
Evolution of Data-Base Management Systems*

JAMES P. FRY

Graduate School of Business Administration, University of Michigan, Ann Arbor, Michigar~ 58109

EDGAR H. SIBLEY"

Departme.nt of Information Systems Mana~eme~lt, University of Maryland, College Park, Maryland 207~.,
and National Bureau of Standards, Washington, D.C. 20285

This paper deals with the history and definitions common to data-base
technology. It delimits the objectives of data-base management systems,
discusses important concepts, and defines terminology for use by other papers in
this issue, traces the development of data-base systems methodology, gives a
uniform example, and presents some trends and issues.

Keywords and Phrases: data base, data-base management, data definition,
data manipulation, generalized processing, data model, data independence,
distributed data base, data-base mach!nes, data dictionary

CR Categories: 3.51, 4,33, 4.34

I. GENERALIZED PROCESSING

A data-base management system (DBMS)
is a generalized tool for manipulating large
data bases; it is made avai.able through
special software for the interrogation, main-
tenance, and analysis of data. Its interfaces
generally provide a broad range of language
to aid all users--from clerk to data adminis-
trator.

DBMS technology can be traced back to
the late fifties, when authors such as McGee
[G1 and G2] 1 discussed the success of "gen-
eralized" routines. These routines were
capable of sorting any file regardless of its
data content (the user merely supplying
parameters to direct the major elements of

* This work is sponsored in part by the National
Science Foundation Grant GJ 41831.
1Editor,s Note: See page 35 for the key to the
classifiation system used for references cited in
this paper.

the sorting process); those authors then pro-
posed that these ideas be extended into other
data-processing areas, such as file main-
tenance and report generation. This gen-
eralized processing entails the building of
special data functions which perform fre-
quently used, common, and repetitive data-
processing tasks. But such generality cannot
be accomplished without cost. The price of
generalized processing is a reduction in oper-
ating efficiency, often through interpretive
processing, or a necessary increase in re-
sources such as hardware capacity. The suc-
cess of generalized processing (and conse-
quently of generalized data-base technology)
thus becomes an issue of cost tradeoff.

Hardware improvements developed over
the past two decades have effected signifi-
cant decreases in price/performance ratio,
thereby tending to offset operational in-
efficiency and to emphasize the cost of ap-
plication and software development. The

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, Vol. 8, No, I, March 1976

~i.̧!111 ~o

8 * James P. Fry and Edgar H. Sibley

CONTENTS

1. G E N E R A L I Z E D PROCESSING
2. OBJECTIVES OF DATA-BASE MANAGEMENT

Data Availability
Data Quality
Privacy and Security
Management Control
Data Independence

3. FUNDAMENTAL CONCEPTS AND DEFINITIONS
Elements of Logical Structure
Introduction to Data Models
Mapping from the Logical to the Physical Structure

4. HISTORICAL PERSPECTIVE
Evolution of Data Definition Languages
Centralized Data Definition: Fifties and Sixties
Stored-Data Definition Languages: 1970's

Development of Report Generator Systems
Hanford/RPG Family

5. DEVELOPMENT OF DBMS
Early Developments: Prior to 1964
Establishment of Families: 1964-1968
Postley/Mark IV Family
Bachman/ IDS Family
Format ted File/GIS Family

Vendor/CODASYL Developments: 1968 to the Present
C O D A S Y L / D B T G Family
IMS Family
Inverted File Family
Additional Vendor Developments

6. T H E P R E S I D E N T I A L DATA BASE EXAMPLE
7. T R E N D S A N D ISSUES

Ad Hoe versus Programming Systems
Geographically Distributed Systems
Data-Base Machines
To Standardize or Not?

A C K N O W L E D G M E N T
CLASSIFICATION OF R E F E R E N C E S
R E F E R E N C E S
AVAILABILITY OF R E F E R E N C E S

v

benefits of a generalized approach can thus
be summarized as the elimination of program
duplication (frequently found in computing
systems), and the amortization of the one-
time development costs over many applica-
tions of the program.

In cases where a particular data-process-
ing application cannot be parameterized, the
usual recourse is to develop high-level lan-

guages, which a re themselves a form of
parameterized generalized processing, albeit
with very special parameters. For example,
the development of high-level interrogation
languages for ad hoc requests has broadened
the user access to data by providing a sim-
ple and, it is hoped, easy-to-use interface.
Such an approach allows the inquirer to use
a language similar to everyday English,
rather than requiring him to write a pro-
gram in an artificial language. Generalized
data-processing techniques have evolved
into a class of sophisticated, generalized
software systems, one of which is the data-
base management system. The reader should
carefully distinguish between the terms
DBMS and "data management." The
latter has been used by the government to
designate an administrative function, by
some hardware vendors to designate their
access methods, and by some software
vendors to designate and embellish compre-
hensive packaged systems.

2. OBJECTIVES OF DATA-BASE MANAGEMENT

The Guest Editor's Introduction to this
issue of COMPVTING SURVEYS discussed the
concepts of data-base technology and intro-
duced some of its objectives:

• to make an integrated collection of
data available to a wide variety of
users;

• to provide for quality and integrity
of the data;

• to insure retention of privacy through
security measures within the system;
and

• to allow centralized control of the
data base, which is necessary for
efficient data administration.

To this we add the objective of "data inde-
pendence," a term to be defined later [see
page 12] in this paper. This section will deal
with each of the stated objectives, relating
them to the overall functional architecture
of the DBMS.

While various "views of data" (the prin-
cipal topic of this issue of COMPUTING SUR-
VEYS) are important to the user interface,
the requirements for quality, integrity, se-
curity, and control have far-reaching effects
on the overall cost, accessibility, and per-

Computing Surveys, ¥oi. 8, No. I, March 1976

Evolution of Data-Base Management Systems • 9

formance of the system. Although it is
possible to add functional capabilities to an
existing system, the cost of retrofitting is
often prohibitive, and the post-design addi-
tion may adversely affect the system per-
formance. Although quality, security, and
control factors are given relatively scant
treatment in other papers in this issue of
SVRVEYS, it should not be inferred that these
are unimportant. In fact, the consequences
of excellent or poor satisfaction of these
needs may make or break a working system.

Data Availability

Everest [G12] states that the major objective
of a DBMS is to make data sharing possible.
This implies that the data base as well as
programs, processes, and simulation models
are available to a wide range of users, from
the chief executive to the foreman (Everest
and Sibley [GS]). Such sharing of data re-
duces its average cost because the com-
munity pays for the data, while individual
users pay only for their share. However,
under these circumstances the data cannot
"belong" to any individual, program, or de-
partment; rather, it belongs to the organiza-
tion as a whole.

What, then, is the overall cost of data? One
way to answer this question is by observ-
ing data entry. Keypunching and verifying,
or other types of data entry involving hu-
man keystroking, tend to cost about 50¢ per
thousand characters input. Thus, if the
average-sized file is two million characters
(a figure representative of much of today's
industry and government), it costs $1000 to
input each average-sized file. Under certain
conditions the cost of collecting data could
be substantially higher, e.g., when the data
must be collected by telemetry, or in long
and complicated experiments.

Another expense is associated with the
lack of data, the so-called "lost opportunity
cost." If data is not available when an im-
portant decision is to be made, or if duplicate
but irreconcilable data exists, an ad hoc and
possibly wrong decision results. Nolan
[A4] gives a scenario of a typical business
where a manager knew that data existed,
but some of it had been produced on a diff-

erent machine and some had incompatible
formats (different structures on different
tapes). Moreover, none of t he data defini-
tions were easily available. The manager
who needed the data for important predic-
tions was unable to obtain answers i n n
reasonable amount of time.

There are two important mechanisms for
making data available: the "data definition"
and the "data dictionary." A data definition
is a more sophisticated version of a DATA
DIVISION in COBOL, or a FORMAT state-
ment in FORTRAN; however, a data defini-
tion is supplied outside the user program or
query and must be attached to it in some
way. The data definition (as specified by a
data administrator) generally consists of a
statement of the names of elements, their
properties (such as Character or numerical
type), and their relationship to other ele-
ments (including complex groupings) which
make up the data base. The data definition
of a specific data base is often called a
schema.

When the data definition function is cen-
tralized (which is necessary to achieve the
objectives of DBMS), control of the data-
base schema is shifted from the programmer
to the data administrator [A1]. The pro-
grammer or the ad hgc user of a query lan-
guage is no longer a~e to control many of
the physical and logical relationships. While
this restricts the programmer to some ex-
tent, it means that all programs use the
same definition; thus any new program can
retrieve or update data as easily as any other.
Furthermore, greater: data definition capa-
bilities are provided, the storage and re-
trieval mechanisms are hidden from the
program, the formats cannot be lost, and the
programmer's task is si~apler.

Centralized data definition facilitates the
control of data duplication, which generally
entails some storage inefficiency. However,
not all duplication of dam is bad; a con-
troled duplication may be ~ e s s a r y to allow
special classes of users t o , b r a i n especially
fast responses without penalizing quality
for other users.

The data definition facility is inherent to
all DBMS. Without it, the data base is
owned by its progra~as, difficult to share,

Computing Surveys, V o l . 8 , N o . 1, M a r c h 1976
• i ? .

10 * James P. Fry and Edgar H. Sibley

and generally impossible to control. This,
then, is the cornerstone of data-base man-
agement systems.

Whereas the data definition facility is the
data administrator's control point, the data
dictionary [D1] provides the means of broad-
casting definitions to the user community.
The data dictionary is the version of the
data definition that is readable by humans.
It provides a narrative explanation of the
meaning of the data name, its format, etc.,
thus giving the user a precise definition of
terms; e.g., the name TODAYS-DATE may

! b e defined narratively and stated to be
stored in ANSI standard format as Year:
Month: Day.

Within the past five years a number of
data dictionary packages have appeared on
the market [D2]. Some of these are an in-
tegral part of the data definition function,
while others provide an interface to multiple
DBMS, and still others are stand-alone
packages.

The dictionary will normally perform
some, if not all, of the following functions:
storage of the definition, response to inter-
rogation, generation of data definition for
the DMBS, maintenance of statistics on use,
generation of procedures for data validation,
and aid in security enforcement. Obviously,
storage of the data definitions in the dic-
tionary is obligatory.

The dictionary wiil normally be able to
either provide formatted dictionaries (on
request) or respond to a simple query for a
data entry, or to do both. This facility al-
lows ad hoe users to browse through the
definitions (on- or off-line) to determine cor-
rect data names.

In some dictionary systems, especially
those that augment a DBMS, the data ad-
ministrator can invoke a data definition gen-
erator. This allows the administrator to pick
names of elements from the dictionary,
group them, and then produce a new data
definition.

The dictionary may be both a collector
for, and a repository of statistics on DBMS
usage. These statistics can be utilized to im-
prove the efficiency of the DBMS by re-
grouping elements for better accessing.

The dictionary may contain information
on techniques for validation of particular

elements, and the data validation state-
ments can be used to!generate procedures for
input editing or other quality checking.

The data dictionary is extremely impor-
tant as part of the DBMS security mecha-
nism. If an adversary knows you are gather-
ing data, that adversary has already violated
your security. For this reason, the data dic-
tionary should be as secure as the DBMS.
Furthermore, if security requirements are re-
tained in the dictionary they can be auto-
maticaliy checked (and special procedures
can be invoked) every time a data defini-
tion is produced for the DBMS. This would
improve security monitoring.

Data Quality

Perhaps the most neglected objective of
DBMS is the maintenance of quality. Prob-
lems relating to the quality of data and the
integrity of systems and data go hand-in-
hand. Data may have poor quality because
it was:

• never any good (GIGO--garbage in,
garbage out);

• altered by human error;
• altered by a program with a bug;
• altered by ~ machine error; or
• destroyed by a major catastrophe

(e.g., a mechanical failure of a disk).
Maintenance of quality involves the de-

tection of error, determination of how the
error occurred (with preventive action to
avoid repetition of the error), and correction
of the erroneous data. These operations en-
tail precautionary measures and additional
software functions within the data-base
management system. The prevention and
correction of the five listed causes of error
will now be briefly discussed.

In dealing with normal data-processing
applications, the programmer is faced with a
great deal of input validation. A survey by
the authors showed that about 40 % of the
PROCEDURE divisions of present-day in-
dustrial COBOL programs consists of error-
checking statements. If the validation re-
quirements can be defined at data definition
time, then error checks may be applied auto-
matically by the system at input, update,
manipulation, or output of data, depending
on the needs specified by the data adminis-

Computing Surveys, Vol. 8, No. I , March 1976
i

Evolution of

trator. Many current DBMS allow valida-
tion. Some have a check mechanism which
ensures that the values conform to the
stated PICTURE (like COBOL); they also
check that the value is within the defined
range, or that it is one of a predefined set. If
a system is to support such techniques it
must have special clauses in the data defini-
tion language (DDL), as well as a series of
procedures to be invoked on error detection.

A second cause of poor data is human or
program error. Little can be done to prevent
such errors unless they contravene some
validation rule, and their discovery nor-
mally involves human knowledge. The cause,
however, may be detected by referring to
the "audit trail." An audit trail is a log in
some journal of all changes made to the data
base. When a change is to be made, there are
two important objects: the original data and
the changed data. When logged, these ob-
jects are termed "before" and "after" im-
ages. Generally, these images contain the
data, time, and name of the procedure caus-
ing the change. They may also record the
name of the person who initiates the pro-
cedure. A quality audit is an attempt to de-
termine, through examination of the before
and after images, who or what procedure
changed the data value. A quality audit may
find that some user promulgates many errors,
whereupon the data administrator may re-
quest that the user take more care (or a
course in better techniques). If, however, the
error appears to have been generated by
some operational program, a programmer
may be called in to debug it.

Sometimes an error will be detected after
a procedure is partially completed. In this
case, as well as when a user makes a mistake,
it is often necessary to "back-out" the pro-
cedure or "back-up" the data base. This is a
process of reinstating the data that has been
incorrectly updated. Many data-base man-
agement systems provide an automatic
facility for reinstatement, achieved by
reading the before images from the audit
trail and replacing any updated data with
its prechange value.

Poor quality data can also be generated
by an unpredicted disaster. The process of
recovering from a permanent hardware
failure, or of restarting after a minor error

Data-Base Management Sy~tern~ " i 11
! i

generally involves t h e u s e of the audit trail.
In modern operating systems a restart facil-
ity is often prOvided. Normally, in order to re-
start the DBMS after a failure which does
not involve physical damage to the storage
devices, a "checkpoint" facility is used. A
checkpoint is a snapshot of the entire machine
condition (CPU, memory, etc.) recorded on
the log. This entry presents a known condi-
tion of the entire system.

A checkpoint may be either taken by the
computer operator or automatically initiated
by the DBMS. Usually the latter method is
triggered by a procedure which keeps count
of the number of transactions processed and
then initiates the checkpoint when a prede-
fined value is exceeded, The problem with
such facilities is that they often need a
quiescent system, i.e., one in which the trans-
actions are being held in queues or have been
completed. This "freeze" operation may
take some time. Unstarted procedures are
held until the checkpoint process has been
completed, causing a delay which can lead
to dissatisfied users.

After any major error it is possible to
back-up to the latest checkpoint on the log
and then move forward along the log, re-
placing updated (after) images of completed
transactions or reinitiating unfinished trans-
actions. Recovery can be a complicated
process, and many current data-base man-
agement systems rely substantially on the
capabilities of the underlying operating
system to perform the function.

Sometimes a major storage failure (e.g., a
disk crash) requires replacement of hard-
ware and total reloading of the (possibly very
large) data base. I t is not unusual to find
commercial and governmental data bases
with over one billion characters. A sequen-
tial load of such a large data base may take
two to six hours on present-day computers.
The reload is from a data-base dump, that is,
from a copy taken at some time in the past
(assuming possible failure of the original). A
data-base dump only represents the status
of the data base at a certain time, and any
updating performed subsequent to that
time must be replicated by using the log.
Many current systems use such techniques,
although some still rely on reinitiating and

Computes Surveys. Vol. 8, No. 1, Mar~h :197/6

12 • James P. Fry and Edgar H. Sibley

reprocessing the logged update transactions.
This procedure tends to be very slow.

