
 1

SECURITY IN WIRELESS SENSOR NETWORKS

Mayank Saraogi
Department of Computer Science

University of Tennessee, Knoxville
saraogi AT cs.utk.edu

Abstract

Wireless sensor networks are a new type of
networked systems, characterized by severely
constrained computational and energy
resources, and an ad hoc operational
environment. This paper studies the security
aspects of these networks. The paper first
introduces sensor networks, and then presents
its related security problems, threats, risks and
characteristics. Additionally, the paper gives a
brief introduction to proposed protocols for
sensor network security applications such as
SPINS [1], TinySec [7] and LEAP [8].

Introduction

Sensor networks refer to a heterogeneous
system combining tiny sensors and actuators
with general-purpose computing elements.
These networks will consist of hundreds or
thousands of self-organizing, low-power, low-
cost wireless nodes deployed en masse to
monitor and affect the environment. Potential
applications include burglar alarms, inventory
control, medical monitoring and emergency
response [11], monitoring remote or
inhospitable habitats [9, 10], target tracking in
battlefields [12], disaster relief networks, early
fire detection in forests, and environmental
monitoring.

Sensor networks are typically characterized by
limited power supplies, low bandwidth, small
memory sizes and limited energy. This leads

to a very demanding environment to provide
security. Public-key cryptography is too
expensive to be usable, and even fast
symmetric-key ciphers must be used
sparingly. Communication bandwidth is
extremely dear: each bit transmitted consumes
about as much power as executing 800–1000
instructions [13], and as a consequence, any
message expansion caused by security
mechanisms comes at significant cost.

In [5], the authors point out that it seems
unlikely that Moore’s law will help in the
foreseeable future. Because one of the most
important factors determining the value of a
sensor network comes from how many sensors
can be deployed, it seems likely there will be
strong pressure to develop ever-cheaper sensor
nodes. In other words, we expect that users
will want to ride the Moore’s law curve down
towards ever-cheaper systems at a fixed
performance point, rather than holding price
constant and improving performance over
time.

Thus, the resource-starved nature of sensor
networks poses great challenges for security.
However, in many applications the security
aspects are as important as performance and
low energy consumption. Besides the
battlefield applications, security is critical in
premise security and surveillance, building
monitoring, burglar alarms, and in sensors in
critical systems such as airports, hospitals.

 2

Sensor Network Architecture

Sensor networks often have one or more
points of centralized control called base
stations. A base station is typically a gateway
to another network, a powerful data
processing or storage center, or an access
point for human interface. They can be used as
a nexus to disseminate control information
into the network or extract data from it. Base
stations have also been referred to as sinks.
The sensor nodes establish a routing forest,
with a base station at the root of every tree.
Base stations are many orders of magnitude
more powerful than sensor nodes. Typically,
base stations have enough battery power to
surpass the lifetime of all sensor nodes,
sufficient memory to store cryptographic keys,
stronger processors, and means for
communicating with outside networks.

Communication Architecture

Generally, the sensor nodes communicate
using RF, so broadcast is the fundamental
communication primitive. The baseline
protocols account for this property: on one
hand it affects the trust assumptions, and on
the other it is exploited to minimize the energy
usage.

In the sensor applications developed so far,
the communication patterns within the
network fall into the following categories:

• Node to base station communication, e.g.

sensor readings, specific alerts.
• Base station to node communication, e.g.

specific requests, key updations
• Base station to all nodes, e.g. routing

beacons, queries or reprogramming of the
entire network

• Communication amongst a defined cluster
of nodes (say, a node and all its
neighbors). Clustering can reduce the total
number of messages sent and thus save

energy [14, 15, 16] by using in-network
processing techniques such as data
aggregation [24, 25] (an aggregation point
can collect sensor readings from
surrounding nodes and forward a single
message representing an aggregate of the
values) and passive participation (a node
that overhears a neighboring sensor node
transmitting the same reading as its own
current reading can elect to not transmit
the same).

