
Optimization with the Genetic
Algorithm/Direct Search Toolbox

Ed Hall

edhall@virginia.edu

Research Computing Support Center

Wilson Hall, Room 244

University of Virginia

Phone: 243-8800

Email: Res-Consult@Virginia.EDU

URL: www.itc.virginia.edu/researchers/services.html

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.1/36

http://www.itc.virginia.edu/researchers/services.html


Outline of Talk

Optimization Overview

Gradient-Based Optimization

Direct Search Method

Genetic Algorithm

Conclusions

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.2/36



Optimization Overview

Given function

�

, and set

�

, find such that
for all .

called the minimizer or minimum if .

Suffices to consider only minimization, since maximum of is minimum of
.

Objective function usually assumed differentiable, may be linear or
nonlinear.

Constraint set defined by system of equations and equalities that may
be linear of nonlinear.

Points called feasible points.

if

�

, problem is unconstrained.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.3/36



Optimization Problems

General optimization problem:

min subject to and ,

where

�

,

� �

,

� �

.

Linear programming: , , and all linear.

Nonlinear programming: nonlinear objective or nonlinear constraints, or
both.

In this talk, we’ll consider the following nonlinear programming problems:

Unconstrained: min for all

�

Linear Constraints: min for all such that and �� ��

where and �� are matrices and and �� are vectors.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.4/36



Local vs. Global Optimization

is a global minimum if for all .

is a local minimum if for all feasible in some
neighborhood of .

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.5/36



Global Optimization

Finding, or even verifying, global minimum is difficult, in general

Most optimization methods designed to find local minimum, which may or
may not be global minimum

If global minimum desired, can try several widely separated starting points
and see if all produce same result

For some problems, such as linear programming, global optimization
tractable

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.6/36



Gradient-Based Optimization

First-Order Optimality Condition
For a function of variables, find critical point (or stationary point), i.e.
the solution of the nonlinear system,

where is the gradient vector of , whose th component is � .

For a continuosly differentialbe
�

, any interior point of
at which has a local minimum must be a critical point if .

But not critical points are minima: can also be a maximum or saddle point.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.7/36



Gradient-Based Optimization

Steepest Descent

Let

��� 	 
 	

be real-valued function of � real variables. At any point � where

gradient vector is nonzero, negative gradient,

�  � � , points downhill toward
lower values of function

�

.

In fact,

�  � � is locally direction of steepest descent: function decreases more
rapidly along direction of negative gradient than along any other

Steepest descent method: starting from initial guess x0, successive approximate

solutions given by

�� �� � �� �� �  �� �

where �� is line search parameter that determines how far to go in given direction

Similarly, gradient-based optimization methods use

�  � � in determining search

direction.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.8/36



Direct Search Algorithms

Direct search is a method for solving optimization problems that does not
require any information about the gradient of the objective function.

Direct search algorithm searches a set of points around the current point,
looking for one where the value of the objective function is lower than the
value at the current point.

You can use direct search methods to solve a variety of optimization
problems that are not well suited for standard optimization algorithms,
including problems in which the objective function is discontinuous,

nondifferentiable, stochastic, or highly nonlinear.

We will focus on a special class of direct search algorithms called pattern
search algorithms.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.9/36



Pattern Search

A pattern search algorithm computes a sequence of points that get closer
to the optimal point.

1. At each step, the algorithm searches a set of points, called a mesh,
around the current point, the point computed at the previous step of
the algorithm.

2. The algorithm forms the mesh by adding the current point to a scalar
multiple of a fixed set of vectors called a pattern.

3. If the algorithm finds a point in the mesh that improves the objective
function at the current point, the new point becomes the current point
at the next step of the algorithm.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.10/36



Performing a Pattern Search

To perform a pattern search on an unconstrained problem at the
command line, you call the function patternsearch with the syntax

[x fval] = patternsearch(@objfun, x0)

@objfun is a handle to the objective function.

x0 is the starting point for the pattern search.

fval – Final value of the objective function

x – Point at which the final value is attained

Alternatively, the pattern search can be intiated from a GUI interface by
entering

psearchtool

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.11/36



Patterns

A pattern is a collection of vectors that the algorithm uses to determine which points to
search at each iteration.

