ) MSR(χ) MSA(χ) MSD(χ) MS(χ)
0,19 375 0,20 {IS, GD, SD} {SP, RS, IS, HFB, GD} {RS, IS,  HFB, GD} {IS, GD}

To remove such ambiguities, we have dropped the idea of this binary labeling on behalf

of a labeling based on the fuzzy logic. The idea is not to keep only the lower and the upper

bounds of the ratio, area and density values for each type of symbol but the whole

measures and construct their corresponding histograms (see an example of a histogram in

Figure 4). The histogram abscissa refers to the different value classes that is the set of

measures shared on regular intervals. The ordinate is the relative frequency that is the

number of measures belonging to a value class divided by the total number of measures.
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The ordinate could be considered as the membership degrees to the different classes of

mathematical symbols [16 -20].
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Figure 4 : The aspect ratio histogram of summation and product symbols

To identify a mathematical symbol given its connected component (χ), values of each

parameters P={R, A, D} are computed. By referring to the histograms of each type of

symbols, we each time keep the membership degree of that χ to a type of symbols

according to one parameter noted µMS,P(χ). We then keep, for each type of symbols, the

minimal membership degree of that χ according to its aspect ratio, area and density

(conjunction of parameters). We finally take the maximal value (disjunction of symbol

types). Thus, the membership degree of that χ to a class of  symbol is defined as follows :

µMS(χ) = Max(Min(µMS,R(χ),µMS,A(χ),µMS,D(χ))

= Max(µSP(χ), µIS(χ), µRS(χ), µHFB(χ), µGD(χ), µSD(χ), µOP(χ))

In Table 3, we present the results obtained after a fuzzy labeling of the great parenthesis,

not identified by the previous binary labeling.
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Table 3. Labeling of the great bracket using fuzzy logic

MS µMS,R(χ) µMS,A(χ) µMS,D(χ) µMS(χ)
SP 0 0 0.33 0
IS 0 0.03 0.82 0
RS 0.02 0.14 0.47 0.02

HFB 0 0.05 0.14 0
VD 0.44 0.47 0.55 0.55
SD 0.16 0 0 0
OP 0 0 0 0

µMS(χ) 0.55
MS(χ) GD

It is clear that the membership degree of that great parenthesis to class of small delimiter

(0.55) is greater than the membership degree to class of integral symbol (0.02).

The fuzzy logic has been shown to be useful not only to express the non uniformity of

measure distribution in classes of mathematical symbols but also to remove certain

ambiguities as shown in the previous example.

A test database composed of 460 mathematical symbols: 110 SP, 45 IS, 12 RS, 56 HFB,

93 GD, 104 SD and 40 OP is used to compute the average rate of the primary labeling.

About 95.3% of the connected components are well labelled (see Table 4).

Table 4. Confusion matrix of the primary labeling

SP RS IS HFB GD SD OP Not labelled
SP 100% 0% 0% 0% 0% 0% 0% 0%
RS 0% 84% 0% 0% 0% 0% 0% 16%
IS 0% 0% 100% 0% 0% 0% 0% 0%

HFB 0% 0% 0% 92% 0% 0% 3% 5%
GD 0% 0% 2% 0% 96% 0% 0% 2%
SD 1% 0% 2% 0% 2% 95% 0% 0%
OP 0% 0% 0% 0% 0% 0% 100% 0%

The most errors are due to some similar symbols. We will show how it will be possible

to distinguish between them at a secondary labeling step.
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4.4. Line extraction

Once the connected components are labeled, the adjacent ones are grouped into the

same line following the next steps. First, the connected components are sorted by their

ascending Ymin. Initially, the Ymin and the Ymax of the line correspond to those the first

meted component. Then the line ordinates are updated by checking overlapped

components. Those belonging to the same line are then sorted by their ascending Xmin to

determine the Xmin and the Xmax of the line (see Figure 5).

Figure 5 : Example of line extraction

Sometimes, a line fusion step seems to be necessary especially for formula spread over

than one line such as fractional, summation, product or integral expressions (see Figure 6).

In such cases, the connected components of the numerators and denominators should be

joined to their corresponding fraction bars. By the same way, the lower and the upper

limits must be connected to symbols of summation product or integral.