The quality and integrity of data depend
on input-validation techniques in the origi-
nal data definition, logging of data-base
changes, periodic snapshots of the entire
machine status, and total or incremental
data-base dumping. These operations require
additional software in the data-base man-
agement system, both for initiation of the
protective feature and for its utilization to
reconstitute a good data base. Howexrer, they
entail an overhead expense which adds to the
normal running cost.

Privacy and Security

The third major objective of data-base
management systems is privacy--the need to
protect the data base from inadvertent ac-
cess or unauthorized disclosure. Privacy is
generally achieved through some security
mechanism, such as passwords or privacy
keys. However, problems worsen when con-
trol of the system is decentralized, e.g., in
distributed data bases, where the flow of
data may overstep local jurisdictions or cross
state lines.

Who has the responsibility for the privacy
of transmitted data? When data requested
by someone with a "need to know" is put
into a nonsecure data base and subsequently
disseminated, privacy has been violated.
One solution to this problem is to pass the
privacy requirements along with the data,
which is an expensive, but necessary addi-
tion. The receiving system must then retain
and enforce the original privacy require-
ments.

Security audits, another application of the
audit trail; are achieved by logging access
(by people and programs) to any secure in-
formation. These mechanisms allow a se-
curity officer to determine who has been ac-
cessing what data under what conditions,
thereby monitoring possible leakage and pre-
venting any threat to privacy. Much of this
technology is, however, still in its infancy.

Management Control

The need for management control is central
to the objectives of data-base management.

It includes the establishment of the data ad-
ministration function and the design of
effective data bases. Data administration
currently uses primitive tools; a discussion of
them would be beyond the scope of this
paper (see [A1, 2, and 3]). However, it is
important to note that data-base design in-
volves tradeoffs, because users may have
quite incompatible requirements. As an ex-
ample, one group may require very rapid
response to ad hoc requests, while another
requires long and complicated updating
with good security and quality control of
the data. The implementation of a system
responsive to the first need may suggest a
storage technique quite different from that
needed by the second. The only way to re-
solve such a conflict is to determine which
user has the major need. If the requirements
are equally important, a duplicate data base
may be necessary--one for each class of user.

Although the installation of a data-base
management system is an important step to-
ward effective management control, today's
data administrator faces a challenge: the
available tools are simplistic and seldom
highly effective. They involve simulation,
data gathering, and selection techniques.
Some new analytical methods appear promis-
ing [G3]. These methods select the "best"
among several options of storage techniques,
but they are usually associated with one
particular DBMS rather than with several.

Data Independence

Many definitions have been offered for the
term data independence, and the reader
should be aware that it is often used am-
biguously to define two different concepts.
But first, we must define other terms. A
physical structure 2 describes the way data
values are stored within the system. Thus
pointers, character representation, floating-
point and integer representation, ones- or

2 T h e t e r m s data structure a n d storage structure,
which were promulgated by the CODASYL Sys-
tems Committee [U2] can be attributed to l)'Im-
perio [DL2]. However, in computer science, the
term data structure is more closely associated with
physical implementation techniques such as linked
lists, stacks, ring structures, etc. To prevent am-
biguity we opt for the more basic terms, logical
and physical structure.

Computing Surveys, Vol, 8, No. I, March 1976

Evolution of Data-Base Management Systems • ,13

twos-complement, or sign-magnitude repre-
sentation of negative integers, record block-
ing, and access-method are all things associ-
ated with the physical structure. The term
logical structure describes the user's view of
data. Thus, a COBOL DATA DIVISION is
(mainly) a statement of logical structure; it
deals with named elements and their rela-
tionships rather than with the physical im-
plementation. A record in a COBOL program
is manipulated without knowledge of the
computer hardware or its access method.
As an example, the data item named
AUTHOR may have values FRY, SIBLEY,
FRANK, TAYLOR, CHAMBERLIN, etc.
Whereas the name AUTHOR is a logical
phenomenon, the representation of authors
is a physical phenomenon.

In the early days of DBMS, the term
"physical data independence" was used. A
system was said to be (physically) data in-
dependent if it could deal with different
physical structures and/or different access
methods, and if the user of the data base
did not have to provide information on de-
tails of the structure. Thus a definition of
physical data independence is:

A system is data independent i f the pro-
gram or ad hoc requests are relatively in-
dependent of the storage or access
methods.
Systems with physical data independence

provide a discrete number of choices for ira-
plementing the physical storage of data.
Other systems also allow the user to make
requests with little knowledge of the logical
structure of the data. Such systems, which
are said to have logical data independence,
may operate correctly even though the log-
ical structure is, within reason, altered. A
definition of logical data independence is:

The ability to make logical change to the
data base without significantly affecting
the programs which access it.
Logical data independence has two im-

portant aspects; first, the capability of a
data-base management system to support
various (system or user) views of the data
base, and second, the capability of the data-
base management system to allow modifi-
cation of these views without adversely im-
pacting the integrity of existing applications.
The latter capability is important in the re-

structuring function! [G13], but this defini-
tion of data independence is perhaps too
broad. It suggests that substantial logical
change could be made without creating a
need to change the programs--a difficult, if
not impossible task. However, a serious at-
tempt is being made to understand how
much logical change can be made without
adverse affect on the program. Some of the
different models discussed in this issue of
SURVEYS claim to be more data independent
than others. Full data independence appears,
however, to involve an understanding of
data semantics, the formalization of the
meaning of data. Research on data seman-
tics is currently in its infancy.

3. FUNDAMENTAL CONCEPTS AND
DEFINITIONS

Some important ideas were introduced when
we discussed the basic objectives of DBMS.
This section presents further concepts and
definitions.

Unfortunately, our language is rich in its
words and semantics about data. Entity,
item, name, element, value, instance, and
occurrence (to name a few) come ready-
equipped with meaning, yet they are used in
different ways. We must be precise, and are
thus forced to make exact definitions for
these words which we must use consistently.

Elements of Logical Structure

The starting point is to define the object of
the discourse, the entity, and the process of
its definition, which is a modeling process.
A human being is constantly "modeling" in-
formation--a baby sees an animal and says
"dog" (though it may be a horse). The
process of modeling information as data
often involves trial-and-e~ror. First, infor-
mation needs are determined, next data
(and processes) are structured to satisfy the
needs, and then data is restructured because
of changes in the need or necessary improve-
ments to the model.

The principal construct in the data struc-
turing process is the entity:

An information system deals with objects and
events in the real world that are of interest. These
real objects and events, called entities, are repre-
sented in the system by data. Information about

Computing SutWey$ ~ Vol. 8, No. 1, March 1976

14 • James P. Fry and Edgar H. Sibley

PRE$-NAME

:SPOUSE

MONTH DAY YEAR

FIGURE 1. The PRESIDENT entity.

a particular entity is in the form of "values" which
describe quantitatively and/or qualitatively a set
of attributes that have significance in the system
[MI].

Thus the goal of the data structuring process
involves the collection of data (a set of facts
capable of being recorded) about some
identifiable entities tha t convey information
(i.e., meaning to humans). The repository
for the data is the data base. A data base is
described in terms of its logical structure;
this provides a template for the data in-
stances which constitute the data base.

Data about an ent i ty is generally re-
corded in terms of some attr ibute(s) tha t
describes the entity. In the description of
the data base, separate attr ibutes are called
elementary items or, in brief, items, while the
collection of elementary items is termed a
repeating group or group. For example, the
ent i ty P R E S I D E N T may be described in
terms of items PRES-NAME, SPOUSE, the
group B I R T H - D A T E , and the repeating
group C H I L D R E N . The group B I R T H -
D A T E is made up of M O N T H , DAY, and
YEAR, while the repeating group CHIL-
D R E N is made up of C-NAME and D A T E
OF-BIRTH. There may be zero or many
repetitions of the C H I L D R E N group. The
definition of the P R E S I D E N T ent i ty is
illustrated in Figure 1. This represents, of
course, only one possible model of a defini-

tion of the P R E S I D E N T entity. Another
user may have a different viewpoint, and
need to add P A R T Y and S T A T E to the
model. Thus the dala base depends on the
(assumed) usage, an d the model may need
to be changed during the life of the system.

I t is possible to describe a "da ta model" of
an enti ty in a formal fashion using a set-
theoretic notat ion where:

• all repeating groups are enclosed in
{ } to represent the fact tha t they
may repeat as many times as neces-
sary, and

• all ordered sets or n-tuples are en-
closed in () to show tha t the order of
the items is important.

In this way, the enti ty P R E S I D E N T may
be defined as in Display 1 below.

An instance or occurrence of an ent i ty is a
set of values for each of the items of the en-
t i ty definition. Any repeating group in an
ent i ty has an occurrence which consists of
one value for each of its items. However,
there may be potentially zero or an un-
limited number of occurrences of a repeating
group in the occurence of the entity. Natur-
ally, each element value should be valid,
i.e., it should conform to the rules and must
be one of the possible members of the set of
allowable values.

If the names of the presidents of the
United States are the value set (or range) of
the domain named PRES-NAME, then we
have the value set in Display 2 below and can
construct one instance of P R E S I D E N T as:

(FORD, BETTY, (7, 14, 1913),
{<SUSAN, (12, 10, 57)), <JOHN, (09, 03, 52)),
(STEPHEN, (12, 21, 55)), (MICHAEL, (09, 17, 50))}).

For almost any real-world situation there
are many entities of interest which are re-
lated in some fashion. In a Presidential In-
formation System there will be entities such
as P R E S I D E N T , CONGRESS, ELEC-
TION, STATE, and A D M I N I S T R A T I O N ,
all of which are interrelated; for example,

Display I:

where
and

PRESIDENT -~ (PRES-NAME, SPOUSE, BIRTH-DATE, {CHILDREN})
BIRTH-DATE ~- (MONTH, DAY, YEAR)
CHILDREN = (C-NAME, DATE-OF-BIRTH)

Display 2: Value Set of PRES-NAME = {FO~RD, NIXON, JOHNSON, KENNEDY,. . .} ,

Computing Surveye, Vol. 8, No. 1, March 1976

Evolution

PRESIDENTs " W I N " ELECTIONs,
STATEs are admitted during a Presi-
dent's ADMINISTRATION, and PRESI-
DENT(s) serve with CONGRESS(es). A re-
lationship may therefore exist between the
instances of two entities. Typically, there
are at least three types of relationships:

• One-to-one: some of the Presidents
are first native sons of some states;
for example, Washington (one Presi-
dent) was the first native son of
Virginia (one state).

• One-to-many: during an Administra-
tion several STATES may be ad-
mitted, but a state is not admitted
more than once in different Adminis-
trations.

• Many-to-many: a President serves
with many Congresses, and a Con-
gress may serve under many PRESI-
DENTs.

More on this topic is discussed in other
articles in this issue of SURVEYS, but before
going further, the reader should note that
the following statements have different
meanings.

• "The relationship named A exists
between two entities, B and C"; and

• "Two instances P~ and Q1 of entities
P and Q, respectively, are related by
A,,

The first is a logical statement. I t states log-
ical relationships that may occur between
two entities; for example, Presidents (B)
win (won) (A) Elections (C). The second
statement refers to current values of data in
the data base; for example, NIXON (Qi), a
PRESIDENT (Q), wins (won) (A) the
1972(P~) ELECTION (P).

Relationships may be explicit or implicit.
The entities may be joined by some naming
convention (such as WIN), or the relation-
ship may be implied (as in the example of
PRESIDENT with the repeating group
CHILDREN).

Generally, the instances of certain items
in a group are in one-to-one correspondence
to an instance of the entity. For example,
the year of an election may uniquely identify
a presidential election, or the congress num-
ber may uniquely define a Congress. These
items are called identifiers or candidate keys.

of Data-Base Management Systems • 15
i

A key may be considered either a logical or a
physical phenomenon: the key may be used
to identify an entity (logical), or it may
cause the system to sort the set of instances
of entities into an order based on the value
of the key (physical). In this issue of SUR-
vEYS, key will be considered a logical con-
pect, but note that this definition allows
"sort by key" as a physical attribute of the
data base.

The discussion of entities, items, and
groups has involved logical structure. The
definition of this structure (a schema) re-
quires some formal language, which is
termed a data definition language (DDL).
This language may be formatted, like a
CoBoL DATA DIVISION, or be relatively
free-form. The following three articles in this
Special Issue give spedlfic examples of DDL
usage.

Introduction to Data Models

The evolving field of data models is often
hotly debated. Proponents of each model
point out its advantages, but so far there is
no concensus as to the best version. In
reality, there is a spectrum of data models
ranging from the CoBoL-like "fiat file"
(single entity model) to the complex ex-
tended-set model.

Since COBOL, the most widely used lan-
guage today, has a DATA DIVISION with
data definition capabilities, it represents a
good starting point for the discussion of data
models. Though limited, this data definition
capability allows tile group (termed a
RECORD in CoBoL) to be defined as an 01
level, followed by the items, groups, and re-
peating groups at other levels. The PRESI-
DENT entity, discussed previously, is shown
in Figure 2.

In COBOL, each item is formatted by de-

O1 PRESIOENT.
02 PRES-NAME PICTURE X(20) . . .
02 SPOUSE PIC X IIO)...
02 BIRTH- DATE. ,.

05 MONTH...
O3 DAY PIC..,
O3 YEAR...

02 CHILOREN OCCURS O TO N TIMES.,.
05 C-NAME.. .
0:3 DATE - OF - BIRTH...

FIGURE 2. A CoBoL-like definition for
PRESIDENT.

Computing Surveys. VoL 8. No. I , March 1976

• i

16 • James P. Fry a~d Edgar H. Sibley

fining a PICTURE. Thus PRES-NAME is
shown as 20 characters long, SPOUSE is 10
characterslong, while DAYistwo numerics.

The COBOL definition deals with one enti ty
(defined at the 01 level), but a COBOL struc-
ture may also be termed "contained" be-
cause the groups BIRTH-DATE and
C H I L D R E N are contained within the
P R E S I D E N T entity (see Figure 3). There
may be many levels of containment of groups
within groups. There is no semantic reason
why groups shown as contained in the
P R E S I D E N T entity should not, by some
other model or user, be considered separate
entities; i.e., B IRTH-DATE and CHILD-
REN might each be entities. The relation-
ship between PRESIDENT, BIRTH-DATE,
and C H I L D R E N entities may, however, be
constrained because the two latter are con-
tained entities tha t are not really separate,
but rather, are "owned" by the PRESI-
D E N T entity. Such a model is said to be
"hierarchical." Thus a hierarchy of enti-
ties involves a superior enti ty and one or
more inferior entities, each of which may
participate as superior entities at a third
level, etc. A hierarchy represents a " tree,"
"bush," or "fan-out" of entities all related
by a family-tree-like relationship (with no
sons shared by different fathers). The top-
most level of the hierarchy is termed the
entry or root--terms arising because the

PRESIDENT
I PRES- NAME B~ATE

C H I L D]

CONTAINMENT

PRESIDENT RE -N"ME I

FIGVRE 3. The PRESIDENT entity as con-
tained and hierarehieM structures.

"way in" to the enti ty is its entry, or (when
stood on its head) it" i s the "root" of the tree.

Logically, containment and hierarchical
representations are equivalent; however, the
physical implementation of such systems
causes differences in the way they are ma-
nipulated. (Hierarchic systems are discussed
in this issue by Tsichritzis and Lochovsky
[see page 105].) The hierarchic model has a 1
to N relationship between an owner and
member entity; e.g., for one P R E S I D E N T
there may be many (or no) CHILDREN. I t
also has two constraints: no member enti ty
can be shared by the owner entities, and no
enti ty at a lower level may own a member at
a higher level in the hierarchy (assuming the
words "lower" and "higher" refer to the po-
sition down a page, with the root at the top).
The second constraint really follows from
the first, but it has important effects.

