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Abstract. Traditional approaches to pattern recognition tasks normally consider
only the unilabel classification problem, that is, each observation (both in the
training and test sets) has one unique class label associated to it. Yet in many
real-world tasks this is only a rough approximation, as one sample can be labeled
with a set of classes and thus techniques for the more general multi-label problem
have to be explored. In this paper we review the techniques presented in our
previous work and discuss its application to the field of text classification, using
the multinomial (Naive Bayes) classifier. Results are presented on the Reuters-
21578 dataset, and our proposed approach obtains satisfying results.

1 Introduction

Traditional approaches to pattern recognition tasks normally consider only the unilabel
classification problem, that is, each observation (both in the training and test sets) has
one unique class label associated to it. Yet in many real-world tasks this is only a rough
approximation, as one sample can be labeled with a set of classes and thus techniques
for the more general multi-label problem have to be explored. In particular, for multi-
labeled documents, text classification is the problem of assigning a text document into
one or more topic categories or classes [1]. There are many ways to deal with this
problem. Most of them involve learning a number of different binary classifiers and
use the outputs of those classifiers to determine the label or labels of a new sample[2].
We explore this approach using a multinomial (Naive Bayes) classifier and results are
presented on the Reuters-21578 dataset. Furthermore, we explore the result that using an
accumulated posterior probability approach to multi-label text classification performs
favorably compared to the more standard binary approach to multi-label classification.

The methods we discuss in this paper were applied to the classification phase of
a dialogue system using neural networks [3], but the simplicity of the methods allows
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us to easily extend the same ideas to other application areas and other types of classi-
fiers, such as the multinomial Naive Bayes classifier considered in this work for text
classification.

2 Unilabel and Multi-Label Classification Problems

Unilabel classification problems involve finding a definition for an unknown function
k?(x) whose range is a discrete set containing|C| values (i.e.,|C| “classes” of the set of
classesC = {c(1), c(2), . . . , c(|C|)}). The definition is acquired by studying collections
of training samples of the form

{(xn, cn)}N
n=1 , cn ∈ C , (1)

wherexn is then-th sample andcn is its corresponding class label.
For example, in handwritten digit recognition, the functionk? maps each hand-

written digit to one of|C| = 10 classes. The Bayes decision rule for minimizing the
probability of error is to assign the class with maximum a posteriori probability to the
samplex:

k?(x) = argmax
k∈C

Pr(k|x) . (2)

In contrast to the unilabel classification problem, in other real-world learning tasks
the unknown functionk? can take more than one value from the set of classesC. For ex-
ample, in many important document classification tasks, like the Reuters-21578 corpus
we will consider in Section 4, documents may each be associated with multiple class
labels [1, 4]. In this case, the training set is composed of pairs of the form

{(xn, Cn)}N
n=1 , Cn ⊆ C . (3)

Note that the unilabel classification problem is a special case in which|Cn| = 1 for all
samples.

There are two common approaches to this problem of classification of objects as-
sociated with multiple class labels. The first is to use specialized solutions like the
accumulated posterior probability approach described in the next section. The second
is to build a binary classifier for each class as explained afterwards.

Note that in certain practical situations, the amount of possible multiple labels is
limited due to the nature of the task and this can lead to a simplification of the prob-
lem. For instance, if we know that the only possible appearing multiple labels can be
{c(i), c(j)} and{c(i), c(k)} we do not need to consider all the possible combinations of
the initial labels. In such situations we can handle this task as an unilabel classification
problem with the extended set of labelsĈ defined as a subset ofP(C). The question
whether this method can be reliably used is highly task-dependent.

2.1 Accumulated Posterior Probability

In a traditional (unilabel) classification system, given an estimation of the a posteriori
probabilitiesPr(k|x), we can think of a classification as “better estimated” if the proba-
bility of the destination class is above some threshold (i.e., the classification of a sample



x as belonging to classk is better estimated ifPr(k|x) = 0.9 than if it is only0.4). A
generalization of this principle can be applied to the multi-label classification problem.

We can consider that we have correctly classified a sample only if thesumof the a
posteriori probabilities of the assigned classes is above some thresholdT . Let us define
this concept more formally. Suppose we have an ordering (permutation){k(1), k(2), . . . , k(|C|)}
of the setC for a samplex, such that

Pr(k(i)|x) ≥ Pr(k(i+1)|x) ∀1 ≤ i < |C| . (4)

We define theaccumulated posterior probabilityfor the samplex as

Prj(x) =
j∑

i=1

Pr(k(i)|x) 1 ≤ j ≤ |C| . (5)

Using the above equation, we classify the samplex in n classes, beingn the smallest
number such that

Prn(x) ≥ T , (6)

where the thresholdT must also be learned automatically in the training process. Then,
the set of classification labels for the samplex is simply

K?(x) = {k(1), . . . , k(n)} . (7)

2.2 Binary Classifiers

Another possibility is to treat each class as a separate binary classification problem
(as in [5–7]). Each such problem answers the question, whether a sample should be
assigned to a particular class or not.