For example, if there are two independent variables in the optimization problem, the default
pattern consists of the following vectors.

v1 = [1 0] v2 = [0 1] v3 = [-1 0] v4 = [0 -1]

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.12/36



Meshes

At each step, the pattern search algorithm searches a set of points, called a mesh,

for a point that improves the objective function. The algorithm forms the mesh by

1. Multiplying the pattern vectors by a scalar, called the mesh size.

2. Adding the resulting vectors to the current point – the point with the best

objective function value found at the previous step.

For example, suppose that the current point is [1.6 3.4] and the mesh size if 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current

point to obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]

[1.6 3.4] + 4*[0 1] = [1.6 7.4]

[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]

[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.13/36



Pattern Search Polling

At each step, the algorithm polls the points in the current mesh by computing their
objective function values.

By default the algorithm stops polling the mesh points as soon as it finds a point
whose objective function value is less than that of the current point. The poll is

then called successful and that point becomes the current point at the next
iteration. If you set Complete poll to On, the algorithm computes the objective

function values at all mesh points.

After a successful poll, the algorithm multiplies the current mesh size by 2, the

default value of Mesh Expansion factor. Because the initial mesh size is 1, at the
second iteration the mesh size is 2.

If the algorithm fails to find a point that improves the objective function, the poll is
called unsuccessful and the current point stays the same at the next iteration.

After an unsuccessful poll, the algorithm multiplies the current mesh size by 0.5,
the default value of Mesh Contraction factor. The algorithm then polls with a smaller

mesh size.
Optimization with the Genetic Algorithm/Direct Search Toolbox – p.14/36



Displaying the Results at Each Iteration

You can display the results of the pattern search at each iteration by setting Level

of display to Iterative in Display to command window options of psearchtool .

With this setting, the pattern search displays information about each iteration at

the command line. The first seven lines of the display are

Iter f-count f(x) MeshSize Method

0 1 4.645 1 Start iterations

1 4 4.334 2 Successful Poll

2 7 0.4763 4 Successful Poll

3 11 0.4763 2 Refine Mesh

4 15 0.4763 1 Refine Mesh

5 19 -0.9237 2 Successful Poll

6 23 -0.9237 1 Refine Mesh

Note that the pattern search doubles the mesh size after each successful poll and
halves it after each unsuccessful poll.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.15/36



Using a Search Method

In addition to polling the mesh points, the pattern search algorithm can perform an

optional step at every iteration, called search. At each iteration, the search step
applies another optimization method to the current point. If this search does not

improve the current point, the poll step is performed.

The search options are:

Positive basis Np1

Positive basis 2N

Genetic Algorithm

Latin hypercube

Nelder-Mead

Custom

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.16/36



Pattern Search Stopping Conditions

The algorithm stops when any of the following conditions occurs:

The mesh size is less than Mesh tolerance.

The number of iterations performed by the algorithm reaches the
value of Max iteration.

The total number of objective function evaluations performed by the
algorithm reaches the value of Max function evaluations.

The distance between the point found at one successful poll and the
point found at the next successful poll is less than X tolerance.

The change in the objective function from one successful poll to the
next successful poll is less than Function tolerance.

The Bind tolerance option, which is used to identify active constraints for
constrained problems, is not used as a stopping criterion.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.17/36



Linearly Constrained Minimization

The pattern search function can solve a linearly constrained minimization problem

of the form

min

�  � � for all � such that

� � �

,

���� � � �� � , and

� � � � �

with the command line syntax

[x fval] = patternsearch(@o bjf un,x0 ,A ,b ,Ae q, beq ,l b,u b, optio ns )

A and b are the matrix and vector in the inequality constraint.