If we first relax the multiple ownership
constraint, it is possible to have the same
member enti ty participating in two different
relationships with a single owner entity.
This requires a means of distinguishing the
relationships. As an example, the relation-
ships between P R E S I D E N T and STATE
may be both ADMITTED-DURING-AD-
MINISTRATION and NATIVE-SON: a
President may be in office when one or more
STATE(s) are admitted, and one state may
have zero or several native sons as Presidents.
This problem can be resolved by labeling the
arcs (showing the relationships between the
entities) with the name of the relationship,
as shown in Figure 4.

The second constraint must be re]axed
carefully. Most graphical or network models
still retain one constraint: tha t no enti ty
may participate as both owner and member
in the same relationship. This may appear
unfortunate or unnecessary; after all,
PEOPLE do EMPLOY other PEOPLE,
and some PEOPLE are PARENTS-OF
other PEOPLE. However, by careful de-
sign this problem can be resolved. Discussion
of this and concepts of the general network
model is given in the paper by Taylor and
Frank [see page 67].

At the more theoretical end of the spec-
t rum is the class of data models based on

Computing Surveys, Vol. 8, No. I, March 1976

Evolution of

AOM,N,STRA,

/ ~ ~ NATIVF- ml DURING J
SERVES/ \ "<,:~'~ | AOMINISTRATION|

FIGUR~ 4. Some ne twork s t r u c t u r e examples .

mathematics, especially on set theory:
• relational,
• binary association, and
• extended set models.
The relational model [M3] deals with en-

tities which have no containment. Thus
each entity is made up only of items. The
notation introduced earlier can be used to
define the same three entities (two of them
unchanged):

PRESIDENT = (PRES-NAME, SPOUSE)
BIRTH-DATE = (MONTH, DAY, YEAR)
CHILDREN = (C-NAME, DATE-OF-BIRTH).

But there are now no links between the three
entities. These may, however, be made ex-
plicit by using the candidate keys to estab-
lish the relationships:

P-DATE-OF-BIRTH = (P R E S - N A M E , M O N T H , D A Y , Y E A R)
P-KIDS-OF = (P R E ~ - N A M E , C - N A M E)

assuming that the candidate keys (unique by
definition) are PRES-NAME,. MONTH,
DAY, YEAR, and C-NAME. Another
method is to link the entities implicitly by.
passing the owner candidate key (PRES-
NAME) into the dependent entities:

PR-BIRTH-DATE = (P R E S - N A M E , MONTH, DAY, YEAR)
PR-CHILDREN = (P R E S - N A M E , C-NAME, DATE-OF-BIRTH).

The instances "of a group are often called
n-tuples in the literature of relational sys-
tems, which are discussed in the paper by

Data-Base ManagemepJ 8y~ems • 17
i

Chamberlin [see pag~ 43]. Relational sys-
tems have been in use for some time at uni-
versities and research laboratories, e.g., the
use of MAcAIMs [Z1] and AvMINS [Z2] at
MIT, and of RDM$ [Z3] at General Motors
Research. Some prototype systems are ap-
pearing on the market now.

The binary association model, as dis-
cussed by Senko [DL5], is part of an attempt
at understanding and formalizing data se-
mantics through the use of binary relations.

Although one of the earliest set processors
was proposed in the Information Algebra
[M1], Childs' set model [M2] was one of the
first to be implemented, and it is also being
investigated by Hardgrave [M4]. The ex-
tended set allows storage of a very wide
range of ordered sets and ordinary sets, and
is intended to provide maximum generality
in storing relationships. However, applica-
tion of these models is still in the realm of
research, though one commercial system is
now available [V24].

To recapitulate, information structuring
(the selection of entities and specification of
relationships between them) is a modeling
process with little methodology, other than
common sense. In order to use a DBMS, the
information structure must be mapped to

the logical structure of the system. The
mapping is expressed in a I~DL. The in-
stances of the data (the data base) are
stored by the DBMS to conform to this
logical structure. A DBMS generally sup-
ports only one of the data models: relational
hierarchy, or network. Since each model uses
a different terminology, Table 1 attempts to
equate the various terms used with the con-
cepts that have been developed in this sec-
tion.

The criteria for designing and selecting a
"best" model has not yet been established--
nor is it likely to be established in the near
future. The user is therefore faced with two
decisions: which data model to utilize (i.e.,
which type of DBMS), and how to structure
the data using the chosen model.

Computing Surveys, Vol. 8, No. 1, March 1976

18 • James P. Fry and Edgar H. Sibley

Convegt Relational Nawork Hierarchic

I t e m
I tem value
Group.
Entity (type)
Entity instance

Relationship

Relationship
instance

Data administrator
view

Definition of data
administrator view

User view
Definition Of user

view
Data-base subdivi-

sion
Entry points

Single un ique / i den t i -
fier

role name/domain •-data item type item/field
component • data item occurrence value
not affowed. " igroup group
relation, record type entry/segment type
tuple record occurrence entry/segment occur-

rence

foreign key comparable set type hierarchic (implied)
underlying domains

set occurrence assembly

da t a model logical s t ruc tu re logical s t r uc tu r e

d a t a model definit ion schema schema

da t a submodel
da t a submodel defini- subschema

t ion
area

subschema

pr imary key

cand ida te key

s ingular sets CALC records

key

root group
root segment
sequencer (unique)

TABLE 1. COMPARATIVE TECHNOLOGY.

Mapping from the Logical to the Physical
Structure

The need to create and load a da ta base, i.e.,
to make the da ta definition and then popu-
late it with data, leads to the physical struc-
ture, which is the representation of da ta in
storage. The accessing process for the da ta
base management system is shown in some-
what oversimplified form in Figure 5. The
definition of the logical s tructure is stored
within the DBMS and associated with the

USER OR PROGRAM
REOUEST

i
. T , STORED
LOGICAL ASSOCIATION OF/ DEFINITION
NAMES IN REQUEST WITH L (LOGICAL STRUCTURE)
,DATA DEF, .NITION J " ~

IOFACCESS T.O } IB I

FIGURE 5. Logical and physical aspects of a
DBMS.

request so tha t any logical relations may be
derived. As an example, the request:

PRINT SP.OUSI,: WIIERE PlIES-NAME :="FOIID"

does not mention tha t we are dealing with a
P R E S I D E N T entity; it is left to the D B M S
to discover this fact from the logical struc-
ture. The physical mapping must have some
mechanism tha t will determine which da ta
to retrieve (using the key P R E S - N A M E if
possible), and then will call the relevant
operating system access method and apply
any deblocking tha t is necessary to return
the required portion of the character stream.

The process of mapping from occurrences
of data to their bit-string representation on
disk or tape is generally system-dependent;
therefore, these factors are discussed in the
separate papers in this issue of SURVEYS.
Most DBMS format (block and manage)
the pages or records themselves, and most
use the operating system access method to
store and retrieve the da ta from secondary
devices.

In fact, because most modern D B M S use
the available operating system, they gen-

Computing Surveys, Vol. 8, No. I, March 1976

Evolution of

erally use many of its facilities. Therefore,
communication management facilities, pro-
gram library management, access methods,
job scheduling, special program manage-
ment (e.g., sorting and compiling), concur-
rent access prevention, checkpoint facility,
etc. typically are all "adopted" by the
DBMS, though some rewrite and additions
may be necessary.

4. HISTORICAL PERSPECTIVES

The origin of DBMS can be traced to the
data definition developments, the report
generator packages, and the command-and-
control systems of the fifties--a time when
computers were first being used for business
data processing. Many systems have been
developed since the fifties (See the surveys
by Minker, [U1, 4]). M I T R E [U3, 8] and
CODASYL (U2, 7] show numerous system
implementations that have generated wide
interest among users.

In 1969 Fry and Gosden [U5] analyzed
severM DBMS and developed a three-cate-
gory taxonomy: Own Language, Forms
Controled, and Procedural Language Em-
bedded. Succinctly stated, these categories
can be contrasted as follows: Own Language
Systems (such as GIS IV16]) have a high-
level, unconventional programming lan-
guage; Forms Controled Systems (such as
MARK IV IV12]) use the "fill-in-the-blank"
approach, and Procedural Language Sys-
tems (such as I-D-S IV9]) take advantage of
existing higher-level programming languages.

In 1971 the CODASYL Systems Com-
mittee [I6] observed that the most significant
difference among DBMSs was the method
employed in providing capabilities to the
user. The Committee developed a two-
category classification scheme, Self Contained
(which included the Forms Controled cate-
gory) and Host Language.

It is impossible to survey all systems, but
it is possible to trace the evolution of the
DBMS by tracing the evolution of two pre-
cursors of data base management: data
definition languages and the development of
generalized 1RPG systems.

Data-Base Management S y ~ a • 19
i

Evolution of Data Definition Languages

One important factor in the evolution of
DBMS is the development of data defini-
tion languages. They provide a facility for
describing data bases that are accessed by
multiple users and by diverse application
programs.

Centralized Data Definition: Fifties and
Sixties

Probably the first data definition facility
was the COMeOOL [DL1] developed at the
MIT Lincoln Laboratory for the SAGE Air
Defense System in the early fifties. COMPOOL
provided a mechanism for defining attributes
of the SAGE data base for its hundreds of
real-time programs. The COMPOOL concept
was later carried over to JOVIAL [PL4] (a
programming language), but some of the
capability was lost when the language was
implemented under a generalized operating
system; the data definition became local to
the language rather than global to the sys-
tem.

About the same time, hardware vendors
were developing programming languages for
business applications: FACT [PL1] was de-
veloped by Honeywell, GECOM [PL3] by the
General Electric Company, and Commercial
Translator [PL2] by IBM; all provided some
form of data-definition facility. GEcoM and
Commercial Translator provided the capa-
bility of defining intrarecord structures, and
FACT offered the more advanced capability
of providing inter-record hierarchical struc-
tures.

Under the aegis of CODASYL, these
vendor efforts were merged into COBOL [PL5]
in the late fifties. This language has a cen-
tralized DATA DIVISION which achieves
the separation of the description of data
from the procedures operating on it. While
the DATA DIVISION initially mirrored the
data as stored on tape or cards, implementors
soon found themselves using different ways
of physically storing data. This inherent in-
compatibility between physical data stored
by different manufacturers becomes an im-
portant factor when data must be exchanged
between two systems.

Approaches which attempt to mitigate the

Computing Surve~Vs, VoI. S, No. 1, March 1976

20 • James P. Fry and Edgar H. Sibley

data-transfer problem are the subiect of
recent research on the description of physi-
cal structures and the development of stored-
data definition languages.

Stored-Data Definition Languages: the Seventies

One of the first efforts in this area was
mounted by the CODASYL Stored-Data
Definition and Translation Task Group
[SL2] in 1969 with the goal of developing a
language to describe stored data. At the 1970
ACM SIGFIDET (now SIGMOD) meet-
ing, a preliminary report was made [SL3], and
later reports were published in 1972 [SL5].
Notable basic research efforts in the develop-
ment of these languages were reported by
Smith [SL1] and Sibley and Taylor [SL4, 7]
in 1971.

The Data Independent Accessing Model
(DIAM) [DL3], developed by Senko and his
colleagues at the IBM San Jose Research
Laboratory, provides a multilevel data de-
scription capability. The description starts
at the information level, structures this into
a logical definition, adds encoding informa-
tion, and ends with a physical description of
the storage device and its logical-to-physical
mapping structure. Each level provides aug-
mentation of the description at the preceding
level. Recent work by Senko [DL4,5] ex-
tends the information level in a new language
called FORAL.

Thus, the single-level data description
facility of the fifties, made incompatible by
storage developments in the sixties, led to
the recent development of stored-data de-
scription facilities in the seventies.

Development of Report Generator Systems

The development of programming languages
originally allowed the user (a programmer)
to define reports by giving simple definitions
of the format of the lines and then writing
procedures to move data into buffers prior
to printing each line. Therefore, the program
written to produce a complete report could
consist of large numbers of statements in-
volving expensive programming. The de-
velopment of report generators stems from a
need to produce good reports without this
large programming effort. In most cases, re-

port generators cani perform complex table
transformations and produce sophisticated
reports from a data base. These, then, al-
lowed the user to dxamine and manipulate
large volumes of data, and they may be
said to be a precursor, or a particular type of
modern DBMS.

The Hanford/RPG Family (Figure 6)

The patriarch of today's RPG system was
developed at the Hanford (Washington)
operations of the Atomic Energy Commis-
sion, which was then managed by the Gen-
eral Electric Company. In 1956 Poland,
Thompson, and Wright developed a gen-
eralized report generator [G1] (MARK I) and
a generalized sort routine for the IBM 702.
The capability was extended in 1957 by the
development of a report and file maintenance
generator (MARK II). These routines pro-
vided the basis for a joint development by
several users under the SHARE organiza-
tion of the 709 Package (9PAc) [Wl] for
the IBM 709/90.

9PAc is the principal ancestor of most
commercial report generators developed
since 1960. Foremost among these is the
Report Program Generator (RPG) de-
veloped for the IBM 1401 in 1961; this has
evolved into the RPG for the IBM System/
360 and an enhanced RPG II for the IBM
System/3, System/360, and several other
computers [W2, 3]. Other members of the
Hanford family include the COGENT sys-
tems, developed by Computer Sciences
Corporation for the IBM 709 and System/
360 between 1965 and 1969 [Y5], and the
SERZ~S system [Y9].

Another system, also based on MARK II
ideas, was being defined during the late
fifties in. a SHARE 704 Project under Flet-
cher Jones. This IBM 704 system, called
S u R ~ [W4], was the predecessor of GZRLS,
the partiarch of the Postley/MARK IV
family.

5. DEVELOPMENT OF DBMS

The development of the data-base manage-
ment systems may be divided into three
somewhat overlapping periods: the early
developments, prior to 1964; the establish-

Computing Surveys, Vol. 8, No. I, March 1976

Evolution of Data-Base Ma~agement Systems 21

1956 GENERAL ELECTRIC -HANFORD REPORT GENERATOR (MARK I)
(IBM 702)

1967 GENERAL ELECTRIC- HANFORO REPORT • FILE MAINTENANCE
GENERATOR (MARK]Dr) (I ~M 702)

J \
19 ,59 SHARE ORGANIZATION 9PAC (IBM 70~) SURGE (IBM 704)

1961 IBM / / R {see FigS)
/

/
I - D -S

(see Fig.9)

1965 IBM RPG(IBM SYSTEM/360) COGENT

I \
RPG] I (|BM SYSTEM/3) SERIES

FIovRZ 6. The Hanford/RPG Family.

meat of families during the period 1964-
1968; and the vendor/CODASYL develop-
ments from 1968 to the present. Since the
characteristics of the data-base management
systems differ considerably during these
periods, we discuss them separately.

Early Developments: Prior to 1964

The impetus for DBMS development came
originally from users in government, par-
ticularly from the military and intelligence
areas, rather than from industry and compu-
ter manufacturers. Although these prototypes
bear little resemblance to today's systems
and were somewhat isolated, they provided
some interesting "firsts" in the evolution
of data-base technology. They also provided
the beginnings of several significant DBMS
families.

In 1961 Green [X2] and his colleagues de-
veloped a natural-language system called
BAsE-BALL. Though not a data-base man-
agement system by current definition, it
made a contribution to the technology by
providing access to data through a subset of
natural language (a limited vocabulary of
baseball-related terms). At approximately
the same time, the first implementation of a
B-Tree was described by Collilla and Sams
ix6].

Cheatham and Warshall were probably the

first to discuss the translation of a query
language. They designed a language, QueRY
IX7], and developed techniques for analyzing
its syntax and compiling statements into
machine code.

One of the first identifiable data-base man-
agement systems to appear in the literature
was an elegant generalized tape system de-
veloped by Climenson for the ROA 501 in
1962. This system, called RetfievM Com-
mand-Oriented Language [KS], provided
five basic commands, with Boolean state-
ments permitted within some of them. The
user had to specify the data description with
the query so that a program could be bound
to its data.

