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Abstract 
 
Wireless sensor networks are a new type of 
networked systems, characterized by severely 
constrained computational and energy 
resources, and an ad hoc operational 
environment. This paper studies the security 
aspects of these networks. The paper first 
introduces sensor networks, and then presents 
its related security problems, threats, risks and 
characteristics. Additionally, the paper gives a 
brief introduction to proposed protocols for 
sensor network security applications such as 
SPINS [1], TinySec [7] and LEAP [8]. 
 
Introduction 
 
Sensor networks refer to a heterogeneous 
system combining tiny sensors and actuators 
with general-purpose computing elements. 
These networks will consist of hundreds or 
thousands of self-organizing, low-power, low-
cost wireless nodes deployed en masse to 
monitor and affect the environment. Potential 
applications include burglar alarms, inventory 
control, medical monitoring and emergency 
response [11], monitoring remote or 
inhospitable habitats [9, 10], target tracking in 
battlefields [12], disaster relief networks, early 
fire detection in forests, and environmental 
monitoring. 
 
Sensor networks are typically characterized by 
limited power supplies, low bandwidth, small 
memory sizes and limited energy. This leads 

to a very demanding environment to provide 
security. Public-key cryptography is too 
expensive to be usable, and even fast 
symmetric-key ciphers must be used 
sparingly. Communication bandwidth is 
extremely dear: each bit transmitted consumes 
about as much power as executing 800–1000 
instructions [13], and as a consequence, any 
message expansion caused by security 
mechanisms comes at significant cost.  
 
In [5], the authors point out that it seems 
unlikely that Moore’s law will help in the 
foreseeable future. Because one of the most 
important factors determining the value of a 
sensor network comes from how many sensors 
can be deployed, it seems likely there will be 
strong pressure to develop ever-cheaper sensor 
nodes. In other words, we expect that users 
will want to ride the Moore’s law curve down 
towards ever-cheaper systems at a fixed 
performance point, rather than holding price 
constant and improving performance over 
time. 
 
Thus, the resource-starved nature of sensor 
networks poses great challenges for security. 
However, in many applications the security 
aspects are as important as performance and 
low energy consumption. Besides the 
battlefield applications, security is critical in 
premise security and surveillance, building 
monitoring, burglar alarms, and in sensors in 
critical systems such as airports, hospitals. 
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Sensor Network Architecture 
 
Sensor networks often have one or more 
points of centralized control called base 
stations. A base station is typically a gateway 
to another network, a powerful data 
processing or storage center, or an access 
point for human interface. They can be used as 
a nexus to disseminate control information 
into the network or extract data from it. Base 
stations have also been referred to as sinks. 
The sensor nodes establish a routing forest, 
with a base station at the root of every tree. 
Base stations are many orders of magnitude 
more powerful than sensor nodes. Typically, 
base stations have enough battery power to 
surpass the lifetime of all sensor nodes, 
sufficient memory to store cryptographic keys, 
stronger processors, and means for 
communicating with outside networks. 
 
Communication Architecture 
 
Generally, the sensor nodes communicate 
using RF, so broadcast is the fundamental 
communication primitive. The baseline 
protocols account for this property: on one 
hand it affects the trust assumptions, and on 
the other it is exploited to minimize the energy 
usage. 
 
In the sensor applications developed so far, 
the communication patterns within the 
network fall into the following categories: 
 
• Node to base station communication, e.g. 

sensor readings, specific alerts. 
• Base station to node communication, e.g. 

specific requests, key updations 
• Base station to all nodes, e.g. routing 

beacons, queries or reprogramming of the 
entire network 

• Communication amongst a defined cluster 
of nodes (say, a node and all its 
neighbors). Clustering can reduce the total 
number of messages sent and thus save 

energy [14, 15, 16] by using in-network 
processing techniques such as data 
aggregation [24, 25] (an aggregation point 
can collect sensor readings from 
surrounding nodes and forward a single 
message representing an aggregate of the 
values) and passive participation (a node 
that overhears a neighboring sensor node 
transmitting the same reading as its own 
current reading can elect to not transmit 
the same).  