Security Issues and Goals

1. Data Confidentiality

Confidentiality means keeping information
secret from unauthorized parties. A sensor
network should not leak sensor readings to
neighboring networks. In many applications
(e.g. key distribution) nodes communicate
highly sensitive data. The standard approach
for keeping sensitive data secret is to encrypt
the data with a secret key that only intended
receivers possess, hence achieving
confidentiality. Since public-key cryptography
is too expensive to be used in the resource
constrained sensor networks, most of the
proposed protocols use symmetric key
encryption methods. The creators of TinySec
[7] argue that cipher block chaining (CBC) is
the most appropriate encryption scheme for
sensor networks. They found RC5 and
Skipjack to be most appropriate for software
implementation on embedded
microcontrollers. The default block cipher in
TinySec is Skipjack. SPINS uses RC6 as its
cipher.

2. Data Authenticity

In a sensor network, an adversary can easily
inject messages, so the receiver needs to make
sure that the data used in any decision-making
process originates from the correct source.
Data authentication prevents unauthorized

 3

parties from participating in the network and
legitimate nodes should be able to detect
messages from unauthorized nodes and reject
them.

In the two-party communication case, data
authentication can be achieved through a
purely symmetric mechanism: The sender and
the receiver share a secret key to compute a
message authentication code (MAC) of all
communicated data. When a message with a
correct MAC arrives, the receiver knows that
it must have been sent by the sender.

However, authentication for broadcast
messages requires stronger trust assumptions
on the network nodes. The creators of SPINS
[1] contend that if one sender wants to send
authentic data to mutually untrusted receivers,
using a symmetric MAC is insecure since any
one of the receivers know the MAC key, and
hence could impersonate the sender and forge
messages to other receivers. SPINS constructs
authenticated broadcast from symmetric
primitives, but introduces asymmetry with
delayed key disclosure and one-way function
key chains. LEAP [8] uses a globally shared
symmetric key for broadcast messages to the
whole group. However, since the group key is
shared among all the nodes in the network, an
efficient rekeying mechanism is defined for
updating this key after a compromised node is
revoked. This means that LEAP has also
defined an efficient mechanism to verify
whether a node has been compromised.

3. Data Integrity

Data integrity ensures the receiver that the
received data is not altered in transit by an
adversary. Note that Data Authentication can
provide Data Integrity also.

4. Data Freshness

Data freshness implies that the data is recent,
and it ensures that an adversary has not
replayed old messages. A common defense
(used by SNEP [1]) is to include a
monotonically increasing counter with every
message and reject messages with old counter
values. With this policy, every recipient must
maintain a table of the last value from every
sender it receives. However, for RAM-
constrained sensor nodes, this defense
becomes problematic for even modestly sized
networks. Assuming nodes devote only a
small fraction of their RAM for this neighbor
table, an adversary replaying broadcast
messages from many different senders can fill
up the table. At this point, the recipient has
one of two options: ignore any messages from
senders not in its neighbor table, or purge
entries from the table. Neither is acceptable;
the first creates a DoS attack and the second
permits replay attacks.

In [5], the authors contend that protection
against the replay of data packets should be
provided at the application layer and not by a
secure routing protocol as only the application
can fully and accurately detect the replay of
data packets (as opposed to retransmissions,
for example). In [7], the authors reason that by
using information about the network's
topology and communication patterns, the
application and routing layers can properly
and efficiently manage a limited amount of
memory devoted to replay detection.

In [1], the authors have identified two types of
freshness: weak freshness, which provides
partial message ordering, but carries no delay
information, and strong freshness, which
provides a total order on a request-response
pair, and allows for delay estimation. Weak
freshness is required by sensor measurements,
while strong freshness is useful for time
synchronization within the network.

 4

5. Robustness and Survivability

The sensor network should be robust against
various security attacks, and if an attack
succeeds, its impact should be minimized. The
compromise of a single node should not break
the security of the entire network.

Security Threats, Types of Attacks on
Sensor Networks and Countermeasures

Wireless networks are vulnerable to security
attacks due to the broadcast nature of the
transmission medium. Furthermore, wireless
sensor networks have an additional
vulnerability because nodes are often placed
in a hostile or dangerous environment where
they are not physically protected.

1. Passive Information Gathering

An intruder with an appropriately powerful
receiver and well designed antenna can easily
pick off the data stream. Interception of the
messages containing the physical locations of
sensor nodes allows an attacker to locate the
nodes and destroy them. Besides the locations
of sensor nodes, an adversary can observe the
application specific content of messages
including message IDs, timestamps and other
fields. To minimize the threats of passive
information gathering, strong encryption
techniques needs to be used.