Another early and ambitious develop-
meat was ACSI-MA'rm IX1] sponsored by
the US Army in the late fifties. This system
was designed by Minker to emphasize effec-
tive memory utilization and inferential
processing. It could make inferences such
as: if John is the son of Adam, and Mary is
the sister of John, then Mary is the daughter
of Adam. It contributed the first generalized
data-retrieval accessing package for a disk-
oriented system with batched requests, a dy-
namic storage algorithm for managing core
storage, and the first assembler to use a
dynamic storage allocation routine. Because
disks were not reliable at that time, the
ASCI-MATiC system was never fully imple-

Computing Surveys, Vol. 8, No. I, March 1976

i

22 • James P. Fry and Edgar H. Sibley

mented. A prototype version was imple-
mented later at RCA (1964).

The US Air Force also pioneered develop-
ment of DBMS by sponsoring several
projects at the MITRE Corporation. The
prototype, called Experimental Transport
Facility (ETF), led to the Advanced Data
Management System (ADAM) [X24, 25, 27,
33], initiated in 1962. ADAM was imple-
mented on an IBM 7030 (STRETCH) c o m -
p u t e r , with the design goals of providing a
laboratory for modeling, prototype develop-
ment, design verification, and evaluation of
DBMS. Although ADAM did not meet all
its ambitious design goals [X37] (many have
not yet been achieved anywhere), it still re-
mains a significant contribution to the tech-
nology.

The COL~NGO system [X22], a contempo-
rary of ADAM, was really a series of tape-
oriented data-base systems with CoBoL-like
logical data structures implemented on the
IBM 1401 computer system. The C-10
IX30] system, originally named as a follow-on
to COLINGO, was implemented on the IBM
1410 computer and embodies many of the
ADAM concepts. The influence of ADAM can
be seen in System Development Corpora-
tion's LVCID [X13, 21], and in parts of
Auerbach's DATA MANAGER-1 (DM-1) [X31].

Establishment of Fami!ies: 1964-1968

During this period the isolated developments
diminished and fulliscale families of DBMS
emerged, some borrowing heavily from the
past, others from sibling developments. A
family is not limited to one company or
government agency; because of the mobility
of its developers, a family may spread across
organizations, providing cross-fertilization
of ideas. Although the family lineages of
DBMS are sometimes intertwined, each
can be traced to its progenitor.

The Postley/Mark IV Family (Figure 8)

One early system, which evolved into the
MARK IV family, was GIRLS (Generalized
Information Retrieval and Listing System),
developed for the 7090 by Postley [X4]. In-
fluenced by the SHARE SVRGE development
(as discussed on page 20), Gcsc led suc-
cessively to the development of the MARK I,
MARK II, and MARK III systems for the
IBM 1401/60 at Informatics between 1961
and 1967. In 1968 the highly successful
MARK IV SYSTEM [V12] was released for use
on the IBM System/360. Since then, nu-
merous releases of MARK IV have provided
over twenty new features, and MARK IV has
now been implemented on other hardware.

ETF

/
1962 MITRE ADAM (IBM 7030)

/ / / '

1965 MITRE /

/
/

/
/

1967 SDC LUCID (see, Fig. 13)

MITRE BRANCH I

1969 AUERBACH

1970 WESTERN ELECTRIC

COLINGO (! BM 1401)

J
C-IO (IBM 14101

\
\

\
\
\

\ ACS[-MATIC / \ /
\\\ /

DM-I (U 1218)
, . 6 o o o ,

FIGURE 7. The M I T R E / A u e r b a c h Family .

Computing Surveys, Vol, 8, No. 1, March 1976

1962 AIS

1962 INFORMATICS

1964 INFORMATICS

1966 INFORMATICS

1967 SCIENTIFIC DATA

1968

SYSTEMS

INFORMATICS

Evolution of Data-Base Managem~ ~y~ems
l

GIRLS (IBM 7090) (see Fig.6)

i
MARK I (IBM 1401/60)

I
MARKH (IBM 1401/60)

I
MARK m (IBM 1401/60)

MANAGE (XO$ 9401

MARK]~ ASI-ST APPLICATION
(IBM SYSTEM/ (IBM SOFTWARE INC,

360) SYSTEM/360)

ISUNDEEN BRANCH I

The Postley/MARK IV Family. FIGURE 8.

• 2 3

A significant offshoot of the Postley/
MARK IV family is the Sundeen branch. This
spans two different companies, starting with
the MANAGE System [X23, Y4] developed at
Scientific Data Systems, and followed by
the AS-IST system IV1] developed at Appli-
cations Software in 1967 for the IBM Sys-
tem/360.

Bachman/IDS Family (Figure 9)

The Integrated Data Store (I-D-S) IX15,
18] was developed by Bachman and his col-

leagues at the General Electric Company in
1964. The I-D-S system, which stems from
the same needs as 9 PAC, combined random-
access storage technology with high-level
procedural languages (GEcoM in 1963, and
COBOL in 1966) to provide a powerful net-
work model of data. Significant I-D-S de-
velopments included:

• new data manipulation verbs or pro-
cedure calls at the high4evel language
interface;

• separate storage- and programdevel
item descriptions;

1964 GENERAL I-D-S/GECOM (GE 400)(see Flg. 6)
ELECTRIC) ~

I
1966 GENERAL I-D-S/COBOL APL (IBM SYSTEM/560) GENERAL

ELECTRIC • / ~H6000) (see Fig. II) MOTORS

$970 ELECTRIGENERALc dotoBASIC ~ .

1973 CODASYL DDLC 73 8 \

197,5 HONEYWELL I-D-S/t1 (H60001 MDQS

FIGURE 9. The Bachman/IDS Family.

Computing Surrv~s, VoL 8, No. 1, March 1970

24 • James P. Fry and Edgar H. Sibley

• implicit insertion and removal of
groups from relationships, based upon
selection and ordering rules;

• retrieval of, and modification to both
primary and secondary keys;

• data paging concepts based on logical
data-base keys;

• incremental recovery and restart
using "before" and "after" images;
and

• shared access to the data base, with
automatic detection of interference
and automatic restart capability.

Since 1964 the I-D-S system has evolved
under several different hardware systems,
operating systems, and host languages. Re-
cently, a new version, I-D-S/II [V9], using
COBOL 74 [PL7], has been made available by
Honeywell. I t is consistent with the CODA-
SYL DDLC 73 specification [$3] which will
be discussed in the section on the CODASYL/
DDLC 73 specification [$3] which will be dis-
cussed in the section on the CODASYL/
DBTG Family, on page 25, and with recent
COBOL additions.

In 1966 Dodd and his colleagues at Gen-
eral Motors Research developed APL (Asso-
ciative PL/ I) [X28], which is a development
somewhat similar to that of I-D-S, but
intended to provide data-management func-
tions for a computer-aided design environ-
ment [Gll]. APL provides six data-manipu-
lation verbs in a PL/ I host-language

environment: CREATE, INSERT, FIND,
FOR EACH, REMOVE, and DELETE.
Another contribution of APL was the intro-
duction of a distinct technology which
separated logical relationships of the owner
and member groups from their physical
implementation.

Another branch in the I-D-S family is the
dataBAsIc system [Vll]; implemented by
Dressen at General Electric (now Honey-
well) in 1970. This system offered the non-
programming user high-level access to
homogenous files (single record type) in a
time-sharing environment using the BAsIc
programming language. Its only retrieval
statement consists of the FOR (Boolean
search statement), which qualifies a set of
groups (records) to be retrieved. Each re-
trieval is processed by any number of pro-
cessing statements until a concluding
NEXT statement is encountered.

A recent offshoot in the I-D-S family is the
Honeywell Management Data Query Sys-
tem, MDQS [V10]. This system is a self-
contained query and report specification
facility to access sequential, index sequential,
and I-D-S files.

Formatted File/GIS Family (Figure 10)

At about the same time as the host language
progenitor (9PAc) was evolving, a series of
government systems was being developed to

1958

1959

1961

1963

1965

1969

1970

SAGE
I
J IRS (DTMB)(IBM 704)

, I
TUFF/TUG (DTMB)(IBM 704/91

FFSISAClllBM 70901 IPS (NAVY) IPS IPS
(CD i 16041 (IBM 7090) (AN/UYK-I)

"'""FFS(FICEU) I 1410) FFS(IDHS) R(BM
(,BMI40I) / ~

~ FFS (DCA/NMCSSC) FFS (D|A-IOHS)
\ \ (IOM 1410) \
\ \ \

GIS \ NIPS (IBM SYSTEM/360) CO
(IBM SYSTEM/ \ (IBM SYSTEM/360)

360) \ I
FFs M,OMS(',M SYSTEM
(, 6 M S ~ " / 3 S O) /36O. He000)

FIGURB 10. The Format ted Fi le /GIS Family.

Computing Surveys, Vol. 8, No. 1, March 1976

Evolution of Data-Base Management ~gystems • 25

support the needs of the Command-and-
Control and the Intelligence communities.
Perhaps the most prolific of these was the
Formatted File family, which spans all three
development periods. Its origins can be
traced to a series of systems developed at the
David Taylor Model Basin ~ by Davis, Todd,
and Vesper. One of the principal systems--
Information Retrieval (IR) IX3, 9J--was an
experimental prototype developed in 1958
for the IBM 704. This was followed by two
formatted file-processing packages: Tape
Update for Formatted Files, TUFF [X16, 20],
and Tape Updater and Generator, TuG
[X5] (both developed to run on the IBM 704).
Later this family split into two branches in
the Air Force and Navy. The Air Force
branch, SAC/AiDs Formatted File System
[X14], was developed in 1961 for the Stra-
tegic Air Command 438L system. Its major
contribution to data technology was the
development of a file format table, i.e., a
"self describing" data base. By storing a
machine-readable data definition with the
data, each data base was directly accessible
by FFS.

The Navy branch, Information Process-
ing System (IPS) [Xll, 12, and Y10], was
also developed in 1963 for the CDC 1604 by
NAVCOSSACT. IPS also made contribu-
tions to data-base technology in the imple-
mentation of a multilevel hierarchically
structured data base on sequential media,
and in its implementation on several differ-
ent hardware systems, such as the IBM
709/90 [X19] and the AN/FYK-1 [X32].

During the implementation of IPS in
1963, another branch of the family was de-
veloped for the Naval Fleet Intelligence
Center in Europe (FICEUR) [Xl0]. This
FFS was patterned after the SAC FFS and
implemented on the IBM 1410. SAC also
added an FFS on the IBM 1401 for the
Pacific Air Force Headquarters. This system
was later reprogrammed for the IBM Sys-
tem/360 and is still in use on smaller models.

About 1965 the SAC and FICEUR
branches of the formatted-file family merged,
resulting in the NMCS Information Proc-

3 The Dav id Tay lor Model Bas in is now called the
Dav id Taylor Nava l Ship Research and Develop-
men t Center .

cessing System (Nn~s)i[X17]. NIPs added the
concepts of logical file maintenance, im-
proved query language, and on-line process-
ing. In 1968 NxPs was converted from IBM
1410 to IBM System/360 and named NIPs-
360 [Y12].

A cousin of NIPs was also developed for
the intelligence community--the Intelligence
Data-Handling Formatted File System
[X26]. This emphasized efficient large-file
processing and provoked interest in machine-
independent implementation using COBOL.
Prototype development of such a system be-
gan in 1968 by the Defense Intelligence
Agency. The effort was first named the CO-
BOL Data Management System (CDMS)
[Y8]; later (1970) it was renamed the Ma-
chine Independent Data Management Sys-
tem (MIDMS) [Yll]. I t was originally im-
plemented on the IBM System/360 and
was later coded (in 1973) for the H6000
series.

SAC FFS is considered to have inspired
IBM's Generalized Information System
(GIS) [V16, 17]. This was originally de-
veloped as a stand-alone program product
for System/360 (1965), but has been ex-
tended and enhanced to act as either a
stand-alone system or ad hoc interrogation
interface for the IMS family.

Vendor/CODA$YL Developments: 1968 to the
Present

The trend in this period shifts from in-house
family-oriented activities to proprietary
vendor development. As a result, some ad-
vances made by commercially available
DBMSs disappeared into a veil of secrecy.
While few references have appeared recently
on the internals of particular DBMSs, the
technical literature abounds with articles on
mathematical and theoretical aspects, espe-
cially of relational systems. Chamberlin's
article (see page 43) provides an excellent
bibliography of this development. Recent
years also show the entry of CODASYL into
the data-base field.

CODAS YL/DBTG Family (Figure 11)

Based upon the pioneering ideas of I-D-S
and APL, the CODASYL Programming

Computing SurvCye. Vol. 8, No. 1, March 1976

26 • James P. Fry and Edgar H. Sibley

1964 GENERAL Z-D-S (see Fig.9)
ELECTRIC " ~ /

1966 GENERAL APL
MOTORS

1968 CODASYL LIST PROCESSING
....-..- ~..-.- TASK GROUP

1969 CODASYL DBTG_ SPECIFICATION

1970 B.E GOODRICH/ I D M S ~ XEROX DATA
CULLINANE (IBM SYSTEM/ (~ 1 ~ , ~) ~ SYSTEMS.

360)
1971 CODASYL DBTG 1971 \ DMS I100 UNIVAC

SPECIIFICATIONx ~(UNIVAC I100)
1973 CODASYL DDLC 1973 ~ EDMS XEROX

SPECIFICATION ~ (SIGMA 5,7,9) DATA ~ p SYSTEMS
. \
HOLAS (P I007) PHILIPS

Z-D-S/Z DBLTG 1975 CODASYL
SPECIFICATION

I
IDMS-~ COBOL t976 COOASYL
(PDP 11 /45) SPECIFICATION

1973 PHILLIPS

1975, HONEYWELL

1976 BF, GOODRICH/
CULLINANE

FIGURE 11. The CODASYL Family.

Language Committee started a new task
group to work on a proposal for extending
COBOL to handle data bases [PL6]. This
group was originally called the List Process-
ing Task Group, though its name was later
changed to the Data Base Task Group--
DBTG--its major acronym, which will be
used here. The first semipublic recommenda-
tions of the DBTG were made in 1969 IS1].
These recommendations detailed the syntax
and semantics of a Data Description Lan-
guage (DDL) for describing network-struc-
tured data bases, and the definition of
Data Manipulation Language (DML) state-
ments to augment COBOL. The task group
intended that the DDL specifications should
be available to ail programming languages,
while extensions like the DML would be
needed for every language.

The initial DBTG specification was re-
viewed by many user and implementation
groups. Their recommendations were further
considered, and a new report was issued in
1971 [$2]. The major change involved separa-
tion of the data description into two parts; a
Schema DDL for defining the total data base,
and a Sub-schema facility for defining various
views of the data base consistent with differ-
ent programming languages.

Based on the reviews of the 1971 report,

CODASYL took two significant actions:
• a new standing committee was created

to deal exclusively with the data de-
scription, the Data Description Lan-
guage Committee (DDLC); and

• the DBTG was replaced by a new
task group to deal only with COBOL ex-
tensions, the Data Base Language
Task Group (DBLTG).

Since that time, a new subcommittee has
also been formed to add DML statements to
FORTRAN.

The DDLC was charged with taking the
Schema DDL and developing a common
data description language to serve the major
programming languages. In January 1974 a
first issue of the Data Description Language
Committee's publication, the Journal of
Development, was published [$3]. This re-
port specifies only the syntax and semantics
of the DDL.

The DBLTG was charged with making
the 1971 report of the DBTG consistent
with CODASYL COBOL specifications. In
February 1973 the DBLTG submitted its
report to the CODASYL Programming Lan-
guage Committee. This report is very similar
to the 1971 DBTG report, with nomencla-
ture and relatively cosmetic changes. New
items in the 1973 report included an ex-

Computing Surveys, Vol. 8, No. 1, March 1976

Evolution of Data-Base Managemeut Systems • 27

tension to the facility for dealing with error
returns.

Implementation of systems which con-
formed to the 1969, 1971, and 1973 DBTG
specifications started in 1970 with the
UNIVAC DMS 1100 [V22] for the 1108, and
since then for the UNIVAC 1110 series com-
puters. At about the same time, B. F.
Goodrich implemented a system called In-
tegrated Data Management System, IDMS
IV7], for the IBM System/360. This has
since been extended to IDMS-11 for the
Digital Equipment Corporation PDP 11/45.
The IDMS series is marketed by Cullinane
Corporation. The Digital Equipment Corpo-
ration has implemented DBMS-10 [VS] for
its PDP 10 computer system.