Figure 6 : Examples of line fusion

�

�

�
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In case � of Figure 6, the fusion of numerator and denominator lines is not performed

because of the fraction bar which overlaps with the upper limit of the summation in the

denominator.

χi,j corresponds to the ith χ of the jth line. It is characterized by its spatial co-ordinates, its

label MS(χi,j) and its membership degree to the class of MS noted, µMS(χi,j).

Once lines are extracted, isolated formulas could be located. In fact, isolated formulas

are big formulas, which constitute a single line with or without very small text, and they

are often centred in the page. Extracting them is an easy and quick task. We perform it

using two assumptions based on their morphology (ratio) and position on the image

(according to the left and the right margin). Let Lj be the jth line of the image, R(Lj)  its

aspect ratio, nc(Lj) the number of its connected components, LM and RM are respectively

the left and the right margin of the image. LM=min(Xmin(Lk))k=1..nl while

RM=max(Xmax(Lk))k=1..nl where nl is the number of lines in the image. ISF and TXT are the

two labels assigned respectively to isolated formula line and to a text line. The line

classification is proceeded as follows :

If (r1≤R(Lj) ≤r2 and Xmax(Lj)>(LM+RM)/2) /* a quite high and long line */

or (d1≤(Xmin(Lj)-LM)/(RM-Xmax(Lj))≤ d2) /* centred line */

Then Lj=ISF else Lj=TXT

Isolated formulas could be now extracted which restrict next processing to extraction of

formulas embedded into text lines.

5. Local segmentation

Using the previous labeling, the system will try to separate embedded formulas from

usual text. Mathematical text is not limited to formulas. Isolated characters in the text may
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represent mathematical concepts or variables. Although these characters are not plain text

since they do not obey to the grammar of standard text, we decide not extract them since

an OCR program is likely to correctly read characters typeset on the normal text base-line.

This notation could be extended to Greek letters and sequence of symbols. Remember that

our objective is to delimit the parts of text, which could disturb OCR application.

A secondary labeling is applied. It is a finer labeling of the connected components,

belonging to the same text line, where their position according to the central band of line is

considered to solve some ambiguities observed at their primary labeling. In fact, with this

consideration, summation, product and integral symbols could be distinguished from

alphanumeric characters and oblique fraction bars, since integral, summation and product

symbols are overflowing while alphanumeric characters and oblique fractions bars are not.

Additionally, subscripts and superscripts which are implicit mathematical operators,

could be detected since they are generally deepen or high (See Figure 7).

5.1. Secondary labeling

Six categories of components are proposed based on their topographies (position

according to the central band of the line to which they belong) as shown in Figure 7.

Figure 7 : Topographical classification of the connected components.

The central band ordinates : Ymin(CBj) and Ymax(CBj) of  Lj, correspond respectively to the

maximal horizontal projection values of Ymin and Ymax of all the connected components

belonging to Lj.

Centered Ascending

Descending
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Let T(χi,j) be the topography class of χi,j, CBj the central band of the Lj and alhj the

average local height of Lj the given as follows :

- T(χi,j) = Overflowing if Ymin(χi,j) < Ymin(χj)  - alhj and Ymax(χi,j) > Ymax(CBj) + alhj.

- T(χi,j) = Ascending if Ymin(χi,j) < Ymin(CBj) - alhj and Ymax(χi,j)≤ Ymax(CBj) + alhj.

- T(χi,j) = Descending if Ymin(χi,j) ≥ Ymin(CBj) - alhj and Ymax(χi,j)>Ymax(CBj)+ alhj.

- T(χi,j) = Centred if Ymin(χi,j) ≥ Ymin(CBj) - alhj and Ymax(χi,j)≤ Ymax(CBj) + alhj.

- T(χi,j) = High if Ymax(χi,j) ≤ (Ymin(CBj) + Ymax(CBj) )/2).

- T(χi,j) = Deepen if Ymin(χi,j) ≥ (Ymin(CBj)+ Ymax(CBj) )/2).

The major errors of the labeling step are due to the ambiguities between characters such

as ‘l’, ‘t’, ‘1’ and small delimiters (brackets and parenthesis) since they have similar ratio,

area and density and both of them have ascending components according to the central

band of the line to which they belong. There errors can be reduced using a threshold

membership degree to the class of small delimiters.

