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1. Introduction

Previous research has shown that stochastic models are advantageous tools for
representation of the real world. Due to actual spread of fast and inexpensive computational
power everywhere in the world, the best approach is to model a real phenomenon as
faithfully as possible, and then rely on a simulation study to analyse it. Based on theoretical
fundamentals in stochastic modelling and simulation defined by Ross (1990), an
incremental development of an object-oriented Java framework containing the main
elements for building and implementing stochastic models is realized in the Department
of Mathematics and Informatics of Iuliu Haţieganu University, Cluj-Napoca. The main
result of this research is a collection of Java class libraries, which are used to model and
to simulate classical distributions, stochastic processes and Monte Carlo methods. The
basic design philosophy of our object-oriented approach to simulation of the random
variables by means of classical distributions is presented in Prodan et al. (1999). The
object-oriented Java framework containing the set of base-line classes for stochastic
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modelling and simulation is presented in Prodan et al. (2000). This framework is used to
create stochastic models, which accurately represent real world phenomena and processes,
particularly in health care and patient monitoring. We apply this framework to study the
flow of patients around departments of geriatric medicine. Geriatric departments generally
consist into two main different compartments: acute care and long-stay care. Patients are
initially admitted into acute care consisting of diagnosis, assessment and rehabilitation. The
majority of patients is either released and therefore re-enters the community or die
following such a period of acute care. A certain number, however, may be considered to
be unable to look after themselves, and therefore pass from acute into long-stay care where
they may remain for a considerable amount of time or they will eventually die. A two-stage
discrete-time deterministic model to describe such movements of patients has been
developed by Harrison and Millard (1991) and shown to explain the empirical result that
the distribution of length of stay of patients in a geriatric department is described by a
mixed-exponential distribution. An extension of this model to its continuous-time
stochastic analogue is to be found in Irvine and McClean (1994).

2. Levels of simulation

There are three levels of simulation to be considered (see Fig.1). The first level consists of
simulating random numbers, as they are the basis of any stochastic simulation study. The
so-called pseudo-random numbers generated via Java's built in linear congruential
generator are used to simulate random numbers. If Java's simple linear congruential
generator is non-random in certain situations by generating undesirable regularities, it is
necessary to build a class as an improvement over the one supplied by Java [1, 8].

Figure 1. The simulation levels

Based on the first level, the second level of simulation applied for distributional models
is built. A hierarchy of Java classes for modelling classical distributions is implemented.
Each distribution is determined by a distribution function and a set of parameters. Based
on these elements, a specific simulation algorithm is implemented for each distribution via
a polymorphic method, each distribution class encapsulating a specific method, which
generates a specific value. Simulations for stochastic processes, and their use in the context
of queuing systems, are implemented at this level. First we considered Poisson processes
and we have some applications where Poisson processes are simulated. Then we began to
implement simulations for renewal processes and Markov processes. Also, methods for the
Monte Carlo approach to solving some problems (approximating simple or multiple
integrals, finding a solution for an equation system, finding the reverse, the eigenvectors
and the eigenvalues for a matrix) are implemented at this level.
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The third level of simulation is devoted to applications. As an application, in section 4 we
modelled the patient flow through chronic diseases departments. Admissions are modelled
as a Poisson process with parameter � (the arrival rate) estimated by using the observed
inter-arrival times. The in-patient care time is modelled as a mixed-exponential phase-type
distribution.

3. Distributional models, stochastic processes and Monte Carlo
methods

The classical random variables are the simplest stochastic models, also called distributional
models, which enter into the composition of other complex models. A hierarchy of Java
classes for modelling the classical distributions is proposed (see Fig. 2). Each distribution
is determined by a set parameters and a distribution function. Based on these elements a
Java class is defined for each distribution. This Java class is used to create objects, that is
instances with particular values for parameters. Also, a simulation algorithm is defined for
each class, which is able to generate a value for corresponding distribution. So, there is a
set of simulation algorithms belonging to the whole hierarchy of Java classes, these
algorithms being implemented via a polymorphic method called simValue(). This way, a
particular simValue() must be specified by each distribution class in turn, in order to simulate
a specific value. An instance of a particular class can be used to simulate a sequence of
values for the corresponding random variable, by calling simValue() as many times as
needed. The particular implementation of the simulation algorithm for each class is based
on one or more of the following techniques: the Inverse Transform Technique, the
Acceptance-Rejection Technique and the Composition Technique [6].

Figure 2. The hierarchy of Java classes for distributional models

The basic Java constructors for discrete and continuous distribution classes are given in
Tab. 1 and Tab. 2, respectively.

Table 1. The discrete distribution classes

DISTRIBUTION PUBLIC CLASS CONSTRUCTOR PROBABILITY MASS FUNCTION
Binomial DistribBinomial(int n, double p) pi = Cn

ipi(1-p)n-i, i = 0, 1, …, n
Poisson DistribPoisson(double lambda) pi = e-�

�
i/i! , i = 0, 1, 2, …

Discrete uniform DistribDiscUniform(int n) pi = 1/n, i = 0, 1, …, n-1
Discrete general DistribDiscrete(int n, double[ ] p) pi = p[i], i = 0, 1, …, n-1
Geometric DistribGeometric(double p) pi = p(1-p)i-1, i � 1
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Table 2. The continuous distribution classes