Aeq and beq are the matrix and vector in the equality constraint.

lb and ub are the lower bound and upper bound on x .

options is a structure containing options for the pattern search created with

the psoptimset command. If you do not pass in this argument,
patternsearch uses its default options.

Pass empty matrices for verb=A=, b, Aeq, beq , lb , ub , and options to use
default values.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.18/36



Genetic Algorithm

The genetic algorithm is a method for solving optimization problems that is based on natural
selection, the process that drives biological evolution.

The genetic algorithm repeatedly modifies a population of individual solutions.

At each step, the genetic algorithm selects individuals at random from the current population
to be parents and uses them produce the children for the next generation.

Over successive generations, the population evolves toward an optimal solution.

The genetic algorithm differs from a standard optimization algorithm in two main ways, as
summarized in the following table

Standard Algorithm Genetic Algorithm

Generates a single point at each Generates a population of points at

iteration. The sequence of points each iteration. The population

approaches an optimal solution. approaches an optimal solution.

Selects the next point in the Selects the next population by

sequence by a deterministic computations that involve random

computation. choices.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.19/36



Using the Genetic Algorithm

To use the genentic algorithm on an unconstrained problem at the Matlab
command line, you call the function ga with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

@fitness is a handle to the fitness function.

nvars is the number of independent variables for the fitness function.

options is a structure containing options for the genetic algorithm created
with the gaoptimset command. If you do not pass in this argument, ga uses

its default options.

fval – Final value of the fitness function

x – Point at which the final value is attained

Alternatively, the Genetic Algorithm Tool can be invoked by entering the command

gatool

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.20/36



Genetic Algorithm Terminology

Fitness Functions
The fitness function (objective function) is the function you want to optimize.

Individuals
An individual is any point to which you can apply the fitness function. The value of

the fitness function for an individual is its score. An individual is sometimes
referred to as a genome and the vector entries of an individual as genes.

Populations and Generations
A population is an array of individuals. For example, if the size of the population is

100 and the number of variables in the fitness function is 3, you represent the
population by a 100-by-3 matrix.

At each iteration, the genetic algorithm performs a series of computations on the
current population to produce a new population. Each successive population is

called a new generation.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.21/36



Genetic Algorithm Terminology

Diversity
Diversity refers to the average distance between individuals in a population. A

population has high diversity if the average distance is large; otherwise it has low
diversity. Diversity is essential to the genetic algorithm because it enables the

algorithm to search a larger region of the space.

Fitness Values and Best Fitness Values

The fitness value of an individual is the value of the fitness function for that
individual. Because the toolbox finds the minimum of the fitness function, the best

fitness value for a population is the smallest fitness value for any individual in the
population.

Parents and Children
To create the next generation, the genetic algorithm selects certain individuals in

the current population, called parents, and uses them to create individuals in the
next generation, called children. Typically, the algorithm is more likely to select

parents that have better fitness values.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.22/36



Genetic Algorithm Outline

1. The algorithm begins by creating a random initial population.

2. The algorithm creates a sequence of new populations, or generations using
the individuals in the current generation to create the next generation. To

create the new generation, the algorithm performs the following steps:

a Scores each member of the current population by computing its fitness

value.

b Scales the raw fitness scores to convert them into a more usable range of
values.

c Selects parents based on their fitness.

d Produces children from the parents. Children are produced either by making
random changes to a single parent – mutation – or by combining the vector

entries of a pair of parents – crossover.

e Replaces the current population with the children to form the next
generation.

3. The algorithm stops when one of the stopping criteria is met.
Optimization with the Genetic Algorithm/Direct Search Toolbox – p.23/36



Initial Population

The algorithm begins by creating a random initial population, as shown in the
following figure.