As subscripts could be descending (not too deepen) and the superscripts could be

ascending (not too high)  and since both of them are implicit operators which are indicated

by the relative location of their operands, two other features are considered to be able to

detect them : the relative size X and the relative position Y(See 4.2). The obtained training

results of the subscripts and superscripts are mentioned in Table 5. Let IO={SUB, SUP} be

the set of implicit operators, F={X, Y} be the set of features for IO, LBF(IO) =

Min(F(IOi))i=1,… ,TS(IO) whereas UBF(IOi))i=1,… ,TS(IO). TS(IO) is the training sample size for IO.
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Table 5. Training results of subscripts and superscripts

IO TS(IO) LBX(IO) UBX(IO) LBY(IO) UBY(IO)
SUB 100 0.11 1.26 -0.21 0.75
SUP 100 0.21 1.28 1.03 2.82

To demonstrate the contribution made by the secondary labeling of the connected

components to improve results of their primary labeling, an illustrative example is given

in Fig. 8 and Table 7. The not labelled connected components correspond to usual

characters (noted C in Table 7). MS1(χi,j) and MS2(χi,j) are the two first labels provided to χi,j

by the system. µMS1(χi,j)  and µMS2(χi,j) are respectively the membership degrees to MS1 and

MS2. MO(χi,j) and µMO(χi,j) are respectively the label assigned to χi,j  and its membership

degree to the class of mathematical operators after a secondary labeling step. The first

column in Table 6 refers to the origin identity of χi,j. It is used to be compared with the

labeling results.

Figure 8. Example of embedded formula

Table 6. The labeling results of the embedded formula shown in Figure 8
χi,j MS1(χi,j) MS2(χi,j) µMS1(χi,j) µMS2(χi,j) T(χi,j) IO(χi,j) µIO(χi,j) MO(χi,j) µMO(χi,j)
C SP C 0.22 Descendante ID 0.04

SD SD GD 0.35 0.02 Ascendante EX 0.37 PD 0.35

C C C Centrée

SD C C Ascendante EX 0.39

C SP C 0.30 Ascendante

SUB C C Descendante ID 0.51 ID 0.51

SD PD C 0.35 Ascendante EX 0.08 PD 0.35
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For subscripts, superscripts, summation and product symbols and small delimiters, only

ones having a membership degree greater than a threshold value (0.5 for SUB and SUP, 0.3

for SP and 0.2 for SD) are retained.

5.2. Context propagation

Before we can interpret the identified operators, we must first group them properly into

units. Proper combination of operators must be syntactically correct in a mathematical

sense. This can be done by some conventions in writing mathematical formulas as

heuristics. For summation, product and integral symbols and operators, the propagation

of context is done around them. For parenthesis, brackets and roots, it is done between

them. For fraction bars, it is done above and under them. That leads to the detection of

sub-expression. Let MFi,j be the ith mathematical formula of the jth line. The next rules are

used to propagate the context around the found mathematical operators.

- R1: The symbols “∑ ”, “∏”, “∫” are usually accompanied by limit expressions

appearing above or below the symbols. So, if a summation, product or an integral

symbol are detected, then their associated limits will be connected to them in

addition of their right neighbourhood (see � in Figure 9).

if(MO(χi,j)∈ {SP, RS}) then MFi,j=[χi,j]∪ LN(χi,j)∪ RN(χi,j)

- R2: Each component enclosed inside a radical symbol should compose a formula

(see � in Figure 9).

if(MO(χi,j)∈ {RS})  then MFi,j=[χi,j]∪ LN(χi,j)∪ RN(χi,j)

- R3: Each component placed above or under a horizontal fraction bar should

compose a formula (see � in Figure 9).

if(MOχi,j)∈ {HFB}) then MFi,j=[χi,j]∪  [∀ χk,j such as 1≤k≤i-1 and Xmax(χk,j)≥

Xmin(χi,j)]∪ [∀ χp,j such as i+1≤p≤nc(Lj)  and Xmin(χp,j) ≤ Xmax(χi,j)]
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- R4 : Each component enclosed inside a pair of great delimiters should form a

formula (see � in Figure 9).