2. Subversion of a Node

A particular sensor might be captured, and
information stored on it (such as the key)
might be obtained by an adversary. If a node
has been compromised then how to exclude
that node, and that node only, from the sensor
network is at issue (LEAP [8] defines an
efficient way to do so).

3. False Node and malicious data

An intruder might add a node to the system
that feeds false data or prevents the passage of
true data. Such messages also consume the
scarce energy resources of the nodes. This
type of attack is called “sleep deprivation
torture” in [17]. Insertion of malicious code is
one of the most dangerous attacks that can
occur. Malicious code injected in the network
could spread to all nodes, potentially
destroying the whole network, or even worse,
taking over the network on behalf of an
adversary. A seized sensor network can either
send false observations about the environment
to a legitimate user or send observations about
the monitored area to a malicious user. By
spoofing, altering, or replaying routing
information, adversaries may be able to create
routing loops, attract or repel network traffic,
extend or shorten source routes, generate false
error messages, partition the network, increase
end-to-end latency, etc.

Strong authentication techniques can prevent
an adversary from impersonating as a valid
node in the sensor network.

4. The Sybil attack

In a Sybil attack [18], a single node presents
multiple identities to other nodes in the
network. They pose a significant threat to
geographic routing protocols, where location
aware routing requires nodes to exchange
coordinate information with their neighbors to
efficiently route geographically addressed
packets.

Authentication and encryption techniques can
prevent an outsider to launch a Sybil attack on
the sensor network. However, an insider
cannot be prevented from participating in the
network, but (s)he should only be able to do
so using the identities of the nodes (s)he has
compromised. Using globally shared keys

 5

allows an insider to masquerade as any
(possibly even nonexistent) node. Public key
cryptography can prevent such an insider
attack, but it is too expensive to be used in the
resource constrained sensor networks. One
solution is to have every node share a unique
symmetric key with a trusted base station.
Two nodes can then use a Needham-
Schroeder like protocol to verify each other’s
identity and establish a shared key. A pair of
neighboring nodes can use the resulting key to
implement an authenticated, encrypted link
between them. An example of a protocol
which uses such a scheme is LEAP [8], which
supports the establishment of four types of
keys.

5. Sinkhole attacks

In a sinkhole attack, the adversary’s goal is to
lure nearly all the traffic from a particular area
through a compromised node, creating a
metaphorical sinkhole with the adversary at
the center. Sinkhole attacks typically work by
making a compromised node look especially
attractive to surrounding nodes with respect to
the routing algorithm. For instance, an
adversary could spoof or replay an
advertisement for an extremely high quality
route to a base station. Due to either the real or
imagined high quality route through the
compromised node, it is likely each
neighboring node of the adversary will
forward packets destined for a base station
through the adversary, and also propagate the
attractiveness of the route to its neighbors.
Effectively, the adversary creates a large
“sphere of influence” [5], attracting all traffic
destined for a base station from nodes several
hops away from the compromised node.

6. Wormholes

In the wormhole attack [3], an adversary
tunnels messages received in one part of the
network over a low latency link and replays

them in a different part. The simplest instance
of this attack is a single node situated between
two other nodes forwarding messages between
the two of them. However, wormhole attacks
more commonly involve two distant malicious
nodes colluding to understate their distance
from each other by relaying packets along an
out-of-bound channel available only to the
attacker.

An adversary situated close to a base station
may be able to completely disrupt routing by
creating a well-placed wormhole. An
adversary could convince nodes who would
normally be multiple hops from a base station
that they are only one or two hops away via
the wormhole. This can create a sinkhole:
since the adversary on the other side of the
wormhole can artificially provide a high-
quality route to the base station, potentially all
traffic in the surrounding area will be drawn
through her if alternate routes are significantly
less attractive.

The following diagram shows an example of a
wormhole being used to create a sinkhole:

Adversaries A1 and A2 combine to form a
sinkhole-wormhole attack. The nodes near A2
believe that the Base Station B is closer via
the sinkhole A1. Hence, the wormhole
convinces two distant nodes that they are
neighbors by relaying packets between the
two of them.