The initial population contains 20 individuals by default. All the individuals in the

initial population have genes that lie between 0 and 1, because the default value of
Initial range in the Population options is [0;1].

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.24/36



Creating the Next Generation

The algorithm selects individuals in the current population, called parents, who
contribute their genes (the entries of their vectors) to their children. The algorithm

most likely selects individuals that have better fitness values as parents.

The genetic algorithm creates three types of children for the next generation:

Elite children are the individuals in the current generation with the best fitness

values.

Crossover children are created by combining the vectors of a pair of parents.

At each coordinate of the child vector, the default crossover function randomly
selects an entry, or gene, at the same coordinate from one of the two parents

and assigns it to the child.

Mutation children are created by introducing random changes, or mutations, to
a single parent. By default, the algorithm adds a random vector from a

Gaussian distribution to the parent.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.25/36



Plots of Later Generations

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.26/36



Genetic Algorithm Stopping Conditions

The genetic algorithm uses the following five conditions to determine when to stop:

Generations – The algorithm stops when the number of generations reaches

the value of Generations.

Time limit – The algorithm stops after running for an amount of time in seconds

equal to Time limit.

Fitness limit The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

Stall generations – The algorithm stops if there is no improvement in the

objective function for a sequence of consecutive generations of length Stall
generations.

Stall time limit – The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.27/36



Using a Hybrid Function

The genetic algorithm can reach the region near an optimum point
relatively quickly, but it can take many function evaluations to achieve
convergence.

A commonly used technique is to run genetic algorithm for a small number
of generations to get near an optimum point. Then the solution from
genetic algorithm is used as an initial point for another optimization solver
that is faster and more efficient for local search.

You can specify a hybrid function in Hybrid function options, e.g. fminunc .

Usually close the the minimum the objective function is smooth enough
that a standard optimization algorithm can then be used.

To see a demo of using a hybrid function, run hybriddemo .

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.28/36



Exporting Options and Problems

You can export options and problem structures from the Genetic Algorithm ( or

Pattern Search) Tool to the MATLAB workspace, and then import them back into
the tool at a later time.

You can also export the options structure and use it with the genetic algorithm
function ga (or patternsearch ) at the command line.

To export options or problems, click the Export button or select Export to Workspace

from the File menu. This opens the dialog box shown in the following figure.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.29/36



Parameterizing Objective Functions

Sometimes you might want to write functions that are called by
patternsearch or ga , which have additional parameters besides the
independent variable. For example, suppose you want to minimize the
following function:

��
�

� � 
�

��
� � �

��
�

��
�

for different values of , , and . Because patternsearch and ga

accept objective or fitness functions that depend only on , you must
provide the additional parameters , , and to the function before calling
patternsearch or ga .

The following sections describe two ways to do this:

Using Anonymous Functions

Using a Nested Function

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.30/36



Using Anonymous Functions

To parameterize your function, first write an M-file containing the following
code:

function y = parameterfun(x,a,b,c)

y = (a - b*x(1)ˆ2 + x(1)ˆ4/3)*x(1)ˆ2 + x(1)*x(2) + ...

(-c + c*x(2)ˆ2)*x(2)ˆ2;

Suppose you want to minimize the function for the parameter values a=4 ,
b=2.1 , and c=4 . To do so, define a function handle to an anonymous
function by entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4; % Define parameter values

objfun = @(x) parameterfun(x,a,b,c);

x0 = [0.5 0.5];

patternsearch(objfun,x0)

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.31/36



Using a Nested Function

Instead of parameterizing the objective function as an anonymous function, you can write a
single M-file that

Accepts a, b, c, and x0 as inputs.

Contains the objective function as a nested function.

Calls patternsearch (or ga).

function [x fval] = runps(a,b,c,x0)

[x, fval] = patternsearch(@ne ste df un, x0 );

% Nested function that computes the objective function

function y = nestedfun(x)

y = (a - b*x(1)ˆ2 + x(1)ˆ4/3)*x(1)ˆ 2 + x(1)*x(2) + ...

