
R. Meersman et al. (Eds.): OTM Workshops 2004, LNCS 3292, pp. 222–231, 2004.
© Springer-Verlag Berlin Heidelberg 2004

MSF: A Workflow Service Infrastructure
for Computational Grid Environments

Seogchan Hwang1 and Jaeyoung Choi2

1 Supercomputing Center, Korea Institute of Science and Technology Information,
52 Eoeun-dong, Yusung-gu, Daejun 305-306, Korea

seogchan@kisti.re.kr
2 School of Computing, Soongsil University,

1-1 Sangdo-5dong, Dongjak-gu, Seoul 156-743, Korea
choi@ssu.ac.kr

Abstract. Globus has become a standard in the construction of Grid computing
environments. However, it still needs more work and research to satisfy re-
quirements from various grid applications such as workflow services. We pro-
pose a Meta Scheduling Framework (MSF) for workflow service management
based on the Globus toolkit. The MSF provides an XML-based Job Control
Markup Language (JCML) for describing information and procedures of appli-
cations including dependencies of jobs, a workflow management engine for
scheduling complicated job flow, and an execution environment without the
need for code modification or wrapping.

1 Introduction

Grid computing [1] is a new infrastructure which provides computing environments
for grand challenge problems by sharing large-scale resources. The Globus toolkit is a
standard in constructing a Grid and provides essential grid services such as security,
resource management, data transfer, information service, and so on. However, it still
needs more work and research to satisfy the requirements of various grid applications.
Workflow management is emerging as one of the most important grid services, yet it
is difficult to use the grid resources for general applications because of various char-
acteristics such as heterogeneity and dynamic organization. Numerous research
groups have been working on workflow related projects.

GridFlow [2] is a workflow management system, which uses agent-based resource
management and a local resource scheduling system, Titan. It focuses on the schedul-
ing of time-critical grid applications in a cross-domain and highly dynamic grid envi-
ronment by using a fuzzy timing technique and performance prediction of application.
MyGrid [3] provides services such as resource discovery, workflow enactment, and
distributed query processing for integration. It is a research project middleware to
support biological environments on a Grid. And Condor [4] provides a workload
management system for compute-intensive jobs and a scheduling of dependencies

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Batang /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

MSF: A Workflow Service Infrastructure for Computational Grid Environments 223

between jobs using DAGMan. This project provides similar functionalities but re-
quires its own specific infrastructure.

In this paper, we introduce a system, called Meta Scheduling Framework (MSF),
for grid computational environments. MSF provides a Job Control Markup Language
that is able to specify the job flow for general applications which are not developed
for grid environments. It also provides a workflow management service, based on
Globus, to execute the job, and a graphical user interface to facilitate the composition
of grid workflow elements and access to additional grid resources

In section 2, we illustrate the structure of the MSF and its components in detail.
Section 3 describes the implementation of the system and examines a sample applica-
tion, AutoDock. Finally, we discuss the conclusion of the research in Section 4.

2 Meta Scheduling Framework

Usually grid applications require complicated processing steps, for instance, when a
task requires an input file which is the output of another task, and the two tasks are
simultaneously running in separate computing nodes. Therefore, a job description
language is essential to describe dependencies among jobs, and a management system
is required to control the flow of tasks.

The goal of this research is to develop a framework to provide a workflow service
to applications using the Globus. To accomplish this, we designed a workflow de

Fig. 1. Meta Scheduling Framework Architecture

224 S. Hwang and J. Choi

scription language, called Job Control Markup Language (JCML), and a workflow
management system. The JCML is designed to describe a process of tasks. And the
workflow management system provides services to control the flow of tasks.

The architecture of MSF is depicted in Figure 1. A user describes a job flow using
the MSF console. The Access Manager (AM) provides services which include user
authentication, environment setup, and a job submission service. The Resource Man-
ager (RM) provides resource discovery and matching. The Execution Manager (EM)
provides job launching, monitoring, and reporting. More details are described in Sec-
tion 2.3.

MSF consists of three phases: definition, preparation, and execution. During the
definition phase, jobs are defined to specify a Job Definition List (JDL), which de-
scribes a task flow using JCML. In this phase, users connect to the AM for authenti-
cation of the MSF and then the AM creates a user proxy for globus. In the preparation
phase, resources are searched and assigned to the matched tasks. Next, the AM cre-
ates an agent to provide a proxy service to the user. The agent then passes the JDL
and traces the status of the job. The RM receives the JDL from the AM and analyzes
it. After finding appropriate grid resources for the job, the RM then assigns them to
tasks and generates a worklist that includes information on activities and their execut-
ing order. Finally, during the execution phase, the tasks on the worklist are executed,
the status is monitored, and the results are reported.