ForC ⊆ C, let us defineC[c] for c ∈ C to be:

C[c] =

{
true, if c ∈ C ;
false, if c /∈ C .

(8)

A natural reduction of the multi-label classification problem is to map each multi-
labeled sample(x, C) to |C| binary-labeled samples of the form(〈x, c〉, C[c]) for all
c ∈ C; that is, each sample is formally a pair,〈x, c〉, and the associated binary label,
C[c]. In other words, we can think of each observed class setC as specifying|C| binary
labels (depending on whether a classc is or not included inC), and we can then apply
unilabel classification to this new problem. For instance, if a given training pair(x, C)
is labeled with the classesc(i) andc(j), (x, {c(i), c(j)}), then|C| binary-labeled samples
are defined as(〈x, c(i)〉, true), (〈x, c(j)〉, true) and(〈x, c〉, false) for the rest of classes
c ∈ C.

Then a set of binary classifiers is trained, one for each class. Theith classifier is
trained to discriminate between theith class and the rest of the classes and the resulting
classification rule is

K?(x) = {k ∈ C | Pr(k|x) ≥ T } , (9)



beingT a threshold which must also be learned. Note that in the standard binary classi-
fication problemT = 0.5, but experiments have shown that better results are obtained if
we allow the more general formulation of equation (9). We can also allow more gener-
alization by estimating one different thresholdTc for each class, but this would mean an
increased number of parameters to estimate and the approach with only one threshold
often works well in practice.

3 The Multinomial Model

As application of the multi-label classification rules we will consider a text classification
task, where each document will be assigned aW -dimensional vector of word counts,
whereW is the size of the vocabulary. This representation is known as “bag-of-words”.
As classification model we use theNaive Bayestext classifier in itsmultinomialevent
model instantiation [8]. In this model, we make the assumption that the probability of
each event (word occurrence) is independent of the word’s context and position in the
document it appears, and thus the chosen representation is justified. Given the represen-
tation of a document by its countsx = (x1, . . . , xW )t the class-conditional probability
is given by the multinomial distribution

p(x|c) = p(x+|c)p(x|c, x+) = p(x+|c) x+!∏
w xw!

∏
w

p(w|c, x+)xw , (10)

wherew = 1, . . . ,W denotes the word variable,x+ =
∑

w xw is the length of docu-
mentx, andp(w|c, x+) are the parameters of the distribution, with the restriction

∑
w

p(w|c, x+) = 1 ∀c, x+ . (11)

In order to reduce the number of parameters to estimate we assume that the distribution
parameters are independent of the lengthx+ and thusp(w|c, x+) = p(w|c), and that
the length distribution is independent of the classc, so (10) becomes

p(x|c) = p(x+)
x+!∏
w xw!

∏
w

p(w|c)xw . (12)

Applying Bayes rule we obtain the unilabel classification rule

k?(x) = argmax
c∈C

{p(c|x)}

= argmax
c∈C

{log p(c)p(x|c)}

= argmax
c∈C

{
log p(c) +

∑
w

xw log p(w|c)
}

.

(13)

The multi-label classification rules can be adapted accordingly.



To estimate the prior probabilitiesp(c) of the class and the parametersp(w|c) we
apply the maximum-likelihood method. In the training phase we replicate the multi-
labeled samples, that is, we transform the training set{(xn, Cn)}N

n=1, Cn ⊆ C into the
the “unilabel” training set

M ({(xn, Cn)}N
n=1

)
=

N⋃
n=1

⋃

c∈Cn

{(xn, c)}

=: {(x̃n, c̃n)}Ñ
n=1.

(14)

The log-likelihood function of this training set is then

logL({p(c)}, {p(w|c)}) =
Ñ∑

n=1

(
log p(cn) +

∑
w

x̃nw log p(w|c̃n)

+ const({p(c)}, {p(w|c)})
)

.