DISTRIBUTION PUBLIC CLASS CONSTRUCTOR PROBABILITY DENSITY FUNCTION

Exponential DistribExponential(double lambda) f(x) = 0, �
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Weibull DistribWeibull(double alfa, double beta) f(x) = 0,)(
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Simulations for stochastic processes are implemented at this level. A stochastic process is
a family of random variables {X(t), t�T}, where X(t) describes the law of probability at
time t�T. First we approached the so-called counting processes {N(t), t � 0}, where N(t)
denotes the number of events occurred by time t. We implemented a simple category of
counting processes, namely the Poisson processes. To generate a Poisson process, means
in fact to generate the first n event times, or to generate the inter-arrival times. Making use
of the fact that the times between successive events are independent exponential random
variables (each with parameter �, the rate of the Poisson process), a Poisson process is
implemented simply based on Inverse Transform Technique used to implement an
exponential random variable. To generate the first n inter-arrival times of a Poisson
process, it is enough to generate n random numbers U1, U2, ..., Un , and then to set Xi = -
(1/�)ln(Ui), i = 1,2,...,n. Facilities for generating arrival times (or waiting times) for the first
n events are implemented. The arrival time of the k-th event is a Gamma distribution with
parameters k and �, the expected value being k/�. Also, Monte Carlo methods are
implemented at this level. We approached a lot of specific problems, such as
approximating simple or multiple integrals, finding a solution for an equation system,
finding the reverse, the eigenvectors and eigenvalues for a matrix, etc.

4. An application for patient flow simulation

The planning of medical service within a chronic healthcare department is a complex
problem the staff has to face, because patients of long-term services occupy the beds for
long periods of time and a high quality medical care costs a lot of money. Under these
circumstances, a balanced policy between a high quality service measured by the number
of beds and suitable costs becomes a necessity for the administration in order to get full
value for the money they have spent. With this end in view, using the simulation of
distributional models and stochastic processes, we intend to model the patient flow through
chronic diseases departments. The use of stochastic compartmental analysis [10], which
assumes probabilistic behaviour of the patients around the system, is considered a more
realistic representation of an actual situation rather than simpler deterministic model. In
order to simulate the model, we have split it into two parts: the arrival of patients and the
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in-patient care. Patients are initially admitted into acute care consisting of diagnosis,
assessment and rehabilitation. The majority of patients is either released and therefore re-
enters the community or die following such a period of acute care. However, a certain
number of patients may be considered to be unable to look after themselves, and therefore
pass from acute into long-stay care where they may remain for a considerable amount of
time, or they will eventually die.

The arrival of patients is modelled as a Poisson process with a parameter � estimated by
using the inter-arrival times [6]. These times are independent exponential random variables,
each with parameter � and with the corresponding density f(t) = �e-�t, t � 0. To simulate
the first T time units of a Poisson process, it is necessary to simulate the successive inter-
arrival times, stopping when their sum exceeds T. The results of a simulation, considering
the arrival of patients as a Poisson process at rate � = 2.75 patients per day, are presented
in Fig. 3.

Figure 3. The Poisson arrivals at rate � = 2.75 patients per day.

The care time is modelled by the application of a mixed-exponential distribution, where
the number of terms in the mixture corresponds to the number of stages of patient care. A
common scenario is that there are two stages for in-patient care: acute and long-stay,
composing in this case two exponential distributions with parameters �1 and �2,
representing  the corresponding access rate for each stage. In this case, the mixed-
exponential phase-type distribution [6, 7] has the probability density function f(x) = ��1e-�1t

+(1-�)�2e-�2t, which implies a mean care time of  �/�1+(1-�)/�2 days per patient. Fig. 4
shows the results of a simulation with parameters � = 0.07, �1 = 1/77.18 and �2 = 1/33.3.

Figure 4. The simulated results for in-patient care time

5. Future work

As a future work, we intend to approach and implement models for stochastic processes
(Markov, semi-Markov, renewal), with applications in medicine and pharmacy. A
continuous-time Markov model for the flow of patients around compartments of geriatric
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medicine will be proposed. This model will enable us to study the whole system of geriatric
care and will be used to look either at the time patients spend in hospital and also the
subsequent time patients spend in the community.

Also, we intend to implement the so-called bootstrap technique, which is quite useful in
analysing a simulation. One may bootstrap the observed data (randomly generate new
plausible data based on the observed ones) to create a pseudo-dataset, and then fit the
model to that pseudo-data to obtain a set of parameter pseudo-estimates that provide
another estimate of that individual parameter values. The latter is expected to provide
predictions that are as plausible as those obtained from the original experimental fit. Such
predictions can, upon repetition of the process, reflect the sampling variability that is
believed to be inherent in the original data. Bootstrapping strategies will be applied in
pharmaceutical research, education and industry with the purpose to optimise the use of
substances and reactants.

6. Conclusions

A Java framework containing the base line classes for distributional models was
introduced. This framework is used to create stochastic models, which accurately represent
real world phenomena and processes, particularly in health care and patient monitoring. We
modelled the patient flow trough chronic diseases departments. Admissions are modelled
as a Poisson process with parameter � estimated by using the inter-arrival times. The in-
patient care time is modelled as a mixed-exponential phase-type distribution. Both
geriatricians and hospital administrators agreed that such a model is useful to be applied
for optimising the use of hospital resources in order to improve hospital care. As a future
work we intend to approach and implement new models for stochastic processes, with
applications in medicine and pharmacy. Also, we intend to implement the new bootstrap
technique, which is very useful in analysing a simulation.
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