Some extensions to self-contained facilities
for ad hoc interrogations have been imple-
mented by Control Data Corporation,
Query/Update IV6], and by Xerox Data
Systems, EDMS [V23]. In the Netherlands,
Philips implemented a family of systems
termed PHOLAS IV19], and in Norway the
SIBAS IV20] system has been developed by
Shipping Research Services. Honeywell has
updated I-D-S to conform to 1973 specifica-
tions; this is the I-D-S/II IV9].

IMS Family (Figure 12)

The IMS family of systems is an outgrowth
of the Apollo moon-landing program. Its
origins can be traced to two developments
at The Space Division of North American
Aviation (now Rockwell International) in
1965. One was the implementation of GUAM,

(Generalized Update Access Method), the
forerunner of Data Language/One (DL/I).
The other was the implementation of two
teleprocessing applications, EDmT (Engineer-
ing Document Information Collection Task)
and LIMs (Logistics Inventory Management
System). The software package which sup-
ported EDICT and LIMS, the Remote-Access
Terminal System (RATs), was jointly de-
veloped by Rockwell International and IBM
during 1964-65. Both GuAM and RATS were
originally implemented on the IBM 7010
with 1301 disk Storage.

In 1966, IBM, Caterpillar Tractor Corpo-
ration, and Rockwell International agreed to
a joint development effort to produce a
DBMS, the Information Management Sys-
tem (IMS) for the IBM System/360. When
the system had to be frozen in 1968 (to meet
the Apollo commitment), Rockwell and
IBM each continued with separate develop-
ments, while Caterpillar withdrew entirely
from the effort. The development at Rock-
well took the name of Information Control
System/Data Language/I (ICS/DL/I).

Originally, DL/I [X35] was a data descrip-
tion facility which provided a means for
describing and organizing a hierarchically
structured data base. It also provided inter-
faces, which the programming user invoked
to access and store data from the host lan-
guage (originally CoBoL). The on-line com-
ponent, ICS/DL/I [X84], added in 1968,
allowed multiple access by using the DL/I
interface from COBOL or PL/I programs. In
addition to running teleproc~ssing simul-

1965 NORTH AMERICAN GUAM (IBM 7010) RATS (IBM 7010)
AVIATION SPACE DIV J/ I

1966 ROCKWELL INT D I (|BM SYSTEM/360) |CS(|BM SYSTEM/360)

1968 IBM/ROCKWELL INT. ICS/DL/! (IBM SYSTEM 3601

I
1969 IBM IMS-I (IBMSYSTEM/360)

I
1969 IBM IMS-2IIBM SYSTEM/360)

I
1969 IBM]MS-VS (IBM SYSTEM/370)

FIGURE 12. The IMS Family.

Computes Sutrv~Fa, VoL 8, No. 1, March 1976

28 • James P. Fry and Edgar H. Sibley

taneously with batch processing, the system
handled several remote terminals.

In 1969 IBM released its version, the In-
formation Management System/360 (IMS/
360) IV13]. Since 1969 a series of improve-
ments has marked its evolution [V14, 15].

Inverted File Family (Figure 13)

Following the LUCID System development
in 1968, the Advanced Research Project
Agency (ARPA) sponsored System Develop-
ment Corporation's development of the
Time-Shared Data Management System,
TDMS [Y1, 2, 3, and X29]. This was de-
signed to operate in the time-sharing en-
vironment of the ADEPT executive on the
IBM System/360. It was the first DBMS to
combine an inverted file implementation of
hierarchical data model with interactive
processing.

In 1966 the Computation Center at the
University of Texas began the development
of a Remote File Management System
(RFMS) [Y7] on its CDC 6000. RFMS
differed from TDMS mainly in its internal
design. A version of RFMS was marketed by
CDC as MARs VI IV5].

MRI Systems Corporation (whose princi-
pals were originally associated with the
University of Texas) continued develop-
ment of an RFMS under the name of SYs-
TEE 2000 [V18], which was offered com-
mercially in 1970. A number of significant
enhancements have been made since 1970
so that SvsTmt 2000 offers an integrated set
of host-language and self-contained capa-
bilities.

Additional Vendor Developments

A variety of other data-base management
systems based on inverted files for efficient
query processing were developed during this
period by other vendors. Two of the more
commonly known are ADABAS [V21], de-
veloped by Schoell at Software AG (West
Germany), and Model 204, developed by
Computer Corporation of America IV4].

ADABAS uses the inversion tables not only
for efficient retrieval, but also for linkages
betwee n records of different files. ADABAS
provides access to the data through a host
language interface, a self-contained language
for on-line inquiry, and a batch report
generator. AbAcAS is one of the few systems
which offer a data compression facility.

The Model 204 query language provides
most of the power of a general-purpose pro-
gramming language from an on-line ter-
minal, but is easy to use for simple requests.
This system uses the IFAM access method to
allow multiple field indexing and variable
length records for file compression as well as
for text processing.

Three other vendor developments date
back to about 1969, TOTAL, DM-1, and
DMS II. Although in its initial release,
TOTXL IV3] was primarily a direct access
data-base management system, facilities
were soon added to process DBTG-like sets
implemented with chain pointers. TOTAL is
a host-language system, which can model
the major data structures of the DBTG speci-
fications, and it was one of the first systems
to offer a Schema-Sub-schema processor fa-

1967 SYSTEM DEVELOPMENT LUCID (AN/FS032) (see Fig. 7)
CORPORATION J

1969 SYSTEM DEVELOPMENT TDMS(IBM SYSTEM/360)
CORPORATION

I969 UNIVERSITYOF TEXAS R MS(CDC 6000)

1970 MRI S20OOICDC 60001 MARS V! (CDC60OO) Control Doto
I Corporotlon

1971 MR| S2000(LEVEL1)
(UNIVAC I100)

I
1972 MRI S2000(LEVEL 2)

(l BM SYSTEM/360)

FIGURE 13. The Inverted File Family.

Computing Surveya, Vol. 8, No. 1, March 1976

Evolution of Data-Base Managemeni Systems • 29

cility. It has become one of the most widely
used data-base management packages today.

The Data Manager-1 System (DM-1)
[X31], designed by Sable at the Auerbach
Corporation, stems from the Army ACSI-
MATIC development and MITRE'S ADAM.
DM-1 consists of a series of service routines
for returning and storing data; using these
routines, both high-level ad hoc user func-
tions and host-language application pro-
grams can be developed. DM-1 was imple-
mented at the Air Force Rome Air Develop-
ment Center on U1218 computer and the
Honeywell H6000. Based on the design phil-
osophy of DM-1, the Western Electric
Company, initially assisted by Auerbach,
developed System Control-1 [Y6] on the
System/360.

Another development, by the Burroughs
Corporation, is the Data Management Sys-
tem II [V2] for the B6700/B7700 computer.
Basically a host-language type system using
COBOL, its data definition language is formed
in set-theoretic terms. It also offers a storage
definition option.

6. THE PRESIDENTIAL DATA BASE EXAMPLE

The discussion of data-base models in other
articles in this issue of COMPUTING SURVEYS
will use a unified example which deals with
some parts of the Executive branch of the
US Government, with data about the Presi-
dent, his Administration, elections, Con-
gress, etc. We use this example because it is
almost self-explanatory; it was first enunci-
ated in a paper by Willner, et al. [G9].

Because the example deals with the Execu-
tive branch, the most obvious entity is the
PRESIDENT. The important items in the
PRESIDENT entity will be assumed to be:
the President's name (PRES-NAME).

BIRTH-DATE and DEATH-DATE, the
party affiliation (PRES-PARTY), and the
name of his SPOUSE. It will also be con-
sidered necessary to know the STATE-
NAME of which the President is a native
son. However, since STATE will later be de-
fined as an entity, we could alternatively de-
fine a relationship NATIVE-SON between
PRESIDENT and STATE.

Using the notation presented in Section 3
under the discussion of the "Elements of
Logical Structure" (page 13) we have Dis-
play 1 below. If, however, an explicit rela-
tionship were to be used for the native son,
and STATE-NAME is the key of STATE
then the statement appears as in Display
2 below.

The next entity of interest is the Presi-
dent's ADMINISTRATION, which con-
tains items such as the administration num-
ber (ADMIN-NUMBER) (e.g., George
Washington was No. 1), the inauguration
date (INAUG-DATE), and the Vice-
President (VP). In order to identify the
President of each Administration, it is also
necessary to include the item PRES-NAME
in the ADMINISTRATION entity.

At this point, it is worth asking why the
PRESIDENT entity does not contain the
ADMINISTRATION entity. This is a de-
sign decision, and the reader must assume it
is based on consideration of usage and
modeling. I t should be noted, however, that
a President can have had more than one
Administration, and consequently, if AD-.
MINISTRATION is contained, it would
need to be a repeating group. As another al-
ternative, we could assume that the two
separate entities have a relationship
HEADED between ADMINISTRATION
and PRESIDENT. Thus, we have Display
3) below.

Display 1:
PRESIDENT" = (PRES-NAME, BIRTH-DATE, DEATH-DATE, PRES-PARTY, SPOUSE,

STATE-NAME)

Display 2:
PRESIDENT-1 = (PRES-NAME, BIRTH-DATE, DEATH-DATE, PRES-PARTY, SPOUSE)

and
NATIVE-SON = (PRES-NAME, STATE-NAME).

Display 3:
either

(ADMINISTRATION) = (ADMIN-NUMBER, PRES-NAME, INAUG-DATE, VP);
or:

PRESIDENT-2 = (PRES-NAME, BIRTH-DATE, DEATH-DATE, PRES-PARTY,
SPOUSE, STATE-NAME, {(ADMIN-NUMBER, INAUG-DATE,
vP)});

o r :

ADMINISTRATION-I = (ADMIN-NUMBER, INAUG-DATE, VP)
HEADED = (PRES-NAME, ADMIN-NUMBER).

C o m p u t i ~ Surv~ye~ VoL 8, No. 1, March 1976

!

30 • James P. Fry and Edgar H. Sibley

The next entity is that of the ELECTION.
The interesting items in the election a r e :

the year (ELECTION-YEA,R), the presi-
dential votes in the Electoral College (PRES-
VOTES), the LOSER, the LOSER-PARTY,
the year in which the party was first cre-
ated as a political entity (PARTY-FIRST-
YEAR), and the votes of the losing party
(LOSER-VOTES). Once again, because elec-
tions a r e w o n by a President, the election
entity may have to contain the PRES-
NAME; otherwise there must be some re-
lationship WON between the PRESIDENT
and the ELECTION entities. Thus, the
alternatives are:

But there are some drawbacks to this ex-
ample: one is t he / ac t that it represents a
relatively constant idata base, for although a
President may be replaced, the data about
the Administration is still retained. Conse-
quently there is little updating in our ex-
ample, though there may be substantial
addition to the data base in election years.
Some business data bases, however, present
a greater propensity to change. For example,
a payroll data base regularly has changes to
many items such as YEAR-TO-DATE-
PAY (presumably after every payday) and
SALARY (presumably after every increase).
Thus, the presidential data base, while form-

ELECTION

Another entity within the data base is the
STATE. I t has a name (STATE-NAME), a
population (POP), and a number of votes in
the Electoral College (STATE-VOTES).
States are admitted to the Union during
some Administration. This fact may be
shown either implicitly, by having some re-
lationship (ADMITTED-DURING) be-
tween the ADMINISTRATION and
STATE entities, or explicitly, by including
the ADMIN-NUMBER in the STATE en-
tity. It might be noted that there is already
a link between the PRESIDENT and
STATE entities because the NATIVE-SON
relation has been shown as an element
(STATE-NAME) in the PRESIDENT
entity.

We have now defined most of the data
base, and need only incorporate the entity
CONGRESS to complete it. This entry will
contain items such as: CONGRESS-
NUMBER, SENATE-REPUBLICAN-
PERCENT, SENATE-DEMOCRAT-
PERCENT, HOUSE-REPUBLICAN-
PERCENT, AND HOUSE-DEMOCRAT-
PERCENT. Again, there is a relation be-
tween the PRESIDENT and CONGRESS,
which may be found explicitly by incorporat-
ing PRES-NAME in the CONGRESS en-
tity, or implicitly by arranging a relation
CONGRESS-SERVED between the entities.

Figure 14 shoWs a sample of the presi :
dential data base in tabular form. Unavail-
able information is shown by a ~b, e.g., in the
Death and Inauguration Date columns.

= (ELECTION-YEAR, PRES-NAME, PRES-VOTES, LOSER, LOSER-PARTY,
PARTY-FIRST-YEAR, LOSER-VOTES), etc.

ing the major example, will not suffice alone.
Other authors contributing to this issue of
COMPUTING SURVEYS will introduce other
examples to illustrate particular fine points.

7. TRENDS AND ISSUES .

Historically, we have traced the develop-
ment of DBMS from the early systems,
which supported primarily the nonprogram-
ming user for ad hoc requests, to the recent
predominance of host-language systems
which support the programming user. A cur-
rent trend is, then, the establislunent of a
balance---a comprehensive set of DBMS
functions for a full spectrum of users while
maintaining the current DBMS objectives
[FI, 2, and 3]. Some of the current research
is developing bridges between various models
of data so that a single DBMS can support
a variety of data models.

Three major trends and one important
issue will affect the future of DBMS: the
emergence of conversational systems, the
need for geographic distribution of the in-
formation system, the technological impacts
on DBMS architecture, and the question of
standardization of the DBMS interface.
Each of these is now briefly discussed.

Ad Hoc versus Programming Systems

Artificial intelligence research has already
improved our understanding of the difficul-
ties involved in providing a natural language
interface for computers. And though there

Computing Surveya, Vol. 8, No. 1, Ma~h 1976

' . • j

Evolution of Data-Base Managemen~ Systems

has been little that is immediately applicable,
the fall-out from this research includes a
better understanding of the structure and
use of higher-level and very-high-level (re-
stricted natural) language interfaces. As a

• 31

result, some DBMS already provide good
languages for the nonprogrammer who is
willing to learn a few rules, and there is
growing interest in the development of the
casual-user interface (e.g., see IF4]).

PRESIDENT

PRES -
NAME

Eisenhower
Kennedy
Johnson
Nixon
Ford

BIRTH-
DATE

10/14/1890
05/29/1917
08/27/1908
01/09/1913
07/14/1913

DEATH-
DATE

03/28/1969
1!/22/1963
01/22/1973

PRES-
PARTY

Republican
Democrat
Democrat
Republican
Republican

SPOUSE

Mamie
Jacqueline
Claudia. "
Patricia
Elizabeth

STATE-
NAME

Texas
Mass.
Texas
Calif.
Mich.

ELECTION

ELECTION-
YEAR

1952
1956
1960
1964
1968

1972

PRES-NAME

Eisenhower
Eisenhower
Kennedy
Johnson
Nixon

Nixon

PRES-
VOTES

442
457
303
486
301

520

LOSER

Stevenson
Stevenson
Nixon
Goldwater
Humphrey
WMlaee
McGovern

LOSER-
PARTY

Democrat
Democrat
Republican
Republica n
Democrat
3rd Party
Democrat

PARTY-
FIRST
YEAR

1824
1824
1856
1856
1824
1968
1824

LOSER-
VOTES

89
73

219
52

191
46
17

CONGRESS

CONGRESS-
NUMBER

83
84
85
86
87
88

89
90
91
92
93

94

PRES-
NAME

Eisenhower
Eisenhower
Eisenhower
Eisenhower

SENATE-
REPUB-
LICAN-

PERCENT

50%
49%
49%
34%

SENATE
DEMOCRAT-

PERCENT

49~
51%
51%
66%

HOUSE-
REPUB-
LICAN-

PERCENT

49%
47%
46%
35%

Kennedy 36%
Kennedy 33%
Johnson
Johnson 32%
Johnson 36.%
Nixon 43%
Nixon 44%
Nixon 42%
Ford
Ford 37%

64% 40%
67% 41%

68% 33%
64% 43%
57% 44%
54% 41%
56% 44%

60% 33%

HOUSE-
DEMOCRAT-
PERCENT

5o%
53%
54%
65%
60%
59%

67%
57%
56%
59%
56%

66%

Figure 14. A sample of the presidential data base.