(15)

Using Lagrange multipliers we maximize this function under the constrains

∑
c

p(c) = 1 and
∑
w

p(w|c) = 1, ∀1 ≤ c ≤ |C| . (16)

The resulting estimators3 are the relative frequencies

p̂(c) =
Nc

Ñ
(17)

and

p̂(w|c) =
Ncw∑
w′ Ncw′

, (18)

whereNc =
∑

n δ(c̃n, c) is the number of documents of classc and similarlyNcw =∑
n δ(c̃n, c)x̃nw is the total number of occurrences of wordw in all the documents of

classc. In this equationsδ(·, ·) denotes the Kronecker delta function, which is equal to
one if its both arguments are equal and zero otherwise.

3.1 Smoothing

Parameter smoothing is required to counteract the effect of statistical variability of the
training data, particularly when the number of parameters to estimate is relatively large
in comparison with the amount of available data. As smoothing method we will use
unigram interpolation[9].

The base of this method is known asabsolute discountingand it consists of gaining
“free” probability mass from the seen events by discounting a small constantb to every
(positive) word count. The idea behind this model is to leave the high counts virtually

3 We will denote parameter estimations with the hat ()̂ symbol.



unchanged, with the justification that for a corpus of approximately the same size, the
counts will not differ much, and we can consider the “average” value, using a non-
integer discounting. The gained probability mass for each classc is

Mc =
b ·

∣∣{w′ : Ncw′ > 0}
∣∣

∑
w′ Ncw′

, (19)

and is distributed in accordance to ageneralized distribution, in our case, theunigram
distribution

p(w) =
∑

c Ncw∑
w′

∑
c Ncw′

. (20)

The final estimation thus becomes

p̂(w|c) = max
{

0,
Ncw − b∑

w′ Ncw′

}
+ p(w)Mc . (21)

The selection of the discounting parameterb is crucial for the performance of the
classifier. A possible way to estimate it is using the so calledleaving-one-outtechnique.
This can be considered as an extension of the cross-validation method [10, 11]. The
main idea is to split theN observations (documents) of the training corpus intoN − 1
observations that serve as training part and only1 observation, the so called hold-out
part, that will constitute the simulated training test. This process is repeatedN times
in such a way that every observation eventually constitutes the hold-out set. The main
advantage of this method is that each observation is used for both the training and the
hold-out part and thus we achieve and efficient exploitation of the given data. For the
actual parameter estimation we again use maximum likelihood. For further details the
reader is referred to [12].

No closed form solution for the estimation ofb using leaving-one-out can be given.
Nevertheless, an interval for the value of this parameter can be explicitly calculated as

n1

n1 + 2n2 +
∑

r≥3 nr
< b <

n1

n1 + 2n2
. (22)

wherenr =
∑

w δ(
∑

c Ncw, r) is the number of words that have been seen exactlyr
times in the training set. Since in general leaving-one-out tends to underestimate the ef-
fect of unseen events we choose to use the upper bound as the leaving-one-out estimate

b̂l1o ∼= n1

n1 + n2
. (23)

3.2 A Note About Implementation

On the actual implementation of the multinomial classifier we can not directly compute
the probabilities as given in equation (12) due to underflows in the computation of the
exponentiation of the multinomial parameters4. In the unilabel classification tasks (and
therefore in the extension to binary classifiers) we avoid this problem by using the joint

4 Note that the multinomial coefficient cancels when applying Bayes rule.



probability in the maximization (see eq. (13)), but for the accumulated posterior proba-
bility approach we have to work with real posterior probabilities in order to handle the
threshold in a correct way. A possibility to compute this probabilities in a numerically
stable way is to introduce a maximum operation in Bayes rule

p(c|x) =

p(x, c)
maxc′′ p(x, c′′)

∑
c′

p(x, c′)
maxc′′ p(x, c′′)

, (24)

and then introduce a logarithm and an exponentiation function that allow us to compute
the probabilities in a reliable way

p(c|x) =
exp

(
log p(x, c)−maxc′′ log p(x, c′′)

)
∑
c′

exp
(
log p(x, c′)−maxc′′ log p(x, c′′)

) . (25)

4 Experimental Results

4.1 The Dataset

As corpus for our experiments we use the Reuters-21578, a collection of articles ap-
peared in the Reuters newswire in 1987. More precisely we use the Modified Apte Split
as described in the original corpus, consisting of a training set of9 603 documents and
a test set of3 299 documents (the remaining8 676 are not used). Although this partition
originally intended to restrict the set of used documents to those with one or more well
defined class labels (topics as they are called in the documentation), problems with an
exact definition of what was exactly meant with ’topic’ results in documents without
associated class labels appearing both in the training and the test set. Statistics of the
corpus are shown in Table 1.