 
Security Issues and Goals 
 
1. Data Confidentiality 
 
Confidentiality means keeping information 
secret from unauthorized parties. A sensor 
network should not leak sensor readings to 
neighboring networks. In many applications 
(e.g. key distribution) nodes communicate 
highly sensitive data. The standard approach 
for keeping sensitive data secret is to encrypt 
the data with a secret key that only intended 
receivers possess, hence achieving 
confidentiality. Since public-key cryptography 
is too expensive to be used in the resource 
constrained sensor networks, most of the 
proposed protocols use symmetric key 
encryption methods. The creators of TinySec 
[7] argue that cipher block chaining (CBC) is 
the most appropriate encryption scheme for 
sensor networks. They found RC5 and 
Skipjack to be most appropriate for software 
implementation on embedded 
microcontrollers. The default block cipher in 
TinySec is Skipjack. SPINS uses RC6 as its 
cipher. 
 
2. Data Authenticity 
 
In a sensor network, an adversary can easily 
inject messages, so the receiver needs to make 
sure that the data used in any decision-making 
process originates from the correct source. 
Data authentication prevents unauthorized 
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parties from participating in the network and 
legitimate nodes should be able to detect 
messages from unauthorized nodes and reject 
them. 
 
In the two-party communication case, data 
authentication can be achieved through a 
purely symmetric mechanism: The sender and 
the receiver share a secret key to compute a 
message authentication code (MAC) of all 
communicated data. When a message with a 
correct MAC arrives, the receiver knows that 
it must have been sent by the sender.  
 
However, authentication for broadcast 
messages requires stronger trust assumptions 
on the network nodes. The creators of SPINS 
[1] contend that if one sender wants to send 
authentic data to mutually untrusted receivers, 
using a symmetric MAC is insecure since any 
one of the receivers know the  MAC key, and 
hence could impersonate the sender and forge 
messages to other receivers. SPINS constructs 
authenticated broadcast from symmetric 
primitives, but introduces asymmetry with 
delayed key disclosure and one-way function 
key chains. LEAP [8] uses a globally shared 
symmetric key for broadcast messages to the 
whole group. However, since the group key is 
shared among all the nodes in the network, an 
efficient rekeying mechanism is defined for 
updating this key after a compromised node is 
revoked. This means that LEAP has also 
defined an efficient mechanism to verify 
whether a node has been compromised. 
 
3. Data Integrity 
 
Data integrity ensures the receiver that the 
received data is not altered in transit by an 
adversary. Note that Data Authentication can 
provide Data Integrity also. 
 
 
 
 

4. Data Freshness 
 
Data freshness implies that the data is recent, 
and it ensures that an adversary has not 
replayed old messages. A common defense 
(used by SNEP [1]) is to include a 
monotonically increasing counter with every 
message and reject messages with old counter 
values. With this policy, every recipient must 
maintain a table of the last value from every 
sender it receives. However, for RAM-
constrained sensor nodes, this defense 
becomes problematic for even modestly sized 
networks. Assuming nodes devote only a 
small fraction of their RAM for this neighbor 
table, an adversary replaying broadcast 
messages from many different senders can fill 
up the table. At this point, the recipient has 
one of two options: ignore any messages from 
senders not in its neighbor table, or purge 
entries from the table. Neither is acceptable; 
the first creates a DoS attack and the second 
permits replay attacks. 
 
In [5], the authors contend that protection 
against the replay of data packets should be 
provided at the application layer and not by a 
secure routing protocol as only the application 
can fully and accurately detect the replay of 
data packets (as opposed to retransmissions, 
for example). In [7], the authors reason that by 
using information about the network's 
topology and communication patterns, the 
application and routing layers can properly 
and efficiently manage a limited amount of 
memory devoted to replay detection. 
 
In [1], the authors have identified two types of 
freshness: weak freshness, which provides 
partial message ordering, but carries no delay 
information, and strong freshness, which 
provides a total order on a request-response 
pair, and allows for delay estimation. Weak 
freshness is required by sensor measurements, 
while strong freshness is useful for time 
synchronization within the network. 
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5. Robustness and Survivability 
 
The sensor network should be robust against 
various security attacks, and if an attack 
succeeds, its impact should be minimized. The 
compromise of a single node should not break 
the security of the entire network. 
 