 B

A1

A2

 6

A technique for detecting wormhole attacks is
presented in [20], but it requires extremely
tight time synchronization and is thus
infeasible for most sensor networks.

SPINS: Security Protocols for Sensor
Networks [1]

SPINS a suite of security building blocks
proposed by Perig et all. It is optimized for
resource constrained environments and
wireless communication. SPINS has two
secure building blocks: SNEP and µTESLA.

SNEP provides data confidentiality, two-party
data authentication, and data freshness.
µTESLA provides authenticated broadcast for
severely resource-constrained environments.
All cryptographic primitives (i.e. encryption,
message authentication code (MAC), hash,
random number generator) are constructed out
of a single block cipher for code reuse. This,
along with the symmetric cryptographic
primitives used reduces the overhead on the
resource constrained sensor network.

In a broadcast medium such as a sensor
network, data authentication through a
symmetric mechanism cannot be applied as all
the receivers know the key. µTESLA
constructs authenticated broadcast from
symmetric primitives, but introduces
asymmetry with delayed key disclosure and
one-way function key chains.

SNEP: Confidentiality, Authentication,
Integrity, and Freshness

SNEP uses encryption to achieve
confidentiality and message authentication
code (MAC) to achieve two-party
authentication and data integrity. Apart from
confidentiality, another important security
property is semantic security, which ensures
that an eavesdropper has no information about
the plaintext, even if it sees multiple

encryptions of the same plaintext [21]. The
basic technique to achieve this is
randomization: Before encrypting the message
with a chaining encryption function (i.e. DES-
CBC), the sender precedes the message with a
random bit string (also called the Initialization
Vector). This prevents the attacker from
inferring the plaintext of encrypted messages
if it knows plaintext-ciphertext pairs encrypted
with the same key. To avoid adding the
additional transmission overhead of these
extra bits, SNEP uses a shared counter
between the sender and the receiver for the
block cipher in counter mode (CTR). The
communicating parties share the counter and
increment it after each block.

SNEP offers the following properties:

Semantic security: Since the counter value is
incremented after each message, the same
message is encrypted differently each time.
The counter value is long enough that it never
repeats within the lifetime of the node.

Data authentication: If the MAC verifies
correctly, a receiver can be assured that the
message originated from the claimed sender.

Replay protection: The counter value in the
MAC prevents replaying old messages. Note
that if the counter were not present in the
MAC, an adversary could easily replay
messages.

Data freshness: If the message verified
correctly, a receiver knows that the message
must have been sent after the previous
message it received correctly (that had a lower
counter value). This enforces a message
ordering and yields weak freshness.

Low communication overhead: The counter
state is kept at each end point and does not
need to be sent in each message.

 7

µTESLA: Authenticated Broadcast

Most of the proposals for authenticated
broadcast are impractical for sensor networks,
as they rely on asymmetric digital signatures
for the authentication. The TESLA protocol
provides efficient authenticated broadcast [22,
23] but it is not designed for limited
computing environments. µTESLA solves the
following inadequacies of TESLA in sensor
networks:

• TESLA authenticates the initial packet

with a digital signature, which is too
expensive for sensor nodes. µTESLA uses
only symmetric mechanisms.

• Disclosing a key in each packet requires
too much energy for sending and
receiving. µTESLA discloses the key once
per epoch.

• It is expensive to store a one-way key
chain in a sensor node. µTESLA restricts
the number of authenticated senders.

µTESLA uses symmetric authentication but
introduces asymmetry through a delayed
disclosure of the symmetric keys, which
results in an efficient broadcast authentication
scheme. For the base station to broadcast
authenticated information to the nodes,
µTESLA requires that the base station and
nodes are loosely time synchronized, and each
node knows an upper bound on the maximum
synchronization error. To send an
authenticated packet, the base station simply
computes a MAC on the packet with a key
that is secret at that point in time. When a
node gets a packet, it can verify that the
corresponding MAC key was not yet disclosed
by the base station (based on its loosely
synchronized clock, its maximum
synchronization error, and the time schedule at
which keys are disclosed). Since a receiving
node is assured that the MAC key is known
only by the base station, the receiving node is
assured that no adversary could have altered

the packet in transit. The node stores the
packet in a buffer. At the time of key
disclosure, the base station broadcasts the
verification key to all receivers. When a node
receives the disclosed key, it can easily verify
the correctness of the key (which we explain
below). If the key is correct, the node can now
use it to authenticate the packet stored in its
buffer.