2.1 Job Control Markup Language

A job description language to specify the flow of an application task must provide a
way to describe various grid environments and task information including execution
environments, arguments, sequence, data dependency, prefetching, and so on. The
JCML is a workflow description language based on the Graph eXchange Language
(GXL) [5], which defines a graph-based XML representation for specifying the de-
pendencies among components. The JCML consists of four major elements: Info,
Resource, Component, and Dependency. Figure 2 shows the JCML structure.

Info: This element lists the document name, scope, target namespaces, authoring date,
and so on.
Resource: This element describes the resources of hardware and software required to
execute a job. The hardware includes architecture, CPU, memory, disk, and network
bandwidth. The software includes an operating system, installed application, and
local scheduler. The Time represents the deadline to be executed.
Component: This element lists all of the task-related information. A Node is an exe-
cuting program or computer in the workflow. A node is classified into a task and a
resource. A task node is an executing program in workflow, while a resource node is
an assistant, which supports the task node, and represents the physical computing
resources, such as storage and database. While a task node includes execution file,
input, output, arguments, and resource configuration, a resource node includes data
location and the access method. If it is necessary to refer to a series of nodes as a

MSF: A Workflow Service Infrastructure for Computational Grid Environments 225

Info

Hardware

Task

Resource

Node

Group

Component

Dependency

Edge

Datalink

PriorityOrder

Software Time

Resource

JCML

Author, Date, Description

Job, In/Out Data Definition

Storage, Compute Node Definition

Dependency of I/O between Nodes

Priority between
Nodes

List of Edges

List of Group or Nodes

List of Resources: H/W, S/W, Deadline

Name, TargetNamespace

Fig. 2. JCML Structure

Task B Group A

Storage
S2

I/O Data Link

Executable
Location

PriorityOrder
Dependency

Task A Storage
S1

Datalink
Dependency

Task C

Task D Task E

Task F

Fig. 3. Example model of JCML

single node according to a job flow logic, a group is logically a node. One group can
include another group(s). Figure 3 illustrates an example model of JCML. A circle
and a dotted circle represent a node and a group, respectively. The example is com-
posed of two storage nodes, Storages S1 and S2; two task nodes, Tasks A and B; and
a group, Group A, which includes four task nodes: Tasks A, B, C, and D.

Dependency: This element describes the dependencies of a workflow. Each line is an
edge which represents an execution order and a dependency between two objects
(node or group). It has two types of links, PriorityOrder and Datalink, which have a

226 S. Hwang and J. Choi

direction that expresses a starting point and an end point of linked nodes. The Priori-
tyOrder just represents an execution order between the two linked nodes. The Data-
link displays a flow of data which is used for the input or output file of each task.

As shown in Figure 3, each line represents an edge between the linked nodes, and
all edges have directions. A PriorityOrder expressed in a dotted line is used for task
nodes, but does not include resource nodes. Tasks A and B are linked to Storage S1
with solid lines, which imply the location of execution files. When the task is running,
the execution file is transferred to a computing node selected by the scheduler. The
edge which links Task B and Group A represents a dependency between two nodes,
transferring the output of Task B to the input of Group A. The edge linking with
Storage S2 shows that Task B reads the input from S2 and Group A writes the output
to S2. Next, Task C of Group A receives the input from Task B and sends the output
to Tasks D and E. Task F then receives two input files from Tasks D and E and fi-
nally writes the output to S2.

2.2 Workflow Management Systems

A workflow management system guarantees that a flow of tasks will be executed
exactly. MSF provides a workflow service, which is a scheduler-based paradigm [6]
based on a state transition machine.

Figure 4 illustrates the processing steps of a job in the workflow engine. A job is
processed by a workflow management system as follows: analyzing the job, mapping
resources, generating a worklist, and scheduling tasks. A user specifies a JDL to exe-
cute a grid application. After analyzing the JDL, the JDL Analyzer searches resources
and assigns resources to the job, selected by the Resource Discovery and Selector,
which uses an external information service such as MDS [7] and NWS [8], and then
generates the worklist. The worklist has the execution information of the task

 Fig. 4. Workflow Management Architecture Fig. 5. Worklist Structure

MSF: A Workflow Service Infrastructure for Computational Grid Environments 227

and its execution order. Each task consists of activities. Figure 5 shows the worklist
structure.