Security Threats, Types of Attacks on 
Sensor Networks and Countermeasures 
 
Wireless networks are vulnerable to security 
attacks due to the broadcast nature of the 
transmission medium. Furthermore, wireless 
sensor networks have an additional 
vulnerability because nodes are often placed 
in a hostile or dangerous environment where 
they are not physically protected. 
 
1. Passive Information Gathering 
 
An intruder with an appropriately powerful 
receiver and well designed antenna can easily 
pick off the data stream. Interception of the 
messages containing the physical locations of 
sensor nodes allows an attacker to locate the 
nodes and destroy them. Besides the locations 
of sensor nodes, an adversary can observe the 
application specific content of messages 
including message IDs, timestamps and other 
fields. To minimize the threats of passive 
information gathering, strong encryption 
techniques needs to be used. 
 
2. Subversion of a Node 
 
A particular sensor might be captured, and 
information stored on it (such as the key) 
might be obtained by an adversary. If a node 
has been compromised then how to exclude 
that node, and that node only, from the sensor 
network is at issue (LEAP [8] defines an 
efficient way to do so). 
 
 
 

3. False Node and malicious data 
 
An intruder might add a node to the system 
that feeds false data or prevents the passage of 
true data. Such messages also consume the 
scarce energy resources of the nodes. This 
type of attack is called “sleep deprivation 
torture” in [17]. Insertion of malicious code is 
one of the most dangerous attacks that can 
occur. Malicious code injected in the network 
could spread to all nodes, potentially 
destroying the whole network, or even worse, 
taking over the network on behalf of an 
adversary. A seized sensor network can either 
send false observations about the environment 
to a legitimate user or send observations about 
the monitored area to a malicious user. By 
spoofing, altering, or replaying routing 
information, adversaries may be able to create 
routing loops, attract or repel network traffic, 
extend or shorten source routes, generate false 
error messages, partition the network, increase 
end-to-end latency, etc. 
 
Strong authentication techniques can prevent 
an adversary from impersonating as a valid 
node in the sensor network. 
 
4. The Sybil attack 
 
In a Sybil attack [18], a single node presents 
multiple identities to other nodes in the 
network. They pose a significant threat to 
geographic routing protocols, where location 
aware routing requires nodes to exchange 
coordinate information with their neighbors to 
efficiently route geographically addressed 
packets. 
 
Authentication and encryption techniques can 
prevent an outsider to launch a Sybil attack on 
the sensor network. However, an insider 
cannot be prevented from participating in the 
network, but (s)he should only be able to do 
so using the identities of the nodes (s)he has 
compromised. Using globally shared keys 
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allows an insider to masquerade as any 
(possibly even nonexistent) node. Public key 
cryptography can prevent such an insider 
attack, but it is too expensive to be used in the 
resource constrained sensor networks. One 
solution is to have every node share a unique 
symmetric key with a trusted base station. 
Two nodes can then use a Needham-
Schroeder like protocol to verify each other’s 
identity and establish a shared key. A pair of 
neighboring nodes can use the resulting key to 
implement an authenticated, encrypted link 
between them. An example of a protocol 
which uses such a scheme is LEAP [8], which 
supports the establishment of four types of 
keys. 
 
5. Sinkhole attacks 
 
In a sinkhole attack, the adversary’s goal is to 
lure nearly all the traffic from a particular area 
through a compromised node, creating a 
metaphorical sinkhole with the adversary at 
the center. Sinkhole attacks typically work by 
making a compromised node look especially 
attractive to surrounding nodes with respect to 
the routing algorithm. For instance, an 
adversary could spoof or replay an 
advertisement for an extremely high quality 
route to a base station. Due to either the real or 
imagined high quality route through the 
compromised node, it is likely each 
neighboring node of the adversary will 
forward packets destined for a base station 
through the adversary, and also propagate the 
attractiveness of the route to its neighbors. 
Effectively, the adversary creates a large 
“sphere of influence” [5], attracting all traffic 
destined for a base station from nodes several 
hops away from the compromised node. 
 
6. Wormholes 
 
In the wormhole attack [3], an adversary 
tunnels messages received in one part of the 
network over a low latency link and replays 

them in a different part. The simplest instance 
of this attack is a single node situated between 
two other nodes forwarding messages between 
the two of them. However, wormhole attacks 
more commonly involve two distant malicious 
nodes colluding to understate their distance 
from each other by relaying packets along an 
out-of-bound channel available only to the 
attacker. 
 