Each MAC key is a key of a key chain,
generated by a public one-way function F. To
generate the one-way key chain, the sender
chooses the last key Kn of the chain randomly,
and repeatedly applies F to compute all other
keys: Ki = F(Ki+1). Each node can easily
perform time synchronization and retrieve an
authenticated key of the key chain for the
commitment in a secure and authenticated
manner, using the SNEP building block.

For example, let the key be disclosed in 2 time
intervals. Each key of the key chain
corresponds to a time interval and all packets
sent within one time interval are authenticated
with the same key. The receiver node is
loosely time synchronized and knows K0 (a
commitment to the key chain) in an
authenticated way. Packets P1 and P2 sent in
interval 1 contain a MAC with key K1. Packet
P3 has a MAC using key K2. So far, the
receiver cannot authenticate any packets yet.
Let us assume that packets P4, P5, and P6 are
all lost, as well as the packet that discloses key
K1, so the receiver can still not authenticate
P1, P2, or P3. In interval 4 the base station
broadcasts key K2, which the node
authenticates by verifying K0 = F(F(K2)), and
hence knows also K1 = F(K2), so it can

P1 P2 P3 P4 P5 P6 P7

K1 K2 K3 K4 K0 Time

 8

authenticate packets P1, P2 with K1, and P3
with K2.

Instead of adding a disclosed key to each data
packet, the key disclosure is independent from
the packets broadcast, and is tied to time
intervals. Within the context of µTESLA, the
sender broadcasts the current key periodically
in a special packet.

For further details about the implementation
and evaluation results of SNEP, refer to [1].

TinySec: A Link Layer Security
Architecture for Wireless Sensor
Networks [7]

TinySec is a lightweight, generic security
package that can be integrated into sensor
network applications. It is incorporated into
the official TinyOS release. In [7], the authors
reason why Link Layer security is ideal for
sensor networks. Sensor networks use in-
network processing such as aggregation and
duplicate elimination [24, 25] to reduce traffic
and save energy. Since in-network processing
requires the intermediate nodes to access,
modify, and suppress the contents of
messages, end-to-end security mechanisms
between each sensor node and the base station
cannot be used to guarantee the authenticity,
integrity, and confidentiality of messages.
End-to-end security mechanisms are also
vulnerable to certain denial of service attacks.
If message integrity is only checked at the
final destination, the network may route
packets injected by an adversary many hops
before they are detected. This kind of attack
will waste energy and bandwidth. A link-layer
security architecture can detect unauthorized
packets when they are first injected into the
network. TinySec provides the basic security
properties of message authentication and
integrity (using MAC), message
confidentiality (through encryption), semantic

security (through an Initialization Vector) and
replay protection.

TinySec supports two different security
options: authenticated encryption (TinySec-
AE) and authentication only (TinySec-Auth).
With authenticated encryption, TinySec
encrypts the data payload and authenticates
the packet with a MAC. The MAC is
computed over the encrypted data and the
packet header. In authentication only mode,
TinySec authenticates the entire packet with a
MAC, but the data payload is not encrypted.

Encryption

TinySec uses an 8 byte IV and cipher block
chaining (CBC) [26].

The structure of the IV is dst||AM||l||src||ctr,
where dst is the destination address of the
receiver, AM is the active message (AM)
handler type, l is the length of the data
payload, src is the source address of the
sender, and ctr is a 16 bit counter. The counter
starts at 0 and the sender increases it by 1 after
each message sent.

A stream cipher uses a key K and IV as a seed
and stretches it into a large pseudorandom
keystream GK(IV). The keystream is then
xored against the message: C = (IV, GK(IV)
xor P). The fastest stream ciphers are faster
than the fastest block ciphers, which might
make them look tempting in a resource-
constrained environment. However, stream
ciphers have a failure mode: if the same IV is
ever used to encrypt two different packets,
then it is often possible to recover both
plaintexts. Guaranteeing that IVs are never
reused requires IVs to be fairly long, say, at
least 8 bytes. Since an 8-byte overhead in a
30-byte packet is unacceptable in the resource
constrained sensor network, TinySec uses
block cipher.