The Taskdef describes the behavior of a task, or a list of activities (actions) such as
file copy or running programs, which all have an execution order. The Sequence
describes the sequence information of Taskdef. The tasks, each with their own se-
quence numbers, are executed according to their sequence number and their causal
ordering specified in Pre and Post in Task.

(a) Job Definition List

(b) Worklist

(c) Globus RSL

Fig. 6. Three Job Description Formats in MSF

<node id="d" type="applicationJob">
 <excutable name="mkdpf3" location="/usr/local/autodock/share/" arguments=""/>
 <application name="autodock" version="3.0.1" />
 <configuration>
 <env name="workDir" value="/home/seventy9/queue/job"/>
 <envname="PATH" value="/bin:/user/bin:/bin/usr/local/autodock/bin:/usr/local/
 autodock/share"/>
 </configuration>
 <data>
 <in id="dia" name="l.pdbq" location="" cmdArg="" link="yes"/>
 <in id="dib" name="p.pdbqs" location="" cmdArg="" link="yes"/>
 </data>
</node>
<edge id="bd" from="b" to="d" direction="directed" type="datalink"></edge>
<edge id="de" from="d" to="e" direction="directed" type="datalink"></edge>

<action id="3">
 <execution>
 <resource>
 <host name="ironfly.ssu.ac.kr" port="2119"/>
 <workDir path="/home/seventy9/queue/job"/>
 <env name="PATH" value="/bin:/usr/bin:
 /bin/usr/local/autodock/bin:/usr/local/autodock/share"/>
 </resource>
 <command>
 /usr/local/autodock/share/mkdpf3 l.pdbq p.pdbqs
 </command>
 </execution>
</action>

&(directory="/home/seventy9/queue/job")
 (arguments="l.pdbq""p.pdbqs")
 (executable = "/usr/local/autodock/share/mkdpf3")
 (environment=("PATH" "/bin:/user/bin:/bin/usr/local/autodock/bin:
 /usr/local/autodock/share"))

228 S. Hwang and J. Choi

The Job Launcher executes activities according to the worklist. At the workflow
engine, it is required to transform activities in the worklist to RSL [9] type in order to
execute the real task in a local grid scheduler. Figure 6, for example, shows the three
job description formats in MSF: (a) a partial definition of a node and an edge in JDL,
(b) an action of a Taskdef in worklist, and (c) RSL command.

2.3 Components Architecture

The MSF, as shown in Figure 7, has four major components: (a) Access Manager
(AM) manages the user connection and requests, (b) Resource Manager (RM) is in
charge of resource discovery and assignment, (c) Execution Manager (EM) controls
workflow, and (d) Information Manager (IM) provides all event data to other system
components.

The main purpose of AM is to manage the connection between clients and the
MSF. If a client connects to the MSF, then the AM accepts it and performs authenti-
cation and authorization of the user. If the client is verified, the Master Agent creates
a new User Agent. The User Agent manages the client session and performs some
functions: submitting a job, tracking the status of a client request, and providing a
service configuration.

RM provides two functions, resource discovery and allocation. The JDL Inter-
preter analyzes the JDL received from AM and forwards the resource information to
the Resource Collector, which searches resources using an external Grid Information

Fig. 7. MSF Components Architecture

MSF: A Workflow Service Infrastructure for Computational Grid Environments 229

Service. The Resource Match Maker selects appropriative resources for the job using
a matchmaking algorithm, which can be replaced with another in a plug-in manner.
The selected resources are then negotiated by the Negotiator. Finally, the RM gener-
ates a worklist, and passes it to the EM.

The EM carries out job launching, monitoring, and reporting. A Master Agent cre-
ates a Job Agent corresponding to the job. The Job Agent then assigns the activities of
the tasks to selected resources according to the order of the worklist, which monitors
the status of running tasks and reports of the result of each task.

The IM controls the event log data from the other components and consists of three
agents: the Log Agent which records all events from other components; the Query
Agent which searches for the requested query; and the Sync Agent which synchro-
nizes the data with other IM, if necessary.

