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Abstract

Complexity reduction in workload management is driv-
ing the development of goal-oriented workload managers
(WLMs). Simultaneously, server consolidation of work-
loads with dynamically changing resource demands calls
for these WLMs to be increasingly efficient in manag-
ing resources. We propose the Class-based Kernel Re-
source Management (CKRM) framework, implemented in
Linux, for operating systems to these requirements.

1. Introduction

Workload management is an increasingly important re-
quirement of modern enterprise computing systems. There
are two trends driving the development of enterprise work-
load management (WLM) middleware. One is allowing the
human system administrator to only specify the business
importance of a workload and let the WLM determine and
enforce the workload’s low-level system resource usage tar-
gets. This has led to the development of goal-oriented work-
load managers which are more tightly integrated into the
business processes of an enterprise. The second trend is the
consolidation of multiple workloads onto large symmetric
multiprocessors (SMPs) and mainframes. Their diverse and
dynamic resource demands require workload managers to
provide efficient differentiated service at a fine time granu-
larity to maintain high utilization of expensive hardware.

To be effective, a goal-oriented WLM requires the op-
erating system kernel to provide differentiated service
for all major resources at a granularity defined by the
WLM. We propose a framework called class-based ker-
nel resource management (CKRM) framework includ-
ing class-aware CPU, memory, I/O and inbound network
schedulers which enable the operating system to pro-
vide such support.

2. CKRM Framework

CKRM defines a class as a dynamic grouping of tasks
(Linux equivalent of process threads) with the same re-
source allocation priority. The classification of tasks into
classes is driven by a classification engine that is invoked
at relevant task transition events (exec, setuid and the newly
introduced settag). Once a task is classified, all subsequent
resource requests generated by the task are identified with
the class and provided differentiated service by the class-
aware CPU, memory and I/O resource schedulers (also
called controllers) included in CKRM. Incoming network
connections for the class are differentiated by CKRM’s
socket queue network controller.

The main components of CKRM are shown in Figure 1:

Figure 1. CKRM framework and life cycle

� CKRM Core: defines the data structures for class def-
initions and an API for a) registering various class
aware schedulers independently; b) setting/getting the
class shares and c) providing the interface and callback
hooks into a loadable classification engine.
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� Classification Engine: is an external policy driven
kernel module. Its sole task is to classify tasks into
classes.

� Class-aware Resource Schedulers: These are patches
to the various resource schedulers (CPU, mem, disk,
net) to make them class aware and enforce specific per
class resource usage.

� Resource Manager: entity which determines the pro-
portions in which resources should be allocated to
classes. This could be either a human system admin-
istrator or a resource management application middle-
ware as envisioned in the autonomic computing frame-
work.

At system initialization time, the class aware schedulers
and the classification engine register with the Core. CKRM
provides a policy-driven Rule Based Classification Engine
(RBCE). As inputs, RBCE accepts policies, consisting of
a set of class definitions and a set of rules that associate
task attribute values (e.g. executable, uid, gid, tag) with a
class. Once a policy is loaded into RBCE and activated, it is
used on important task events such as fork, exec, setuid and
set application tag to classify tasks into the classes. Tags
are a newly added attribute of the task, opaque to the ker-
nel, and set by the application or a trusted user level dae-
mon to assist in the task’s classification based on the work
being done by it. Policies can be dynamically changed or
replaced and provides a clean separation of policy and en-
forcement. Each time a policy is changed, all existing tasks
in the system are reclassified using the new classes defined.
The CKRM infrastructure is flexible enough to accept clas-
sification engines other than RBCE.

As part of the initial policy or later, per-resource shares
are assigned to each class in the system by the Resource
Manager. Each class gets a separate share for CPU time,
resident page frames, I/O bandwidth and incoming network
(socket accept queue) connections. The resource schedulers
then differentiate between requests from classes based on
these shares. The schedulers and statistic gathering compo-
nents of the kernel also maintain usage statistics for each
controlled resource on a per-class basis. This allows Re-
source Managers to implement an adaptive feedback loop
using class shares as activators and class usage statistics as
sensors.

3. Class-aware Resource Schedulers

We give an overview of the design and implementa-
tion of the resource controllers. More details are available
in [2, 1]. CKRM implements weighted fair share queu-
ing for cpu, memory, block I/O and inbound network con-
trol. Outbound network control can be effectively handled
through the existing netfilter mechanisms and do not require

extensions in the Linux kernel. One of the overriding goals
was to provide class based functionality with small exten-
sions/modifications to the existing schedulers. This allows
CKRM to take advantage of continuing improvements, by
the open-source development community, in the base, class-
unaware schedulers.

The current CPU scheduler (aka O(1)) provides a
run queue for each CPU and does scheduling within
each run queue. Occasionally or during idle times, the
queues are load balanced to provide some degree of fair-
ness. In CKRM, we provide a run queue per class/per cpu
and deploy a simple two level scheduling and load balanc-
ing scheme. In the first level we perform a weighted fair
share scheduling of classes and within the selected class we
deploy the same scheduling behavior as the current sched-
uler. In load balancing we balance classes such that global
class shares are achieved and within classes we bal-
ance again using the default mechanism to achieve intra
class fairness.

The memory scheduler achieves its share controls by as-
sociating each page frame with the allocating task’s class
and with modifications to the page replacement algorithm.
Instead of following the default LRU-like policy strictly,
victim pages are preferentially chosen from classes over
their allocation. This leads to memory allocations approach-
ing the desired shares gradually and only when overall sys-
tem utilization of memory is high.

CKRM’s disk/block I/O scheduler creates explicit per-
class queues. I/O requests submitted by tasks go into the
queue of its current class. The scheduler then picks requests
from the queues in proportion of the class shares and sub-
mits them to the low level device drivers.

Finally, the inbound network control associates network
subclasses within each service class. Using netfilter packet
marking techniques it tags inbound connect packets based
on � ���� ����� ���� ���� 	 classification with the network
sub-class tag. The accept queues associated with individ-
ual sockets are then drained during accept() based on
the share settings of said subclasses.

The performance data for the schedulers is available at
[1]. Overall we have demonstrated that an operating system
can achieve effective, efficient and scalable class-based re-
source control with minor/acceptable changes to its sched-
ulers and thus can provide meaningful abstractions to the
higher level workload management levels.
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