An adversary situated close to a base station 
may be able to completely disrupt routing by 
creating a well-placed wormhole. An 
adversary could convince nodes who would 
normally be multiple hops from a base station 
that they are only one or two hops away via 
the wormhole. This can create a sinkhole: 
since the adversary on the other side of the 
wormhole can artificially provide a high-
quality route to the base station, potentially all 
traffic in the surrounding area will be drawn 
through her if alternate routes are significantly 
less attractive.  
 
The following diagram shows an example of a 
wormhole being used to create a sinkhole: 

 
Adversaries A1 and A2 combine to form a 
sinkhole-wormhole attack. The nodes near A2 
believe that the Base Station B is closer via 
the sinkhole A1. Hence, the wormhole 
convinces two distant nodes that they are 
neighbors by relaying packets between the 
two of them. 
 

 B 

A1 

A2 
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A technique for detecting wormhole attacks is 
presented in [20], but it requires extremely 
tight time synchronization and is thus 
infeasible for most sensor networks.  
 
SPINS: Security Protocols for Sensor 
Networks [1] 
 
SPINS a suite of security building blocks 
proposed by Perig et all. It is optimized for 
resource constrained environments and 
wireless communication. SPINS has two 
secure building blocks: SNEP and µTESLA. 
 
SNEP provides data confidentiality, two-party 
data authentication, and data freshness. 
µTESLA provides authenticated broadcast for 
severely resource-constrained environments. 
All cryptographic primitives (i.e. encryption, 
message authentication code (MAC), hash, 
random number generator) are constructed out 
of a single block cipher for code reuse. This, 
along with the symmetric cryptographic 
primitives used reduces the overhead on the 
resource constrained sensor network. 
 
In a broadcast medium such as a sensor 
network, data authentication through a 
symmetric mechanism cannot be applied as all   
the receivers know the key. µTESLA 
constructs authenticated broadcast from 
symmetric primitives, but introduces 
asymmetry with delayed key disclosure and 
one-way function key chains. 
 
SNEP: Confidentiality, Authentication, 
Integrity, and Freshness 
 
SNEP uses encryption to achieve 
confidentiality and message authentication 
code (MAC) to achieve two-party 
authentication and data integrity. Apart from 
confidentiality, another important security 
property is semantic security, which ensures 
that an eavesdropper has no information about 
the plaintext, even if it sees multiple 

encryptions of the same plaintext [21]. The 
basic technique to achieve this is 
randomization: Before encrypting the message 
with a chaining encryption function (i.e. DES-
CBC), the sender precedes the message with a 
random bit string (also called the Initialization 
Vector). This prevents the attacker from 
inferring the plaintext of encrypted messages 
if it knows plaintext-ciphertext pairs encrypted 
with the same key. To avoid adding the 
additional transmission overhead of these 
extra bits, SNEP uses a shared counter 
between the sender and the receiver for the 
block cipher in counter mode (CTR). The 
communicating parties share the counter and 
increment it after each block. 
 
SNEP offers the following properties: 
 
Semantic security: Since the counter value is 
incremented after each message, the same 
message is encrypted differently each time. 
The counter value is long enough that it never 
repeats within the lifetime of the node. 
 
Data authentication: If the MAC verifies 
correctly, a receiver can be assured that the 
message originated from the claimed sender. 
 
Replay protection: The counter value in the 
MAC prevents replaying old messages. Note 
that if the counter were not present in the 
MAC, an adversary could easily replay 
messages. 
 
Data freshness: If the message verified 
correctly, a receiver knows that the message 
must have been sent after the previous 
message it received correctly (that had a lower 
counter value). This enforces a message 
ordering and yields weak freshness. 
 
Low communication overhead: The counter 
state is kept at each end point and does not 
need to be sent in each message. 
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µTESLA: Authenticated Broadcast 
 
Most of the proposals for authenticated 
broadcast are impractical for sensor networks, 
as they rely on asymmetric digital signatures 
for the authentication. The TESLA protocol 
provides efficient authenticated broadcast [22, 
23] but it is not designed for limited 
computing environments. µTESLA solves the 
following inadequacies of TESLA in sensor 
networks: 
 
• TESLA authenticates the initial packet 

with a digital signature, which is too 
expensive for sensor nodes. µTESLA uses 
only symmetric mechanisms. 