if(MOχi,j)∈ {GD}) then MFi,j=[χi,j]∪ [∃χn,i such as i+1≤n≤nc(Lj) and MO(χn,j)∈ {GD}]∪

DLM(χi,j, χn,j)

- R5 : If an operator or a reduced number n of characters is found inside a pair of

small delimiters then all of them constitute one formula. If the components before

the formula are more closeset to the formula than to their left neighbours, then they

will be joined to the formula (see �, �, �, � and � in Figure 9).

if(MOχi,j)∈ {SD}) then MFi,j=[χi,j]∪ [∃χn,j such as i+1≤n≤nc(Lj) and MO(χn,j)∈ {SD} and

∃χk,j such as i+1≤k≤n-1 and (MO(χk,j)∈ {SUB, SUP, RS, SP, HFB, OP} or k-

i≤n)]∪ DLM(χi,j, χn,j) ∪ LN(χi,j)

- R6 : If an operator is found, then its left and right operands will be joined to it (see

�, �, �, �, � and � in Figure 9).

if(MO(χi,j)∈ {OP})   then MFi,j=[χi,j]∪ LN(χi,j)∪ RN(χi,j)

- R7 : When a subscript or superscript is identified, it is grouped with its closest

neighbour. If the later is its right neighbour and it is a subscript or a superscript

then the left neighbour must be joined to the formula (see �, �, � and � in Figure

9).

if(MO(χi,j)∈ {SUB, SUP})

then if(D(χi,j, χi-1,j)≤D(χi+1,j, χi,j))

then MFi,j=[χi-1,j, χi,j]

else if(MO(χi+1,j∈ {SUB, SUP})

then MFi,j=[χi-1,j, χi,j, χi+1,j] else  MFi,j=[χi,j, χi+1,j]
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Figure 9 : Examples of local context analysis

- R8 : Two adjacent or overlapped formulas constitute one formula (see Figure 10).

if(D(MFi,j , MFi-1,j ) ≤ 0)   then MFi,j = MFi,j∪  MFi-1,j

- R9 : Two formulas, separated by a reduced number n of components (not more

than 5) should compose one formula (see Figure 10).

if(D(MFi,j , MFn,j ) > 0 and i-5≤n<i)  then MFi,j = MFi,j∪  [∀ MFk,j /i<k<n] ∪ MFn,j.

Figure 10 : Examples of extension of the context

6. Current results

The current developed system to extract mathematical formulas runs under PC Pentium

II. A SCANJET scanner is used to scan the mathematical document and save it as a binary

image file at a resolution of 300dpi. In the experiments, the system is trained using 1182

mathematical symbols, 200 implicit operators and tested by 460 symbols, 100 implicit

operators, 300 formulas and a variety of mathematical documents.

To evaluate the rate of mathematical formula extraction, we have taken into account

well extracted formulas and formulas which are incorrectly extracted but with penalty. We

have even penalised formulas that were entirely missed by the automatic process since

they exist but the system fails to extract them. Similarly, we have penalised formulas

�

�

�

�

�

�
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mistakenly extracted since the system confuses some parts of the text with mathematical

formulas. The penalisation coefficient varies according to the gravity of the extraction

error. Indeed, formulas incorrectly extracted are few penalised because even if the system

does not a precise delimitation of the formula, it succeeds to localise in major cases the

parts, which disturb the OCR application. By the same way, the formulas that are

mistakenly extracted are few penalised since any OCR system is capable to recognise plain

text. On the other hand, the non-extracted formulas are more penalised since they exist but

the system fails to detect them.

Let NF be the number of formulas that actually exist in the document, NWEF the

number of well extracted formulas, NMEF the number of mistakenly extracted formulas,

NNEF the number of non extracted formulas, NIEF the number of incorrectly extracted

formulas and α, β, δ and ε their respective penalisation coefficients. The extraction rate ER

is computed according to the following formula :

where α, β are positives (total and partial success) and δ, ε are negatives (partial and total

failing), β<α,  |ε|<|δ| and α+|ε|=β+|δ|=0,5.