 9

Using a block cipher for encryption has an
additional advantage. Since the most efficient
message authentication code (MAC)
algorithms use a block cipher, the nodes will
need to implement a block cipher in any event.
Using this block cipher for encryption as well
conserves code space.

The advantage of using CBC is that it
degrades gracefully in the presence of
repeated IVs. If we encrypt two plaintexts P1
and P2 with the same IV under CBC mode,
then the ciphertexts will leak the length (in
blocks) of the longest shared prefix of P1 and
P2, and nothing more. For instance, if the first
block of P1 is different from the first block of
P2, as will typically be the case, then the
cryptanalyst learns nothing apart from this
fact. CBC mode is provably secure when IVs
do not repeat. However, CBC mode was
designed to be used with a random IV, and has
a separate leakage issue when used with a
counter as the IV (note that the TinySec IV
has a 16 bit counter). To fix this issue,
TinySec pre-encrypts the IV.

The creators of TinySec give reasons behind
their choice of cipher in [7]. Initially they
found AES and Triple-DES to be slow for
sensor networks. They found RC5 and
Skipjack to be most appropriate for software
implementation on embedded
microcontrollers. Although RC5 was slightly
faster, it is patented. Also, for good
performance, RC5 requires the key schedule
to be precomputed, which uses 104 extra bytes
of RAM per key. Because of these drawbacks,
the default block cipher in TinySec is
Skipjack.

Message integrity

TinySec always authenticates messages, but
encryption is optional. TinySec uses a cipher
block chaining construction, CBC-MAC for
computing and verifying MACs. CBC-MAC

is efficient and fast, and the fact that it relies
on a block cipher as well minimizes the
number of cryptographic primitives we must
implement in the limited memory available.
However the standard CBC-MAC
construction is not secure for variably sized
messages. Adversaries can forge a MAC for
certain messages. Bellare, Kilian, and
Rogaway suggest three alternatives for
generating MACs for variable sized messages
[28]. The variant used in TinySec xors the
encryption of the message length with the first
plaintext block.

Keying Mechanism

The simplest keying mechanism is to use a
single network-wide TinySec key among the
authorized nodes. However, this cannot
protect against node capture attacks. If an
adversary compromises a single node or learns
the secret key, (s)he can eavesdrop on traffic
and inject messages anywhere in the network.
Hence, TinySec uses a separate key for each
pair of nodes who might wish to
communicate. This provides better resilience
against node capture attacks: a compromised
node can only decrypt traffic addressed to it
and can only inject traffic to its immediate
neighbors. But Per-link keying limits passive
participation and local broadcast. A less
restrictive approach is for groups of
neighboring nodes to share a TinySec key
rather than each pair. Group keying provides
an intermediate level of resilience to node
capture attacks: a compromised node can
decrypt all messages from nodes in its group,
but cannot violate the confidentiality of other
groups' messages and cannot inject messages
to other groups.

For further information about the
implementation and performance results of
TinySec, refer to [7].

 10

LEAP (Localized Encryption and
Authentication Protocol) [8]

LEAP is a key management protocol for
sensor networks that is designed to support in-
network processing, while at the same time
restricting the security impact of a node
compromise to the immediate network
neighborhood of the compromised node. The
design of the protocol is motivated by the
observation that different types of messages
exchanged between sensor nodes have
different security requirements, and that a
single keying mechanism is not suitable for
meeting these different security requirements.
Hence, LEAP supports the establishment of
four types of keys for each sensor node – an
individual key shared with the base station, a
pairwise key shared with another sensor node,
a cluster key shared with multiple neighboring
nodes, and a group key that is shared by all the
nodes in the network. The protocol used for
establishing and updating these keys is
communication and energy efficient, and
minimizes the involvement of the base station.
LEAP also includes an efficient protocol for
inter-node traffic authentication based on the
use of one-way key chains. A salient feature
of the authentication protocol is that it
supports source authentication without
precluding in-network processing and passive
participation.