• Disclosing a key in each packet requires 
too much energy for sending and 
receiving. µTESLA discloses the key once 
per epoch. 

• It is expensive to store a one-way key 
chain in a sensor node. µTESLA restricts 
the number of authenticated senders. 

 
µTESLA uses symmetric authentication but 
introduces asymmetry through a delayed 
disclosure of the symmetric keys, which 
results in an efficient broadcast authentication 
scheme. For the base station to broadcast 
authenticated information to the nodes, 
µTESLA requires that the base station and 
nodes are loosely time synchronized, and each 
node knows an upper bound on the maximum 
synchronization error. To send an 
authenticated packet, the base station simply 
computes a MAC on the packet with a key 
that is secret at that point in time. When a 
node gets a packet, it can verify that the 
corresponding MAC key was not yet disclosed 
by the base station (based on its loosely 
synchronized clock, its maximum 
synchronization error, and the time schedule at 
which keys are disclosed). Since a receiving 
node is assured that the MAC key is known 
only by the base station, the receiving node is 
assured that no adversary could have altered 

the packet in transit. The node stores the 
packet in a buffer. At the time of key 
disclosure, the base station broadcasts the 
verification key to all receivers. When a node 
receives the disclosed key, it can easily verify 
the correctness of the key (which we explain 
below). If the key is correct, the node can now 
use it to authenticate the packet stored in its 
buffer. 
 
Each MAC key is a key of a key chain, 
generated by a public one-way function F. To 
generate the one-way key chain, the sender 
chooses the last key Kn of the chain randomly, 
and repeatedly applies F to compute all other 
keys: Ki = F(Ki+1). Each node can easily 
perform time synchronization and retrieve an 
authenticated key of the key chain for the 
commitment in a secure and authenticated 
manner, using the SNEP building block. 
 

 
For example, let the key be disclosed in 2 time 
intervals. Each key of the key chain 
corresponds to a time interval and all packets 
sent within one time interval are authenticated 
with the same key. The receiver node is 
loosely time synchronized and knows K0 (a 
commitment to the key chain) in an 
authenticated way. Packets P1 and P2 sent in 
interval 1 contain a MAC with key K1. Packet 
P3 has a MAC using key K2. So far, the 
receiver cannot authenticate any packets yet. 
Let us assume that packets P4, P5, and P6 are 
all lost, as well as the packet that discloses key 
K1, so the receiver can still not authenticate 
P1, P2, or P3. In interval 4 the base station 
broadcasts key K2, which the node 
authenticates by verifying K0 = F(F(K2)), and 
hence knows also K1 = F(K2), so it can 

P1 P2 P3 P4 P5 P6 P7 

K1 K2 K3 K4 K0   Time 
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authenticate packets P1, P2 with K1, and P3 
with K2. 
 
Instead of adding a disclosed key to each data 
packet, the key disclosure is independent from 
the packets broadcast, and is tied to time 
intervals. Within the context of µTESLA, the 
sender broadcasts the current key periodically 
in a special packet. 
 
For further details about the implementation 
and evaluation results of SNEP, refer to [1]. 
 
 
TinySec: A Link Layer Security 
Architecture for Wireless Sensor 
Networks [7] 
 
TinySec is a lightweight, generic security 
package that can be integrated into sensor 
network applications. It is incorporated into 
the official TinyOS release. In [7], the authors 
reason why Link Layer security is ideal for 
sensor networks. Sensor networks use in-
network processing such as aggregation and 
duplicate elimination [24, 25] to reduce traffic 
and save energy. Since in-network processing 
requires the intermediate nodes to access, 
modify, and suppress the contents of 
messages, end-to-end security mechanisms 
between each sensor node and the base station 
cannot be used to guarantee the authenticity, 
integrity, and confidentiality of messages. 
End-to-end security mechanisms are also 
vulnerable to certain denial of service attacks. 
If message integrity is only checked at the 
final destination, the network may route 
packets injected by an adversary many hops 
before they are detected. This kind of attack 
will waste energy and bandwidth. A link-layer 
security architecture can detect unauthorized 
packets when they are first injected into the 
network. TinySec provides the basic security 
properties of message authentication and 
integrity (using MAC), message 
confidentiality (through encryption), semantic 

security (through an Initialization Vector) and 
replay protection. 
 