3 Implementation and Examination

We developed a prototype of MSF using pure Java (JDK 1.4.0) and Java CoG Kit
(version 0.9.13) on Globus 2. We also implemented and executed a Virtual Screening
on MSF. A Virtual Screening is one of the design methods, called docking in Bioin-
formatics, which combines one protein with many, sometimes hundreds of thousands
of ligands to discover candidates for new drugs. In order to execute docking, the
format of the material must be changed. We chose the AutoDock [10] application for
this experiment. Figure 8(a) shows the processing steps involved in transforming the
format of the protein and the ligand for docking in AutoDock. The dotted square
represents a process for protein transformation, which is executed just once during the
virtual screening. Figure 8(b) illustrates the JCML process to make a workflow used
by MSF for AutoDock processing. A circle represents a program which transforms
each format according to the AutoDock processing steps. The programs of babel,
mol2topdbq, mkgpf3, and mkpdf3, are commands which transform to the format of
mol2, PDBQ, GPF, and DPF, respectively. And finally autogrid3 and autodock3
calculate the docking energy of the two materials, the protein and the ligand.

Fig. 8. (a) AutoDock Procedure Steps (b) JCML Process Model

230 S. Hwang and J. Choi

Fig. 9. JCML Editing Windows: (a) Main Window, (b) Edge Window

Fig. 10. MSF main console

After JCML modeling, it is required that the job flow be specified. Figure 9 dis-
plays an editing window for the AutoDock. We drew a workflow for AutoDock using
the task and edge icons, and specified the task information in the right side of the
main window. We also set up the dependencies among nodes in the edge window.

Figure 10 displays the main console which monitors the status of the job flow. The
main console has three windows: a resource window which shows the current state of
the selected resource, a workflow window which illustrates the status of each task in
the workflow, and an event window which displays the event from the task.

MSF: A Workflow Service Infrastructure for Computational Grid Environments 231

4 Conclusion

In this paper, we described the architecture of a Meta Scheduling Framework. The
main purpose of a MSF is to provide a workflow service for general applications in a
Grid environment. Therefore, we designed and implemented a workflow description
language, JCML, to describe the flow of application, including complexity and de-
pendencies, and a workflow management system to execute and monitor this flow.

Currently, we are working to extend the architecture in order to enhance efficiency
and availability and to describe jobs in greater detail with JCML. In addition, a new
version of Globus 3.0, OGSA [12], has been released, which integrates scientific and
enterprise environments based on web service. The OGSA platform will be supported
by MSF in the near future.

References

1. I. Foster and C. Kesselman, ed., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, (1998).

2. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, GridFlow: Workflow Management for Grid
Computing, 3rd International Symposium on Cluster Computing and the Grid, (2003), 12-
15.

3. R. Stevens, A. Robinson and C. Goble, myGrid: personalized bioinformatics on the in-
formation grid, Bioinformatics, 19(1), (2003), 302-304.

4. M. Litzkow, M. Livny and M. Mutka, Condor - A Hunter of Idle Workstations, 8th Inter-
national Conference of Distributed Computing Systems, (1998), 13-17.

5. A. Winter, B. Kullbach and V. Riediger, An Overview of the GXL Graph Exchange Lan-
guage, Software Visualization. Lecture Notes in Computer Science, Vol. 2269, (2002),
324-336.

6. A. Cichocki, A. S. Helal, M. Rusinkiewicz and D. Woelk, eds., Workflow and Process
Automation: Concepts and Technology, Kluwer, (1998).

7. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, Grid Information Services for
Distributed Resource Sharing, 10th International Symposium on High-Performance Dis-
tributed Computing, (2001), 181-184.

8. R. Wolski, N. Spring and J. Hayes, The Network Weather Service: A Distributed Re-
source Performance Forecasting Service for Metacomputing, Future Generation Comput-
ing Systems, 15(5/6), (1999), 757-768.

9. The Globus Resource Specification Language,
http://www.globus.org/gram/rsl_spec1.html.

10. AutoDock, http://www.scripps.edu/pub/olson-web/autodock/.
11. Python Molecule Viewer, http://www.scripps.edu/~sanner/python/pmv/webpmv.html.
12. I. Foster, C. Kesselman, J. Nick and S.Tuecke, The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration, Open Grid Service Infrastruc-
ture WG. Global Grid Forum, (2002).

	1 Introduction
	2 Meta Scheduling Framework
	2.1 Job Control Markup Language
	2.2 Workflow Management Systems
	2.3 Components Architecture

	3 Implementation and Examination
	4 Conclusion