Individual Key

Every node has a unique key that it shares
pairwise with the base station. This key is
used for secure communication between a
node and the base station. For example, a node
may send an alert to the base station if it
observes any abnormal or unexpected
behavior by a neighboring node. Similarly, the
base station can use this key to encrypt any
sensitive information, e.g. keying material or
special instruction that it sends to an
individual node.

Group Key

This is a globally shared key that is used by
the base station for encrypting messages that
are broadcast to the whole group. For
example, the base station issues missions,
sends queries and interests. Note that from the
confidentiality point of view there is no
advantage to separately encrypting a broadcast
message using the individual key of each
node. However, since the group key is shared
among all the nodes in the network, an
efficient rekeying mechanism is necessary for
updating this key after a compromised node is
revoked.

Cluster Key

A cluster key is a key shared by a node and all
its neighbors, and it is mainly used for
securing locally broadcast messages, e.g.,
routing control information, or securing sensor
messages which can benefit from passive
participation. For passive participation to be
feasible, neighboring nodes should be able to
decrypt and authenticate some classes of
messages, e.g., sensor readings, transmitted by
their neighbors. This means that such
messages should be encrypted or authenticated
by a locally shared key. Therefore, in LEAP
each node possesses a unique cluster key that
it uses for securing its messages, while its
immediate neighbors use the same key for
decryption or authentication of its messages.

Pairwise Shared Key

Every node shares a pairwise key with each of
its immediate neighbors. In LEAP, pairwise
keys are used for securing communications
that require privacy or source authentication.
For example, a node can use its pairwise keys
to secure the distribution of its cluster key to
its neighbors, or to secure the transmissions of
its sensor readings to an aggregation node.

 11

Note that the use of pairwise keys precludes
passive participation.

In [8], the creators of LEAP have described
the schemes provided by LEAP for sensor
nodes to establish and update individual keys,
pairwise shared keys, cluster keys, and group
keys for each node. Revocation of a
compromised node and the subsequent
rekeying mechanism is also described.

Conclusion

In this paper, we introduce sensor networks,
its related security problems, threats, risks and
characteristics, and a brief introduction to
SPINS, TinySec and LEAP. For
implementation details and performance
evaluation of these protocols, please refer to
the [1], [7] and [8]. Adding security in a
resource constrained wireless sensor network
with minimum overhead provides significant
challenges, and is an ongoing area of research.

References

[1] Adrian Perrig, Robert Szewczyk, Victor

Wen, David Culler, J. D. Tygar. SPINS:
Security Protocols for Sensor Networks. In
The Seventh Annual International
Conference on Mobile Computing and
Networking (MobiCom 2001), 2001.

[2] Sasha Slijepcevic, Miodrag Potkonjak,
Vlasios Tsiatsis, Scott Zimbeck, Mani B.
Srivastava. On Communication Security in
Wireless Ad-Hoc Sensor Networks. In The
Proceedings of the Eleventh IEEE
International Workshops on Enabling
Technologies: Infrastructure for
Collaborative Enterprises (WETICE’02),
2002.

[3] Y.C. Hu, A. Perrig, and D. B. Johnson,
“Wormhole detection in wireless ad hoc
networks,” Department of Computer

Science, Rice University, Tech. Rep.
TR01-384, June 2002.

[4] Jeffery Undercoffer, Sasikanth Avancha,
Anupam Joshi and John Pinkston. In
Security for Sensor Networks.

[5] Chris Karlof David Wagner. In Secure
Routing in Wireless Sensor Networks:
Attacks and Countermeasures.

[6] Wadaa, S. Olariu, L. Wilson, M.
Eltoweissy, K. Jones. On Providing
Anonymity in Wireless Sensor
Networks. In Proceedings of the Tenth
International Conference on Parallel
and Distributed Systems (ICPADS’04).

[7] Chris Karlof, Naveen Sastry, David
Wagner. TinySec: A Link Layer
Security Architecture for Wireless
Sensor Networks. ACM SenSys 2004,
November 3-5, 2004.

[8] Sencun Zhu, Sanjeev Setia, Sushil
Jajodia. LEAP: Efficient Security
Mechanisms for Large-Scale Distributed
Sensor Networks. In The Proceedings of
the 10th ACM conference on Computer
and communications security, 2003.