TinySec supports two different security 
options: authenticated encryption (TinySec-
AE) and authentication only (TinySec-Auth). 
With authenticated encryption, TinySec 
encrypts the data payload and authenticates 
the packet with a MAC. The MAC is 
computed over the encrypted data and the 
packet header. In authentication only mode, 
TinySec authenticates the entire packet with a 
MAC, but the data payload is not encrypted. 
 
Encryption 
 
TinySec uses an 8 byte IV and cipher block 
chaining (CBC) [26]. 
 
The structure of the IV is dst||AM||l||src||ctr, 
where dst is the destination address of the 
receiver, AM is the active message (AM) 
handler type, l is the length of the data 
payload, src is the source address of the 
sender, and ctr is a 16 bit counter. The counter 
starts at 0 and the sender increases it by 1 after 
each message sent. 
 
A stream cipher uses a key K and IV as a seed 
and stretches it into a large pseudorandom 
keystream GK(IV). The keystream is then 
xored against the message: C = (IV, GK(IV) 
xor P). The fastest stream ciphers are faster 
than the fastest block ciphers, which might 
make them look tempting in a resource-
constrained environment. However, stream 
ciphers have a failure mode: if the same IV is 
ever used to encrypt two different packets, 
then it is often possible to recover both 
plaintexts. Guaranteeing that IVs are never 
reused requires IVs to be fairly long, say, at 
least 8 bytes. Since an 8-byte overhead in a 
30-byte packet is unacceptable in the resource 
constrained sensor network, TinySec uses 
block cipher. 
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Using a block cipher for encryption has an 
additional advantage. Since the most efficient 
message authentication code (MAC) 
algorithms use a block cipher, the nodes will 
need to implement a block cipher in any event. 
Using this block cipher for encryption as well 
conserves code space. 
 
The advantage of using CBC is that it 
degrades gracefully in the presence of 
repeated IVs. If we encrypt two plaintexts P1 
and P2 with the same IV under CBC mode, 
then the ciphertexts will leak the length (in 
blocks) of the longest shared prefix of P1 and 
P2, and nothing more. For instance, if the first 
block of P1 is different from the first block of 
P2, as will typically be the case, then the 
cryptanalyst learns nothing apart from this 
fact. CBC mode is provably secure when IVs 
do not repeat. However, CBC mode was 
designed to be used with a random IV, and has 
a separate leakage issue when used with a 
counter as the IV (note that the TinySec IV 
has a 16 bit counter). To fix this issue, 
TinySec pre-encrypts the IV.  
 
The creators of TinySec give reasons behind 
their choice of cipher in [7]. Initially they 
found AES and Triple-DES to be slow for 
sensor networks. They found RC5 and 
Skipjack to be most appropriate for software 
implementation on embedded 
microcontrollers. Although RC5 was slightly 
faster, it is patented. Also, for good 
performance, RC5 requires the key schedule 
to be precomputed, which uses 104 extra bytes 
of RAM per key. Because of these drawbacks, 
the default block cipher in TinySec is 
Skipjack. 
 
Message integrity 
 
TinySec always authenticates messages, but 
encryption is optional. TinySec uses a cipher 
block chaining construction, CBC-MAC for 
computing and verifying MACs. CBC-MAC 

is efficient and fast, and the fact that it relies 
on a block cipher as well minimizes the 
number of cryptographic primitives we must 
implement in the limited memory available. 
However the standard CBC-MAC 
construction is not secure for variably sized 
messages. Adversaries can forge a MAC for 
certain messages. Bellare, Kilian, and 
Rogaway suggest three alternatives for 
generating MACs for variable sized messages 
[28]. The variant used in TinySec xors the 
encryption of the message length with the first 
plaintext block. 
 