Computing Surveye, Vo|. 8, No. l, MmTch 1976

32 • James P. Fry and Edgar H. Sibley

STATE

STATE-NAME

Texas
Mass.
Calif.
Mich.

ADMIN-NUMBER

16
4,
18
12

POP

11196730
5689170

19953134
8875083

STATE-VOTES

26
14
45
19

ADMINISTRATION

ADMIN-NUMBER

1
2

16
18
49
50
51
52
53
54
55

56

PRES-NAME

Washington
Washington
Polk
Fillmore
Eisenhower
Eisenhower
Kennedy
Johnson
Johnson
Nixon
Nixon

Ford

INAUG-DATE

04/30/1789
03/04/1793
03/04/1845
07/lO/185o
01/20/1953
01/20/1957
01/20/1961
11/22/1963
01/20/1965
01/20/1969
01/20/1973

08/09/74

VP

Adams
Adams
Dallas

4,
Nixon
Nixon
Johnson

4,
Humphrey
Agnew
Agnew
Ford
Rockefeller

Fig. 14. (contd.) : A sample of the presidential data base.

A casual user is one who uses the system so
seldom that all rules and techniques are
likely to be forgotten between sessions, hence
the need for special treatment. At the other
end of the user spectrum are the adept com-
puter programmers who have technical
skills and a good knowledge of "system in-
ternals." In writing programs for nonpro-
grammers they presumably utilize all their
skills to produce procedures that will run
efficiently. The assumption is that pro-
grammers cost more (they must be paid
while they understand the problem, write
code, etc.), but their resulting programs are
cheaper to run.

Thus, the case for ad hoc and host-lan-
guage systems can be considered one of
tradeoffs. The following is a partial list of
the advantages and disadvantages of the
use of higher-level interfaces:

1) Their use facilitates more rapid running
of the problem--the user asks the question
directly, and he has no need to call on a pro-
grammer as intermediary (a process that
sometimes takes weeks for even a simple

problem in a busy industrial environment).
This advantage is offset by the relatively
high cost of using what is essentially an in-
terpretive system: the tradeoff is therefore
between people and machine costs. The
people costs are in programming and de-
bugging, while the machine costs are in
running. One presumes that the code pro-
duced from a high-level (query) interface
costs more to run, therefore the question
arises: how many times must the program be
run before it pays for the cost of program-
ming? And this is the classical question of
compiling, but now in the realm of even
higher-level languages and with potentially
larg e data bases. There are, however, very
few jobs today which warrant the cost of
special (assembler or machine language)
programming. This trend continues today in
DBMS usage, and the self-contained ad
hoc user system is becoming more accepted
by the user community.

2) The use of a higher-level language
simplifies the structure (removes DO-loops
and GO-TO statements) and is generally

Computing Surveys, Vol. 8, No. 1, blarch 1976

Evolution

more understandable, consequently less
error prone. On the other hand, a simple
question may invoke a long and costly pro-
cedure; e.g., "Give me the average height of
all Americans," may involve a sequential
search of 200 million records ! Also, the possi-
bility for ambiguity immediately arises. The
request "Give me the count of all people in
New York," could be interpreted as ". . .all
people who are, at this instant, in the state of
New York," while the questioner intended
to ask " . . . all people who have, as their
residence, the city of New York." The
trouble with this question is obvious, but
the user may never realize that the answer
given was not correct for the intended ques-
tion.

3) The very-high-level languages tend to
have a mathematical equivalence--they can
be transformed into precise mathematical
formulas (e.g., in predicate calculus). They
are therefore capable of exact checking. In
this way, the potentially ambiguous state-
ment can be transformed into an exact state-
ment and "played back" to the questioner,
thereby helping to eliminate error. The high-
level program, however, does not have an
exact statement of its operation in good
mathematical terms; it does what the pro-
grammer told it to do, good or bad (and all
too often the latter). Precision of statement
is an advantage to the mathematically so-
phisticated user, and possibly to others as
well.

Thus, the user trend may well be toward
the higher-level-language interface, but for
years to come it will be necessary to pro-
gram the large and repetitive systems of in-
dustry and government efficiently by using
the language interfaces currently in use
(e.g., COBOL, FORTRAN, PL/I) .

Geographically Distributed Systems

Inexpensive communication between com-
puting systems, and the development of na-
tional and international networks have
forced further changes on the design of com-
puting systems. In this, DBMS is no excep-
tion. The concept of distributed data bases,
where a processor calls on data at several
other locations, is already a reality on some
homogeneous systems--and possibly (with

of Data-Ba~e Managern~n~ S y ~ r ~ • 33

difficulty) on some nonhoraogeneous sys-
tems. This trend may !be seen, in part, as an
answer to the wish of: industry and govern-
ment to access its data in reasonable time.

As an example, one major corporation"
found that the use of a computer network
allowed it to strike a corporate dollar bal-
ance each Friday; thus, the company could
let the money out on short-term loan (over
the week-end). Surprisingly, the money
realized as interest on the loan paid for all
the network facilities, Similarly, in many
large corporations, the warehousing cost is
great; all material resting in inventory repre-
sents an unprofitable capital expenditure.
Large retail merchandising companies can
reduce inventory costs byknowing what is
available where in their many warehouses,
and thus be able to reduce surplus stock.
Some large corporations have been able to
give their sales forces remote access to their
computer systems, thereby allowing the
salesman (and through him, the customer)
direct on-line access to shipping and pricing
information. The competitive advantage is
very high in such Cases.

Distributed systems, then, show a need
for:

1) computers.to be: networked. I t is not
generally possible to have all the
power at a central site, and each major
node (e.g., the~ largest warehouses)
has its processor.

2) data to be distributed. If the data is
entered at hundreds of locations
throughout the country, it is probably
efficient to store it near the entry port.
In some large banking systems, the
customer accounts are kept in the
computer system at the local bankS,
but other branches can still service
the customer (and debit the account!).

But distributed sysHms pose many new
problems, and exacerbate many old ones:
Some of the new problems are revealed in the
following questions.

• How do we change the request lan-
guage? Does the user have to know the
location of the data? Is there a central
data dictionary/directory? Can the
user request data b y broadcasting a
message for it?

Computi~ Surv~, Vol. 8~ Not 1, March 1976
t , , • "

34 • James P. Fry and Edgar H. Sibley

• Is it better to store multiple copies?
How much extra will it cost to update
a data base from a remote location?
What parts of the data base should
be stored (i.e., how does one distribute
the data efficiently)? What are the
best places to run a program (it may
be cheaper for a user at A to trans-
port data at B to the program at C and
then just receive the answers at A)?

The old problems have already been dis-
cussed, but are now complicated by the extra
complexity of the distributed system:

• What redundancy is necessary to en-
sure good reliability of both hardware
and data? How much does this affect
the user in terms of the response time
for updates, and the excess processing
cost?

• What problems are likely to occur in
concurrent operation? The possibility
that several users will all contend for
the same resources, and consequently
will need effective scheduling and
control, is obviously more acute in a
large, distributed, many-user system.

• How can privacy be retained? The
potential for breaking the system
rises as its complexity increases. The
chance of message interception ob-
viously increases also.

Thus, the trend to distributed data bases,
with concepts of data machines as special
resource nodes on the network, brings with it
a new set of tradeoff decisions.

Data-Base Machines

Distributed data bases, in conjunction with
emerging technology, will have a significant
impact on DBMS architecture and on the
DBMS functions. There already are com-
puters dedicated to DBMS, e.g., the Data-
computer IF5, 6]. "Front-end" and "back-
end" computers are in the prototype stage
[F7, 8]. Also, new disk technologies and asso-
ciative devices will have a great impact on
DBMS architecture [F9, 10].

To Standardize or Not e .

The computing profession has ambivalent
feelings about standardization: everyone

seems to admit it has merits, but finds ex-
cuses in order to stpp it from happening too
soon in his own field of interest. The argu-
ments for and against standardization (in
any area) are now given.

For standards, there is one maj or argument:
The provision of a standard aids the user by
making objects interchangeable; the nut, if
of the same diameter, fits the bolt. Thus:

• the programming language is the
same on all machines: so the pro-
grammer who knows COBOL, for ex-
ample, can be transferred, or may get
a new job and not need retraining;

• the company can change machines
and run the same COBOL programs,
after their recompilation, on the new
machine;

• parts are interchangeable: magnetic
tapes have standard densities; plug-
to-plug compatibility of storage and
input/output units is possible;

• data can be interchanged over the
network;

• the network protocol is the same, so
all users have to learn only one proto-
col; and

• the commands to enter (log-on) and
leave (log-off) the system, and some
other controls, are the same through-
out the network.

Against standards, there is one major argu-
ment: if we do not know the correct tech-
nology, standardization may mean costly re:
fitting later, or may even stifle develop-
ment. This argument is reasonable, since a
large-scale data-processing shop may have
many thousands of programs representing
millions of dollars of investment. Rewriting
all these (probably COBOL) programs in
some new language is beyond the wishes of
most current DP managers, who hope that
their programs are "here to stay." Such
built-in conservatism will undoubtedly slow
down any change from one well-developed
standard to another, no matter how good the
new standard may be. This stifles acceptance
of new ideas.

Many groups are concerned about stand-
ardization and are actively working in this
area. The DBTG report has been accepted
by the Programming Language Committee

Computing Surveys, Vol. 8, No. 1, March 1976

Evolution of Data-Base Managed 8y~lB~

of CODASYL as a par t of JOD COBOL. The
A N S I / X 3 / S P A R C / S t u d y Group on Da ta
Base Systems has been meeting since 1972.
Pa r t of their charge is to develop a basis for
DBMS standardization. Their recent report
[Fl l] formulates many functional interfaces
of a DBMS. The languages used to com-
municate across these interfaces m a y be
candidates for standardization.

There are therefore many potential areas
for standardization of DBMS:

• the definition language for the logical
structure;

• the language(s) to manipulate the
data ;

• the protocols for invoking procedures
on the data-base machine;

• the protocols on the network of a dis-
t r i b u t e d system; and

• the storage devices and physical
mapping of data.

Each of these has its proponents and op-
ponents for various kinds of system models.
As a result, the issue of standardization is a
mixture of common sense, politics, econom-
ics, philosophy, convenience, and taste.
M a n y researchers consider s tandards an
anathema, but many users see standards as
a necessity. The arguments will still be going
on fifty years from now (even though there
will undoubtedly be DBMS standards by
then).

V Vendor Systems !
W Report Generator
X DBMS Prior to 1968
Y DBMS 1968 to Present
Z Relational Systems

ACKNOWLEDGMENT

The Guest Editor's Introduction to this issue of
COMPVTINO SURVEYS has already expressed grati-
tude to the wide variety of experts who made this
article possible. This includes developers of DBMS
who implemented the systems and who helped us
correct errors in the history, as well as our review-
ers. V. Kevin Whitney and Richard G. Canning
in particular made many valuable suggestions.

CLASSIFICATION OF REFERENCES

A Data Administration
D Data Dictionary
DL Data Definition Language
F Future, Trends
G General
I Introductory
M Data Models--Theory
PL Programming Languages
S DBMS Specifications
SL Stored-Data Definition
T DBMS Texts
U Surveys

• 3 5

REFERENCES

(A) Data Administration

[A1] EVEREST, O.C., "Data base dministra-
tor organizational role and functions,"
MISRC-WP-73-05,

[A2] GUIDE INTERNATIONAL, "The data base
administrator," Nov. 1972.

[A3] CANNING, R. G. (Ed.), "The data ad-
ministrator function," EDP Analyzer
10, 11 (Nov. 1972).

[A4] NOLAN, R., "Computer data bases: The
future is now," Harvard Business Review
(Sept. 1973).

(D) Data Dictionary

[DI] UHROWCZIK, P. P., "Data dictionary/
directories," IBM System J . , 12, 4 (Dec.
1973).

{D2I CANmNG, R. G. (Ed.), "The data dic-
tionary/directory :function," EDP Ana-
lyzer, 12, t0 (Nov~ 1974). •

(DL) Data Definition Language

[DL1] WILWORTH, N. E., "System data con-
trol," Teeh. Memo. TM222/013/00, System
Development Corp., Santa Moniea, Calif.,
August 1975.

[DL2] D'IMPERIO, i . , "Data structures and
their representation in storage," in An-
nual Review in ~Utoma~ie Programming,
M. Halpern and C: J. Shaw (Eds.), Perga-
mon Press, Elmsford, New York, 1969,
P p. 1-75.

[DL3] SENKO, M.; ALTMAN, E.; ASTRAHAN, M.;
AND FEHDER, P., "Data Structures and
accessing in data-base systems," IBM
Systems J., 12, 1 (1973), 30-93.

[DL4] SENKO, M. E., "Data description lan-
guage in" the context of a multilevel strue-,,
tured description: DIAM II with FORAL,
IBM Research Report g6769,1974.

[DL5] SENKO, M.E., "The DDL in the context
of a multilevel Structured description
DIAM II with FoaAL," in Data Base De-
scription, B. C. M. Douque and G. M.
Niissen (Eds.),N0rth-Hblland Publ. Co.,
Amsterdam, The Netherlands, 1975.

(F) Future, Trends

[F1] WHITNEY, V. KEVZN, "Fourth generation
data management systems," Proe. of
AFIPS National ~ompub~r Conf., 1973,
Vol. 42, AFIPS Press, Montvale, N.J.
1973, pp. 239-244.

F2] BACHMAN, CHARLES, "Trends in data-
base Management," Proe. o f AFIPS
National Computer Conf., 1975, Vol. 44,

i

36 • James P. Fry and Edgar H. Sibley

AFIPS Press, Montvale, N.J., 1975, pp. [G7]
569-576.

[F3] EVEREST, GORDON C., "The futures of
'~ Pr data-base management, oc. 1974 [GS]

SIGMOD Conf., May 1974, pp. 445--462.
[F4] CODD, E.F . , "Seven steps to rendezvous

with the casual user," Proc. IFIP TC-~
Working Conf. on Data Base Management
System Congress, April 1974, North-
Holland|Publ. Co., Amsterdam, The Neth-
erlands, 1974.

[F5] MARILL, THOMAS; AND STERN, DALE, [G9]
"The datacomputer--a network data util-
i ty," Proc. of AFIPS National Computer
Conf., 1975, Vol. 44, AFIPS Press, Mont-
vale, N.J., 1975, pp. 389-395.

[F6] MARILL, T.; ANY STERN, D.DATACOMPUTER
VERSlON I USER MANUAL, Working paper [G10]
no. 11, Computer Corp. of America, Cam-
bridge, Mass., August 1975.

[F7] CANADAY, R. n . ; HARRISON, R. D.; IVIE, [Gll]
E. L.; RYDER, J. L.; AND WEHR, L. A.,
"A back-end computer for data base
management," Comm. ACM 12, 10 (Oct. [G12]
1974), 575-582.

[F8] HEACOX, H. C.; COSLOY, E. S ; AND ,, • ."
COHEN, J . B . , An experiment m dedi-
cated data management," in Proc. of
Internatl. Conf. on Very Large Data Bases, G[13]
Sept. 1975, ACM, New York, 1975, pp.
511-513.

[F9] Su, S. Y. W.; COPELAND, G. P.; AND
LIPOVSKI, G. J., "Retrieval operations [G14]
and data representations in u context-
addressed disk system," Proc. ACM-
SIGPLAN-SIGIR Interface Meeting on
Programming Languages and Information
Retrieval, Nov. 1973, pp. 144-160.

IF10] LIN, C. S., AND SMITH, D. C. P., "The
design of a rotating associative array
memory for a relational data-base manage-
ment application," ACM TODS, 1, 1
(March 1976), 53-65.