[9] Alan Mainwaring, Joseph Polastre,
Robert Szewczyk, and David Culler.
Wireless sensor networks for habitat
monitoring. In First ACM International
Workshop on Wireless Sensor Networks
and Applications, 2002.

[10] Robert Szewczyk, Joseph Polastre,
Alan Mainwaring, and David Culler.
Lessons from a sensor network
expedition. In First European Workshop
on Wireless Sensor Networks (EWSN
'04), January 2004.

[11] Matt Welsh, Dan Myung, Mark
Gaynor, and Steve Moulton.
Resuscitation monitoring with a wireless
sensor network. In Supplement to
Circulation: Journal of the American
Heart Association, October 2003.

[12] G.L. Duckworth, D.C. Gilbert, and
J.E. Barger. Acoustic counter-sniper
system. In SPIE International

 12

Symposium on Enabling Technologies
for Law Enforcement and Security,
1996.

[13] J. Hill, R. Szewczyk, A. Woo, S.
Hollar, D. Culler and K. Pister. System
architecture directions for networked
sensors. In Proceedings of ACM
ASPLOS IX, November 2000.

[14] C.Intanagonwiwat, R.Govindan and
D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for
sensor networks In Proc. of
MobiCOM’00, Boston, Massachussetts,
August 2000.

[15] C. Karlof, Y. Li, and J. Polastre.
ARRIVE: An Architecture for Robust
Routing In Volatile Environments.
Technical Report UCB/CSD-03-1233,
University of California at Berkeley,
Mar.2003.

[16] S. Madden, R. Szewczyk, M.
Franklin, and D. Culler. Supporting
Aggregate Queries Over Ad-Hoc
Wireless Sensor Networks. In 4th IEEE
Workshop on Mobile Computing Systems
and Applications, June 2002.

[17] F. Stajano, R. Anderson. “The
Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks”, 3rd
AT&T Software Symposium,
Middletown, NJ, October 1999.

[18] J. R. Douceur, “The Sybil Attack,” in
1st International Workshop on Peer-to-
Peer Systems (IPTPS ’02), March 2002.

[19] R. L. Rivest, M.J.B. Robshaw, R.
Sidney, and Y.L. Yin, “The RC6 Block
Cipher”, AES submission, Jun 1998.
http://theory.lcs.mit.edu/~rivest/rc6.pdf

[20] Y.-C. Hu, A. Perrig, and D. B.
Johnson, “Wormhole detection in
wireless ad hoc networks,” Department
of Computer Science, Rice University,
Tech. Rep. TR01-384, June 2002.

[21] Shafi Goldwasser and Silvio Micali.
Probabilistic encryption. Journal of
Computer Security, 28:270–299, 1984.

[22] Adrian Perrig, Ran Canetti, Dawn
Song, and J. D. Tygar. Efficient and
secure source authentication for
multicast. In Network and Distributed
System Security Symposium, NDSS ’01,
February 2001.

[23] Adrian Perrig, Ran Canetti, J.D.
Tygar, and Dawn Song. Efficient
authentication and signing of multicast
streams over lossy channels. In IEEE
Symposium on Security and Privacy,
May 2000.

[24] Samuel R. Madden, Michael J.
Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: A tiny aggregation service
for ad-hoc sensor networks. In The Fifth
Symposium on Operating Systems
Design and Implementation (OSDI
2002), 2002.

[25] Samuel R. Madden, Robert
Szewczyk, Michael J. Franklin, and
David Culler. Supporting aggregate
queries over ad-hoc wireless sensor
networks. In Workshop on Mobile
Computing and Systems Applications,
2002.

[26] M. Bellare, A. Desai, E. Jokipii, and
P. Rogaway. A concrete security
treatment of symmetric encryption:
Analysis of the DES modes of operation.
In Proceedings of 38th Annual
Symposium on Foundations of Computer
Science (FOCS 97), 1997.

[27] Bruce Schneier. Applied
Cryptography, Second Edition. John
Wiley & Sons, 1996.

[28] Mihir Bellare, Joe Kilian, and Phillip
Rogaway. The security of the cipher
block chaining message authentication
code. Journal of Computer and System
Sciences, 61(3):362-399, December
2000.