Keying Mechanism 
 
The simplest keying mechanism is to use a 
single network-wide TinySec key among the 
authorized nodes. However, this cannot 
protect against node capture attacks. If an 
adversary compromises a single node or learns 
the secret key, (s)he can eavesdrop on traffic 
and inject messages anywhere in the network. 
Hence, TinySec uses a separate key for each 
pair of nodes who might wish to 
communicate. This provides better resilience 
against node capture attacks: a compromised 
node can only decrypt traffic addressed to it 
and can only inject traffic to its immediate 
neighbors. But Per-link keying limits passive 
participation and local broadcast. A less 
restrictive approach is for groups of 
neighboring nodes to share a TinySec key 
rather than each pair. Group keying provides 
an intermediate level of resilience to node 
capture attacks: a compromised node can 
decrypt all messages from nodes in its group, 
but cannot violate the confidentiality of other 
groups' messages and cannot inject messages 
to other groups. 
 
For further information about the 
implementation and performance results of 
TinySec, refer to [7]. 
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LEAP (Localized Encryption and 
Authentication Protocol) [8] 
 
LEAP is a key management protocol for 
sensor networks that is designed to support in-
network processing, while at the same time 
restricting the security impact of a node 
compromise to the immediate network 
neighborhood of the compromised node. The 
design of the protocol is motivated by the 
observation that different types of messages 
exchanged between sensor nodes have 
different security requirements, and that a 
single keying mechanism is not suitable for 
meeting these different security requirements. 
Hence, LEAP supports the establishment of 
four types of keys for each sensor node – an 
individual key shared with the base station, a 
pairwise key shared with another sensor node, 
a cluster key shared with multiple neighboring 
nodes, and a group key that is shared by all the 
nodes in the network. The protocol used for 
establishing and updating these keys is 
communication and energy efficient, and 
minimizes the involvement of the base station. 
LEAP also includes an efficient protocol for 
inter-node traffic authentication based on the 
use of one-way key chains. A salient feature 
of the authentication protocol is that it 
supports source authentication without 
precluding in-network processing and passive 
participation. 
 
Individual Key 
 
Every node has a unique key that it shares 
pairwise with the base station. This key is 
used for secure communication between a 
node and the base station. For example, a node 
may send an alert to the base station if it 
observes any abnormal or unexpected 
behavior by a neighboring node. Similarly, the 
base station can use this key to encrypt any 
sensitive information, e.g. keying material or 
special instruction that it sends to an 
individual node. 

 
Group Key 
 
This is a globally shared key that is used by 
the base station for encrypting messages that 
are broadcast to the whole group. For 
example, the base station issues missions, 
sends queries and interests. Note that from the 
confidentiality point of view there is no 
advantage to separately encrypting a broadcast 
message using the individual key of each 
node. However, since the group key is shared 
among all the nodes in the network, an 
efficient rekeying mechanism is necessary for 
updating this key after a compromised node is 
revoked. 
 
Cluster Key 
 
A cluster key is a key shared by a node and all 
its neighbors, and it is mainly used for 
securing locally broadcast messages, e.g., 
routing control information, or securing sensor 
messages which can benefit from passive 
participation. For passive participation to be 
feasible, neighboring nodes should be able to 
decrypt and authenticate some classes of 
messages, e.g., sensor readings, transmitted by 
their neighbors. This means that such 
messages should be encrypted or authenticated 
by a locally shared key. Therefore, in LEAP 
each node possesses a unique cluster key that 
it uses for securing its messages, while its 
immediate neighbors use the same key for 
decryption or authentication of its messages. 
 
Pairwise Shared Key 
 
Every node shares a pairwise key with each of 
its immediate neighbors. In LEAP, pairwise 
keys are used for securing communications 
that require privacy or source authentication. 
For example, a node can use its pairwise keys 
to secure the distribution of its cluster key to 
its neighbors, or to secure the transmissions of 
its sensor readings to an aggregation node. 
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Note that the use of pairwise keys precludes 
passive participation. 
 
In [8], the creators of LEAP have described 
the schemes provided by LEAP for sensor 
nodes to establish and update individual keys, 
pairwise shared keys, cluster keys, and group 
keys for each node. Revocation of a 
compromised node and the subsequent 
rekeying mechanism is also described. 
 
 
Conclusion 
 
In this paper, we introduce sensor networks, 
its related security problems, threats, risks and 
characteristics, and a brief introduction to 
SPINS, TinySec and LEAP. For 
implementation details and performance 
evaluation of these protocols, please refer to 
the [1], [7] and [8]. Adding security in a 
resource constrained wireless sensor network 
with minimum overhead provides significant 
challenges, and is an ongoing area of research. 
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