After choice of the penalisation coefficients values, the rate is given as follows:

The obtained results indicate that approximately 93% of formulas could be extracted

from images of the mathematical documents. The time of formula extraction varies

according to the number of the connected components in the document, its incline degree

NF
NIEFNNEFNMEFNWEF

ER
45.0

05.009.041.045.0 −−+=

NF
NIEFNNEFNMEFNWEFER

α
εδβα +++=
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as well as the type and the placement of formulas included in the document. The system

takes 0.02 second by a connected component that is 1 to 2 seconds by formula.

An example of mathematical document segmentation which contains 8 lines and 27

formulas (1 isolated formula and 26 embedded formulas) is shown in Figure 11. The

extraction results are as follows :

- 1300 connected components,

- 26 formulas extracted (1 isolated formula and 25 embedded formula),

- 21 formulas are well extracted,

- 5 formulas are mistakenly extracted,

- 0 formula not extracted,

- 0 formula incorrectly extracted,

- Extraction time = 30s,

- Extraction time/component=0s.02,

- Extraction time/formula=1s.14

- Extraction rate = 94.65%.
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Figure 11 : Example of mathematical document extraction

7. Analysis of extraction errors

The main errors of formula extraction are due to :

- confusion of  some alphanumeric characters such as  'l', 't' , '1' with brackets and

parenthesis (see � in Figure 12) ,

- confusion or the letter ‘f' with integral symbol (see � in Figure 12),

- confusion of some hyphens with the subtraction signs (see � in Figure 12),

- confusion of some diacritical and punctuation signs with subscripts and superscripts

(see �, � and � in Figure 12),

- Some subscripts and superscripts are not detected while some characters are

incorrectly labelled as subscripts or superscripts (see � in Figure 12). That is had to the

image incline or degradation or document typography.
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- Confusion of some text lines with isolated formulas because they are typeset so tightly

that descenders from one text line very nearly touch ascenders or superscripts from the

line below (see � in Figure 12).

Consequently, some parts of the text are considered as mathematical formulas while

some formulas are mistakenly extracted or even they are not extracted.

Figure 12 : the major extraction errors

To improve results of extraction notably for commas, hyphens frequently considered

respectively as subscripts and subtraction signs, we have used the next rules :

- R10 : If an alone subscript is detected after a small delimiter then, it will be considered

as a comma (see � in Figure 13).

- R11 : If an operator is found at the end of a line then, it will be considered as a hyphen

rather than a subtraction sign (see � in Figure 13).

For diacritical signs, generally labelled superscripts, it seems that it is necessary to

recourse to the linguistic information.

It is obvious that the system could not extract correctly an embedded formula if it can

not derive good labeling results, which are dependent upon typesetting.

�

�

�

�

�

�

�

�
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Figure 13 : Correction of some error extraction

8. Conclusion and future works

By providing the required value-added to scanned mathematical documents images,

we aimed to support higher level tasks such as the automatic extraction of mathematical

formulas. Work on mathematical formulas may ultimately be beneficial to a wider

audience involved with digital library projects, especially those concerned with scientific

document storage and access.

In this paper, we tried to report a system that extracts mathematical formulas

automatically from images of printed documents in order to mask them out in the OCR

process, while on the other hand being able to analyse the content of formulas. The main

goal is to have an OCR free system for the separation of text versus mathematical

expressions, hence it is mostly based on reasoning on bounding boxes of elements of the

formulas. Our method is designed to extract formula even before knowing the identities of

the symbols involved. In other words, it only uses information about the bounding boxes

of symbols. One of the merits of this approach is that the characters need not be recognised

by an OCR system. This method is certainly useful when the character and symbol

recognition module fails. We have introduced fuzzy logic, which has been useful to

identify mathematical operators and to delimit formulas by propagation of the context.

Though a satisfactory rate of extraction is obtained, more research is still required to be

able to attain human-like performance. Further work is required to extend this method to

low quality documents with broken or touching characters. In fact, for low-resolution,

�

�
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noisy, or poorly scanned images, this processing may be not so efficient. Old papers may

also do not scan well even at high resolution. We plan to deal with more complex

formulas and confirm efficiency and performance of our method using a large database of

mathematical formulas.
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