[Fll] ANS1/X3/SPARC/STUDY GROUP--DATA
BASE SYSTEMS, "Interim report ,"ACM/
SIGMOD Ncwsletter:fdt, 7, 2 (Dec. 1975).

(G) General
[G1] McGEE, W. C., "Generalization: key to

successful electronic data processing,"
J. ACM 6, 1 (Jan. 1959), 1-23.

[G2] McGEE, R. C.; AND TELLIER, H., "A
re-evaluation of generalization," Data-
marion, .(July-August 1960), 25-38.

[G3] YAO, S. B.; AND MERTEN, A.G., "Selec-
tion of file organization using an analytic
model," Proc. of the Internatl. Conf. on
Very Large Data Bases, Sept. 1975, ACM,
New York, 1975, pp. 255-267.

[G4] STEEL, T., "Beginnings of a theory of
information handling," Comm. ACM 7,
2, (Feb. 1964), 87-103.

[G5] ROSEN, SAUL, "Programming systems
and languages--a historical survey," Proc.
of the Spring Jr. Computer Conf., 1964,
V.ol 25, AFIPS Press, Montvale, N.J.,
1964, pp. 1-25.

[G6] RosIN, ROBERT F., "Supervisory and
monitor systems," Computing Surveys
1, 1 (March 1969), 37-54.

DENNING, PETER J., "Third generation
computer systems," Computing Surveys
3, 4 (Dec. 1971), 175-216.
EVEREST, GORDON C.; AND SIBLEY, cEDGAR
H., "A critique of the GUIDE-SHARE
data-base management system require-
ments," Proc. of the 1971 ACM-SIGFIDET
Annual Workshop on "Data Description,
Access and Control," E. F. Codd and
A. L. Dean, (Eds.), pp. 93-112. also
MISRC-WP-71-2.
WILLNER, S. E.; BANDURSKI, A. E.;
GORHAN, W. C.; AND WALLACE, M. A.,
"COMRADE data management system,"
Proc. AFIPS National Computer Conf.,
1973, Vol. 42, AFIPS Press, Montvale,
N.J., 1973, pp. 339-345.
BACHMAN, C. W., "The programmer as
navigator," Comm. ACM 16, 11 (Nov.
1973), 653-658.
GARTH, W., "Design console technology
at General Motors," Proc. SHARE 1974
Conf., August 1974.
EVEREST, GORDON C., "The objectives
of data-base management," Information
Systems COINS IV (Tou), Plenum Press,
New York, 1974, pp. 1-3h, also MISRC-
WP-71-64.
NAVATHE, S. B.; AND FRY, J. P., "Re-
structuring for large data bases: three
levels of abstraction," ACM, TODS, to
appear in June 1976.
TEOREY, T. J.; AND DAS, K.S., "Applica-
tion of an analytical to evaluate storage
structure", Data Translation Technical
Report No. 76DE 7.1. Univ. of Michigan
Graduate School of Business Administra-
tion, Ann Arbor, 1976.

(I) Introductory
[Ill LYON, J. K., Introduction to data base

design, Wiley Interscience, DiD. of John
Wiley and Sons, New York, 1971.

[I2] BACHMAN, C. W., "Data structure dia-
grams," SIGBDP: Data Base 1, 2 (1969).

[I3] BYRNES, C.; AND STEIG, D., "File man-
agement systems: a current summary,"
Datamation 15, 11 (Nov. 1969).

[I4] OLLE, T.W., "MIS: data bases," Data-
mation 16, 15 (Nov. 1970).

[I5] DIXON, PAUL, "The role of data manage-
ment in management information sys-
tems," IAG Journal 3, 2 (August 1970).

[I6] CODASYL SYSTEMS COMMITTEE, "In-
troduction to 'feature analysis of general-
ized data-base management'," Comm.
ACM 14, 5 (May 1971), 308-318.

(M) Data Models--Theory
[M1] CODASYL DEVELOPMENT COMMITTEE,

"An information algebra, phase I report
of the Language Structure Group," Comm.
ACM 5, 4 (April 19~2), 190-204.

[M2] CHILDS, D. L., 'Feasibility of a set-
theoretic data structure: a general struc-
ture based on a reconstituted definition of
relation," Proc. IFIP Congress 1968,
North-Holland Publ. Co., Amsterdam,
The Netherlands, 1968, pp. 420--430.

Computing Surveye, Vol. 8, No. 1, March 1976

[M3]

[M4]

Evolution

CHILnS, D. L., "Description of a set-
theoretic data structure," Proc. AFIPS
Fall Jr. Computer Conf., 1968, ~FIPS
Press, Montvale, N.J., 1968, pp. 5o7=564.
CORD, E. F., "A relational model of
data for large shared data banks," Comm.
ACM 13, 6 (June 1970), 377-87.
HARDGRAVE, W. T., "A technique for
implementing a set processor," Proc.
ACM SIGMOD/SIGPLAN Conf. on Data
Abstraction Definition and Structure, 1976,
Taylor and Ledgard, (Eds.).

(PL) Programming Languages
[PL1] CLIPPINGER, R. F., "FACT a business

compiler description and comparison with
COBOL and commercial translator," in
Annual Review in Automatic Programming
12, 1, Pergamon Press, pp. 231-292.

[PL2] INTERNATIONAL BUSINESS MACHINES,
General Information Manual--IBM Com-
mercial Translator, Form F28-8043, IBM
Corp., 1960.

[PL3] GENERAL ELECTRIC, "GEcOM--the gen-
eral compiler," CP13 144 (IOM-4-61),
General Electric Corp• Computer Dept.,
April 1961.

[PIA] PERSTEIN,M.H., TheJOVIALJ$Gram-
mar and Lexicon, Tech Memo No. TM555/
002/04, System Development Corp., Santa
Monica, Calif., 1965.

[PL5] SAMMET, J.E., "Base elements of COBOL
61." Comm. ACM 6, 5 (May 1962), 237-253.

[PL6] CODASYL DATABASE TASK GROUP,
"COBOL extensions to handle data bases,"
(PB 177 682), Jan. 1968.

[PL7] COROL, American National Standard Pro-
grammi.ng Language ConoL, X3.23--1974,
American National Standards Institute,
Inc., New York, 1974.

of Data-Base Management 8ynter~

[SIAl

[SL5]

[SL6]

• [S L 7]

• 37

McGEE, W.C. ~Infovmal definitions for
the developmenti of a storage structure
definition language."
YOUNG, J. W., JR., "A procedural ap-
proach to file translation."
SIBLEY, E. ; AND TAYLOR, R. "Preliminary
discussion of a general data to storage
structure mapping language," Proe. 1970
ACM SIGFIDET Workshop on Data
Description and Access, pp. 368-380.
TAYLOR, R. W., "Generalized data-base
management system data structures and
their mapping to physieal storage," PhD
Thesis, Univ. of Michigan, 1971.
FRY, Z. P.; SMITH, D. C. P. ; AND TAYLOR,
R. W., "An approach to stored-data
definition and translation," Proc. of 1972
ACM SIGFIDET Workshop on Data De-
scription Access and Control, pp. 13-55.
BACHMAN, C. W., "The evolution of
storage structures," Comm. ACM 16, 7
(July 1972), 628--634.
SIBLEY, EDGAR I{;; AND TAYLOR, ROBERT
W., "A data definition and mapping
language," Comm. AOM 16, 12 (Dee. 1973),
750-759.

(T) DBMS Texts
{TI] MARTIN, J., Computer data-base organi-

zation, Prentice-Hall, Englewood Cliffs,
N.J., 1975.

[T2] DATE, C. J., An introduction to data-
base systems, Addison-Wesley, Reading,
Mass., 1975.

[T3] CA~AN, C., Data management systems,
Melville Publ. Co., Los Angeles, Calif.
1973.

[T4] LEFKOVlTZ, D., Data management for on-
line system, Hayden, Publ. Co., Rochelle
Park, N.J., 1974.

(S) DBMS Specifications
[S1] CODASYL DATA BASE TASK GROUP,

October, 1969 Report, (superseded by 1971
DBTG Report, currently out of print)•

[$2] CODASYL DATA BASE TASK GROUP,
April 1971 Report, (available from ACM).

{$3] CODASYLDATA DESCRIPTION LANGUAGE
COMMITTEE, CODASYL Data Description
Language Journal of Development, (June
1973), NBS Handbook 113, (Jan. 1974)•

(SL) Stored-Data Definition
[SL1] SMITH, D. C.P. , "An approach to data

description and conversion," PhD Thesis,
Moore School Report 72-20, Univ. of
Pennsylvania, Philadelphia.

[SL2] CODASYL STORAGE STRUCTURE DEFINI-
TION LANGUAGE TASK GROUP, Design Ob-
jectives for a .Storage Structure Definition
Language, 1970. (See [SL5]).

[SL3] STORAGE STRUCTURE DEFINITION LAN-
GUAGE TASK GROUP (SSDLTG) of
CODASYL Systems Committee,
FRY, J. P. "Introduction to storage
structure definition."

(U) Surveys
[U1] MINKER, JACK; AND SABLE, JEROME,

File orgamzation and data manage-
ment," in Annua! review of information
science and technology, Vol. 2, John
Wiley & Sons, New York, 1967, pp. 185-
222.

[U2] CODASYL Systems Committee, A sur-
vey of generalized data base management
systems, (PB 203142), May 1969.

[U3] FRY, J. P., et al., "Data management
systems survey," MITRE Corporation
Report, MTP 3~J, (AD 684 907) Jan. 1969.

[U4] MINKER, J., ' Generalized data manage-
meat systems--some perspectives," Univ.
of Maryland Computer Science Center
Technical Report, Dee. 1969.

[US] FRY, J. P., AND GOSDEN, J.A., "Survey
of management information systems and
their languages," in Critical factors in
data managemenl, F. Gruenberger, (Ed.),
McGraw-Hill Book Co., 1969, pp. 41-55.

[U6] GUIDE INT., Comparison of data-base
management systems," Oct. 1971.

[U7] CODASYL SYSTEMS COMMITTEE, Fea-
ture analysis of !oeneralized data base

Computing Surve~,e, Vol. 8~ No. 1, March 1976

38 • James P. Fry and Edgar H. Sibley

[US1

Management Systems, May 1971, (avail-
able ACM).
KOEHR, G. J., et al., "Da ta manage-
ment sys tems catalogue," The MITRE
Corp., Technical Report MTP 139, Jan.
1973, (available from The MITRE Corp).

[V) Vendor Systems
APPLICATIONS SOFTWARE, INC.

Corporate Offices
21515 Hawthorne Boulevard
Torrance, Calif. 90503

[V1] SUNDEEN, D. H., AS-IST--a general
purpose management system, Application
Software, Inc., San Pedro, Calif., 1968.

BURROUGHS CORPORATION
Burroughs Place
Detroit, Mich. 48232

[V2] BURROUGHS CORPORATION, "B6700/B
7700 DMS II data and structure definition
language (DAsDL) reference manual,"
April 1974.
BURROUGHS CORPORATION, "B6700/
B7700 DMS II host language interface
reference manual," April 1974.

CINCOM SYSTEMS, INC.
2300 Montana Avenue
Cincinnati, Ohio 45211

IV3] CINCOM SYSTEMS, "TOTAL/7 reference
manual--application programming," Pub.
#P02-1321-2, June 1974.
CINCOM SYSTEMS, "TOTAL/7 reference.
manual--data base administration," Pub.
#P02-1322-2, June 1974.

COMPUTER CORPORATION OF AMERICA
575 Technology Square
Cambridge, Mass. 02139

IV4] COMPUTER CORPORATION OF AMERICA,
"CCA 204 data base management software
system user language reference manual,"
March 1974.

CONTROL DATA CORPORATION
8100 34th Avenue South
Minneapolis, Minn. 55420

[VS] CONTROL DATA CORPORATION, MARS VI
reference manual, Pub. $17305100, CDC,
1974.
CONTROL DATA CORPORATION, MARS VI
reference manual (full inversion), Pub.
$17313000.
CONTROL DATA CORPORATION, MARS "V[
reference manual (partial inversion), Pub.

60385900.
[VG] CONTROL DATA CORPORATION, "Query

update version 2.0 reference manual,"
Pub. $ 60307500.
CONTROL DATA CORPORATION, "Data
definition language for query/update
subsehema," Pub. ~ 60359200.

CULLINANE CORPORATION
One Boston Place
Boston, Mass. 02108

[V7] CULLINANE CORPORATION, "Integrated
database management system program
and reference."

DIGITAL EQUIPMENT CORPORATION
146 Main Street
Maynard, Mass. 01754

[VS] DECsYSTEM i0, "Data base manage-
ment system programmer procedures
manual," DEC-10-APPMA-B-D, 2d ed.
DECsYSTEM 10, "Data base management
system data base administration pro-
cedures manual," DEC-10-AAPMA-B-D,
2d ed.

HONEYWELL INFORMATION SYSTEMS
200 Smith Street
Waltham, Mass. 02154

[V9] I -D-S/ I I RELATED PUBLICATIONS:
I-D-S/II programmer reference manual,

DE09.
I-D-S/II data base administrator guide,

DEI0.
Interactive I-D-S/II reference manual,

D E l l .
UFAS (United File Access System), DC89.
1/0 supervisor, DD82.
File management supervisor, DD45.

[Vl0] MANAGEMENT DATA QUERY SYSTEM
0VIDQS) :
MDQS, User Guide, DCS0.
MDQS Data Base Administrator Guide,

DC81.
MDQS IV, DD92.
MDQS 1V Administrator Guide, DD94.

[Vli] DRESSEN, P. C., "The dataBAsic lan-
guage--a data processing language for
non-professional programmers," Proc.
AFIPS Spring Jr. Computer Conf., 1970,
AFIPS Press, Montvale, N.J., 1970, pp.
307-312.

INPORMATICS
MARK IV Systems Co.
21050 Vanowen Street
Canoga, Calif. 91303

[V12] POSTLEY, J .A. , "The MARK IVsys tem,"
Datamation, 14, 1 (Jan. 1968), 28-30.

IBM (for IBM information, see local representa-
tive)

IV13] Information Management System/360
(IMS/SGO) application description manual,
IBM Form No. H20-0524.

IV14] Information Management System~360 Ver-
sion ~, general information manual, IBM
Form No. GH20-0765.

[V15] Information Management System Virtual
Slorage (1MS/VS) general information
manual, IBM Form No. GH20-1260.

IV16] Generalized information system application
description manual, iBM Form No. GH20-
0179.

[V17] BRYANT, J. H.; AND SEMPLE, P., "GIS
and file management," Proc. ACM 1966
National Conf., ACM, New York, N.Y.,
1966, pp. 97-107.

Computi~ng Surveys, Vol. 8, No. 1 March 1976

MRI SYSTEMS CORPORATION
Box 9968
Austin, Texas 78766

[Vl8] SYSTEM 2000 PUBLICATIONS:
General information ma~ual, G-1.
BASIC reference manual (Includes binder),

A-1.
Immediate access feature, I-1.
COBOL procedural language interface fea-

ture, C1-.
FORTRAN procedural language interface

feature, F-1.
PL/ I procedural language interface feature,

P-1.
Report writer feature, R-I.

PHILIPS-ELECTROLOGICA, B. V.
PO Box 245
Apeldoorn, The Netherlands

[Vl9] PUBLICATIONS:
Introduction to PHOLAS, Pub. no. 5122

991 25221.
PHOLAS sub-schema DDL and SML, Pub.

no. 5122 991 25861.
PHOLAS schema DDL and SSL, Pub. no.

5122 991 25841.

SHIPPING RESEARCH SERVICES, INC.
205 S. Whiting Street
Alexandria, Va. 22304

[V20] SHIPPING RESEARCH SERVICES, INC.,
"The data base system SIBAS: an intro-
duction," 1974.
ASCHIM, F. F.; AND BOONE, P., "SIDAS--
an implementation of the CODASYL data
base concept," Management Informatics
2, 3 (1973).

SOFTWARE AG
Reston International Center
11800 Sunrise Valley Drive
Reston, Va. 22091
61 Darmstadt
Hilpertstrasse 20
West Germany

[V21] ADABAS introduction; ADABAS reference
manual; AND ADABAS utilities manual,
Software ag of North America, Reston, Va.