(-c + c*x(2)ˆ2)*x(2)ˆ2 ;

end

end

The objective function is computed in the nested function nestedfun, which has access to the
variables a, b, and c. To run the optimization, enter

[x fval] = runps(a,b,c,x0)

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.32/36



Vectorizing the Objective Function

These algorithms usually runs faster if you vectorize the objective function, so that

one call computes the fitness for all individuals in the current population, or values
of all points in the current mesh at once. To vectorize the fitness function,

Write the M-file that computes the function so that it accepts a matrix with

arbitrarily many rows, corresponding to the individuals in the population. For
example, to vectorize the function

�  ��"! �# � � �#� $ �� �# % & �� % �#'# & �#

write the M-file using the following code:

z=x(:,1).ˆ2 -2*x(:,1).*x(:, 2) +6*x(:,1) +x(:,2).ˆ2 -6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is a

vector. The .ˆ and .* operators perform element-wise operations on the
vectors.

Set the Vectorize option to On.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.33/36



Using the GA/DS Toolbox

Conclusions

Experiment with the algorithm options to try and find the global
minimum.

Use the graphical interface for the pattern search and genetic
algorithm (psearchtool and gatool ) to easily experiment with
different options and then save the options structure.

Perform extended optimizations, e.g. using parameterized objective
functions, using the command line interfaces (patternsearch and
ga).

Vectorization the objective function, if possible.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.34/36



GA/DS Toolbox References

The Genetic Algorithm and Direct Search Toolbox Documentation.

www.mathworks.com/access/helpdesk/help/toolbox/gads/

Scientific Computing: An Introductory Survey by Michael T. Heath.

Chapter 6: Optimization
www.cse.uiuc.edu/heath/scicomp/

Optimization by Direct Search: New Perspectives on Some Classical and Modern
Methods by T. Kolda, R. Lewis. and V. Torczon.

SIAM Review, Vol. 45, No. 3, pp. 385-492.

Genetic Algorithms in Search, Optimzation & Machine Learning by David E.

Goldberg.
Addison-Wesley, 1989.

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.35/36

http://www.cse.uiuc.edu/heath/scicomp/
http://www.mathworks.com/access/helpdesk/help/toolbox/gads/


Upcoming Talks at the RCSC

April 20, 3:30 PM: "Statistical Shape Analysis" by Kathy Gerber.

April 27, 3:30 PM: "Objected Oriented Programming with Fortran 95
(FTN95)" by Katherine Holcomb.

Further information on these talks can be found at the URL
www.itc.virginia.edu/research/news/newsletterMar05.html#colloquia

Optimization with the Genetic Algorithm/Direct Search Toolbox – p.36/36

http://www.itc.virginia.edu/research/news/newsletterMar05.html#colloquia

	Outline of Talk
	Optimization Overview
	Optimization Problems
	Local vs. Global Optimization
	Global Optimization
	Gradient-Based Optimization
	Gradient-Based Optimization
	Direct Search Algorithms
	Pattern Search
	Performing a Pattern Search
	Patterns
	Meshes
	Pattern Search Polling
	Displaying the Results at Each Iteration
	Using a Search Method
	Pattern Search Stopping Conditions
	Linearly Constrained Minimization
	Genetic Algorithm
	Using the Genetic Algorithm
	Genetic Algorithm Terminology
	Genetic Algorithm Terminology
	Genetic Algorithm Outline
	Initial Population
	Creating the Next Generation
	Plots of Later Generations
	Genetic Algorithm Stopping Conditions
	Using a Hybrid Function
	Exporting Options and Problems
	Parameterizing Objective Functions
	Using Anonymous Functions
	Using a Nested Function
	Vectorizing the Objective Function
	Using the GA/DS Toolbox
	GA/DS Toolbox References
	Upcoming Talks at the RCSC