SPERRY UNI~rAC
PO Box 500
Blue Bell, Pa. 19422
ATV House
17 Great Cumberland Place
London Wl, England

[V22] "UNIvAc 1100 Series, Data Management
System (DMS 1100) schema definition,
data administrator reference," Sperry
Rand Corp., 1972, 1973.
"UNIvaC 1100 Series, Data Management
Systems (DMS 1100) American National
Standard COBOL (Fieldata), data manipu-
lation language, programmer reference,"
Sperry Rand Corp., 1972.

XEROX CORPORATION
701 South Aviation Boulevard
El Segundo, Calif. 90245

[V23] "XERox EXTENDED DMS SIGMA 6/7/9,"

Evolution of Data-Base Management ~yaeam • 39

Reference Mammal, 903012B, February
1974.

SET THEORETIC. INFORMATION CORPORATION
117 N. 1st Street
Ann Arbor, MieI'L 48104

[V24] SET THEORETIC INFORMATION CORPORA-
TION, "STDS/I reference guide," 1975.

(W) Report Generator
[Wl] "SHARE 7090 9PAt, Part I: "Introduc-

tion and general principles," in 7090
Programming Systems, ,Systems Reference
Library, IBM, File 7090--28, Form JZ8-
6166-1, p. 32, 1961. ,,

[W2] LESLIE, H., "The report generator,
Datamation, (June 1967), 26-28.

[W3] FRIEDnERG, L. M., "RPG: the coming
of AGE," Dagama~ion, (June 1967), 29-31.

[W4] LONGO, F., "SuRoE: a recording of the
COBOL merchandise control algorithm,"
Comm. ACM §, 2 (Feb. 1962), 98-100.

(X) DBMS prior to 1968,
[X1] MILLER, L,; MINKER, J.; REEl), W.; AND

SHINDLE, W. , " A multi-level file• strut-

• P~ if., , P
Books, New York, 1960,pp. 53-59.

[X2] GREEN, B. V.; WOLF, A. K.; CHOMSKY, C.;
AND LAUGHERY, J . , "Ba~e-ball, an auto-
mated question-answer," Proc. Western
Jt. Computer Conf., May 1961, Spartan
Books, New York, 1961.

[X3] VESPER, N. R., Information Retrieval
Program, Reportl C-1210 (David Taylor
Model Basin), May 1961.

[X4] POSTLEY, J. A.; AND BUE'ITELL, T. D.,
"Generalized information retrieval and
listing system," Datamation 4, 12 (Dec.
1962), 22-26,

[X5] User's Manuat]or TUG-Format Table
Tape Updaler and Generator, Naval Com-
mand Systems Support Activity, prepared
by International Business Machines
Corp., Rockville, :lVID. Oct. 1962.

[X6] COLLILLA, R. A.; 'AND SAMS, B.H. , "In-
formation structure for processing and re-
trieving," Comm. ACM-§, 1 (Jan. 1962),
11-15.

[X7] CHEATHAM, T. E., JR.; AND WARSHALL, S•
"Translation of re~trieval requests couched
in a 'semiformal' English-like language,"
Comm. ACM 6, 1 (Jan. 1962),3,t-39.

[X8] CLIMENSON, W.D. , "REco~--a retrieval
command language," Comm. ACM 6, 3
(March 1963), 117-122.

[X9] NAVAL COMMAND SYSTEMS SUPPORT AC-
TIVITY, "User's manual for the 704/7090
information retrieval," NAVCOSSACT
Document No. 10S001, CM-76, Nov. 1963.

[X10] Intelligence Data Processing System For-
matted File System, U.S. Navy Fleet
Intelligence Center and Intelligence Sys-
tems Dept. I B M Federal Systems Div.,
May 1963.

Vol. 1. Program description
Vol. 2. Program flow diagram~ and listings

• • . . ~ v • - • . . • , • . . ~ • ~ :

40 • James P. Fry and Edgar H. Sibley

[Xll]

[x12]

[X13]

[x14]

[X151

[X16]

(X17]

[Xl8]

[XI9]

[x20]

Vol. 4. Information system design and' [X21]
utilization

Vol. 5. Information retrieval.
NAVAL COMMAND SYSTEMS SUPPORT Ac- [X22]
• IVlTY, "User's manual for NAVCOS-
SACT information processing system

ase I library maintenance system,"
VCOSSACT Document No. 88MO08,

CM-52, August 1~63.'
NAVAL COMMAND SYSTEMS SUPPORT [X23]
ACTIVITY, "User's manual for NAVCOS-
SACT information processing system [X24]
phase I , " NAVCOSSACT Document No.
90S003A, CM-51, July 1963 Su lement I
published Jan. 1964. " PP
SYSTEM DEVELOPMENT CORP., "System
design specifications for LUCID phase I , " [X25]
Tech. Memo No. TM-1749/0O0/O0, Santa
Monica, Calif., Jan. 1964.
Vol. 1. Lucid control system design [X26]

Par t 1. The Master Tape, Tech Memo
No. TM-1749/101/00.

Part 2. Parameter Load, Tech Memo
No. TM-1749/102/00.

Part 3. Operational Control, Tech Memo
No. TM-1749/103/00.

Par t 4. Test Set-Up, Tech Memo No. [X27]
TM-1749/104/00.

Vol. 2. "GENDARME data processing fa- [X28]
cilities," Tech. Memo No. TM-1749/
201/00.

Vol. 3. "Lucid program design: the
grammar of OPAQUE," Tech. Memo No.
TM-1749/301/O0. [X29]

BRYANT, J. H., "AIDS experience in
managing data-base operation," Proc. of
the Symposium on Development and Man-
agement of a Computer-Centered Data Base,
A. Walker, (Ed.), System Development
Corp., Santa Monica, Calif., 1964, pp.
36-42.
BACHMAN, C. W.; AND WILLIAMS, S. B.,
"A general purpose programming system
for random access memories," Proc.
AFIPS Fall Jt. Computer Conf., 1964, [X30]
Vol. 26, Spartan Books, New York, 1964,

" 411--422.
VAL COMMAND SYSTEMS SUPPORT AC-

TIVITY, "User's manual 1401 TUFF tape [X31]
updater for formatted files," NAVCOS-
SACT Document No. 90S012W, CM-108,
NM~YC1964.

S INFORMATION PROCESSING SYSTEM [X32]
(NIPs), IBM 1410, NMCS Support Cen-
ter, Washington, D.C., 1964.
INTEGRATED DATA STORE--A NEW CON-
CEPT IN DATA MANAGEMENT, Publ ica-
t ion CPB-483 (5C10-16), General Electric
Co. [X33]
NAVAL COMMAND SYSTEMS SUPPORT AC-
TIVITY, "7090 informat ion processing
system revised," NAVCOSSACT Docu- [X34]
ment No. 90MO02, 0M-01, Oct. 1965.
NAVAL COMMAND SYSTEMS SUPPORT AC-
TIVITY, "User's manual for 704/7090 TUFF
MOP I I I tape updater for formatted
files," NAVCOSSACT Document No.
10S001, CM-74, Nov. 1963. Change 1 pub-
lished Feb. 1964. Change 2 published [X35]
August 1965.

GRANT, E., LucID User's Manual,
Tech Memo No. TM-2354/001, System
Development Corp., Santa Moniea, Calif.
June 1965.
SPITZER, J. F., et al., "The COLINGO
system design philosophy," in Informa-
tion System Sciences, Proc. of the Second
Congress, 1965, Spartan Books, New York,
1965, pp. 36-39.
SDS MANAGE REFERENCE MANUAL,
Publication 90-10-46A, Scientific Data
Systems, May 1966.
CONNORS, T. L., "ADAM--a generalized
data management system," Proc. AFIPS
Spring Jt. Computer Conf., 1966, Vol. 28,
Spartan Books, New York, 1966, pp. 193-
203.
A USER'S GUIDE TO THE ADAM SYSTEM,
MTR-268, MITRE Corp., (AD 664 332),
August 1966.
IDHS 1410 FORMATTED FILE SYSTEM:
FILE MAINTENANCE AND FILE GENERA-
TION MANUAL, Defense Intelligence
Agency, DIAM-65-9-1, August 1966.
Also, IDHS 1410 FORMATTED FILE SYS-
TEM: RETRIEVAL AND OUTPUT MANUALs
DIAM-69-9-2.
A DESCRIPTION OF THE INTERNAL OPERA-
TIONS OF THE ADAM SYSTEM, MTR-216,
MITRE Corp., (AD 660 581), August 1966.
DODD, G. G., "APL--a language for
associative data handling in PL/1," Proc.
AFIPS Fall Jr. Computer Conf., 1966,
Vol. 29, Spartan Books, New York, 1966,

" 667--684.
RHAUS, A.; AND MILLS, R., The Time-

Shared Data Management System: A New
Approach to Data Management, Tech
Memo SP-2747, System Development
Corp., Santa Monica, Calif. 1967.
WILLIAMS, W. D.; AND BARTRAM,]~. C.,
COMPOSE~PRODUCE: A User-Oriented
Report Generator Capability Within the
SDC Time-Shared Data Management Sys-
tem, Tech Memo SP-2634, System Develop-
ment Corp., Santa Monica, Calif. 1967.
STEIL, G. P., "File management on a
small computer," Proc. 1967 AFIPS
Spring Jt. Computer Conf., Spartan Books,
New York, 1967, pp. 199-203. ,
DIXON, PAULJ.; AND SABLE, J. , ' DM-1--
A generalized data management system,"
Proc. AFIPS Spring Jt. Computer Conf.,
(30), 1967, 185-198.
NAVAL COMMAND SYSTEMS SUPPORT AC-
TIVITY, "User's manual for information
processing" system phase 3A for. the AN/,,
FYK-1 (V) data processing set,
NAVCOSSACT Document No. 88MO01A,
CM-123, Revision 5, August 1967.
AFLC/ESD/MITRE, Advanced Data
Management (ADAM) Experiments, Final
Report, (AD 648 226), Feb. 1967.
BROWN, R.; AND NORDYKE, G. P., "ICS
an information control system," Proc.
IFIPS Conf. Mechanized Information
Storage, Retrieval and Dissemination, 1967,
North-Holland Publ. Co., Amsterdam,
The Netherlands, 1967.
Data Language No. 1 (DL-1) Encyclopedia
Pub. $SM-F, North America Aviation,

Computing SurveyJ, Vol. 8, No. 1, March 1976

[X37]

Evolution of Data-Base Management ~ystems

i
Inc., and International Business Ma- [Y10]
chines Corp., 1967.
GILDEA, R. A., Evaluation of ADAM an
advanced data,management system, MITRE
Corp., (AD 661 273), May, 1967.

(Y) DBMS 1968 to Present

[YI] BLEIER, R. E., Treating Hierarchical
Data Structures in the SDC Time-Shared
Data Management System (TDMS), Tech
Memo Sp-2750, System Development
Corp., Santa Monica, Calif., 1968.

[Y2] BLEIER, R. E.; AND VORHAUS, A., File
Organization in the SDC Time-Shared
Data Management System (TDMS), Tech
Memo SP-2750, System Development
Corp., Santa Monica, Calif., 1968.

[Y3] RAUCHER, V.; AND SCHWIMMER, I~I. S.,
The Time-Shared Data Management System
(TDMS), Language Specifications, Tech
Memo TM-3370, Systems Development
Corp., Santa Monica, Calif., 1968.

[Y4] SDS/9 SERIES Manage, Publication No.
CB 10035, Scientific Data Systems, 1968.

[Y5] ATLEE, E. S., et al., "COGENT III func-
tional specifications," Computer Sciences
Corporation, 1968.

[Y6] WELSH, W. A., "Engineered design of
EDP. systems," Systems and Procedures
Association Internal Meeting, October
1968.

[YT] "Remote file management system
(RFMS), "Computation Center Technical
Staff Documentation, Publications 0 to 14,
Univ. of Texas at Austin, 1968.

[Y8] MANGOLD, C. A., "COBOL data manage-
ment system (CDMS) briefing," Proc.
Guide, 30, (May 1970), 175-729.

[Yg] McELRoY, D. C., "The SERIES data
management system," Datamation 16, 4
(April 1971), 131-136.

AVAILABILITY OF REFERENCES

• 41

[Yll1

[Y12]

NAVAL COMUAND SYSTSMS Strr~oa~ Ac-
TIVITY, "Information proeessingsystem
(IPS) user's guide,'~ NAVCOSSACT
Document No. 85M904, TR.03, September
1971. Change 1 published Feb. 1972.
Change 2 publishedFeb. 1973.
MEINJ~RS, E . E.i "A machine-independ-
ent data management system" Datama-
tion, 19, 6 (June 1973), 92-98.
NMCS INFORMATION PROCESSING SYSTEM
360 FORMATTED FILE SYSTEM (NIPS FFS),
NMCS Support Center, CSM UM 15-74
October 1974).
Vol. I :
Vol. I I :
Vol. I l l :
Vol. IV:

(RASP).
Vol. V:
Vol. VI:
Vol. VII:
Vol. VIII :
Vol. IX:
TR 54-74:

Introduction to file concepts.
File structuring (FS).
File maintenance (FM).
Retrieval and sort Processor

Output processor (OP).
Terminal processi~ (TP).
Utility support (U) .
Job preparation.
Error codes.
Installation of NiPs 360 FFS.

(Z) Relational Systems

[Zl] GOLDSTEIN, R. C.; AND STRNAn, A. L.,
"The MAcAIMs data management sys-
tem," Proc. 1970 ACM-SIGFIDET Work-
shop on Data Description and Access,
Nov., 1970, pp. 201-229.

[Z2] MCINTOSH, S.; ANn GRIFFEL, D., "Data
management for a penny a byte," Com-
puter Decisions, (May 1973).

[Z3] WHITNEr, V. K. M., "RDMS: a rela-
tional data management system," Proc.
Fourth Internatl. Symposium on Computer
and Information Sciences (COIN,g IV),
Dec. 1972, Plenum Press, New York, 1972

Addresses

EDP Analyzer
Canning Publications, Inc.
925 Anza Avenue
Vista, Calif. 92083

ACM Association for Computing Machinery
1133 Avenue of the Americas
New York, N.Y. 10036
(212) 265-6300

Management Information Systems Research Center
Graduate School of Business Administration
University of Minnesota
Minneapolis, Minn 55455

IFIP Administrative Data Processing Group
6 Stadhouderskade
Amsterdam 1013, The Netherlands

Publications

EDP Analyzer

SIGBDP
DBTG Specifications
CODASYL Systems Committee Re-

port
SIGMOD Proceedings
SIGFIDET Proceedings
Comm. ACM
J.ACM
TOnS
Very Large Data Base Proceedings

MISRC Publications

CODASYL System Committee
DBTG Specification
IAG Journal

Computfng Sur~i¢¥s. VoL• 8, .N°" 1, March 1976
I

42 • James P. Fry and Edgar H. Sibley

Addresses

Technical Services Branch
Department of Supply and Services
88 Metcalfe Street
Fifth Floor
Ottawa, Ont., Canada KIA OS5

British Computer Society
29 Portland Place
London Wl, England

National Technical Information Service
5285 Port Royal Road
Springfield, Va. 22151

SHARE Inc.
One Illinois Center
111 E. Wacker Drive
Suite 600
Chicago, Ill. 60601

GUIDE Int.
Mr. Sandy Hill
Smith, Bucklin, and Associates
111 E. Wacker Drive
Chicago, Ill. 60601

System Development Corp.
2500 Colorado Boulevard
Santa Monica, Calif.

The MITRE Corp.
Bedford Operations
Box 207
Bedford, Mass:
Washington Operations
Westgate Research Park
McClean, Va. 22101

Publications

CODASYL COBOL Specification

CODASYL System Committee
DBTG Specifications

Documents with AD or PB numbers

SHARE Proceedings

GUIDE Proceedings

SDC Technical Reports,
Memorandums

MITRE Technical Reports

Computing Surveys, Vol 8, No. 1, March 1976