Table 1.Statistics for the Reuters-21578 dataset.

Number of documents
Total No label Unilabel Multi-Label

Training 9 603 1 828 (19.0%) 6 552 (68.3%) 1223 (12.7%)
Test 3 299 280 (8.5%) 2 581 (78.2%) 438 (13.3%)

In spite of the explanation given in the “README” file accompanying the dataset,
we feel that the presence of unlabeled documents in the corpus is not adequate, as they
seem to be the result of an incorrect labelling, and therefore should be eliminated of the
test set. We report results with the whole set, however, in order to better compare our
results with other researches. On the other hand, the presence of such documents in the
training set does provide some useful information and can be considered as a “real life”
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Fig. 1.Precision and recall curves for the Reuters-21578 dataset. Note the different scaling of the
axis.



situation, where only a subset of the available data has been labeled. In our case we use
the unlabeled documents as an aid to better estimate the smoothing parameters, but can
also be used in a more powerful way [7]. This will be the subject of further research.

For the accumulated posterior probability approach, the presence of unlabeled sam-
ples in the test set represents immediately a classification error, as the definition of the
approach requires that at least one label to be detected. One possibility to avoid this
problem could be to include a “<no_class> ” label, trained with the unlabeled sam-
ples in the training set and being mutually exclusive with the other classes. This seems
however an ad hoc solution that does not generalize well so we decided not to apply it.
On the other hand, the binary classifiers can handle the case of unlabeled samples in a
natural way, if none of the posterior probabilities lies above the predefined threshold.5

4.2 Results

We will present present several figures as a measures of the effectiveness of our methods
in order of increasing difficulty of the task. First we consider the simple unilabel clas-
sification problem, that is, only the samples with one unique class-label are considered.
We obtain an error rate of8.56% in this case. If we include the non-labeled samples for
a better estimation of the smoothing parameters we do not get any improvement in the
error rate.

In addition to the error rate, in the multi-label classification problem we also con-
sider the precision/recall measure. It is worth noting that in most previous work, the
error rate is not considered as an appropiate measure of the effectiveness of a multi-
label classification system, as it does not take into consideration “near misses”, that is
for example the case when all the detected labels are correct but there is still one label
missing. This is clearly an important issue, but for some applications, specially when
the classification system is only a part of a much bigger system (see for example [3])
such a “small” error does have a great influence on the output of the whole system, as
it propagates into the subsequent constituents. Therefore we feel that the true error rate
should also be included in such a study.

In the case of multi-label classification, precision is defined as

precision=
# of correct detected labels

# of detected labels
(26)

and recall as

recall=
# of correct detected labels

# of reference labels
(27)

where “detected labels” corresponds to the labels in the output of the classifier.
The curves shown in Figure 1 are obtained modifying the thresholdT in the range

(0, 1). Note that because of this method for generating the curves the axis ranges are
quite different. We can observe that the accumulated posterior probability approach has
a much higher precision rate than the binary classifiers, which, in turn, have a higher re-
call rate. That means that the accumulated posterior probability approach does a “safe”

5 In the “normal” case where each sample should be labeled, we could choose the class with
highest probability as the one unique label if no probability is higher than the threshold.



classification, where the output labels have a high probability to be right, but it does
not find all the reference class labels. The binary classifiers, on the other hand, do find
most of the correct labels but at the expense of also outputting a big amount of incorrect
labels. The effect of (not) including the non labeled test samples can also be seen in
the curves. As expected, the performance of the accumulated posterior probability ap-
proach increases when leaving this samples out. In the case of the binary classifiers, the
difference is not as big, but better results are still obtained when using only the labeled
data.

It is also interesting to observe the evolution of the error rate when varying the
threshold value. For the multi-label problem, for a sample to be correctly classified, the
whole set of reference labels must be detected. That is, the number of detected labels
must be the same in the reference and the output of the classifier (and obviously the
labels also have to be the same). This a rather strict measure, but one must consider
that in many systems the classification is only one step in a chain of processes and we
are interested in the exact performance of the classifier [3]. The error rate is showed in
Figure 2. Note that this curves show the error rate on thetest setin order to analyze the
behavior of the classification methods. For a real-world classification system we should
choose an appropriate threshold value (for example by using a validation set) and then
use this value in order to obtain a figure for the error rate.

We see that when considering the error rate, the accumulated posterior probability
approach performs much better than the binary classifiers. For this approach the thresh-
old does not have a great influence on the error rate unless we use high values, where
an increase of the number of class labels the classifier has to include for reaching the
threshold produces an increase of the error rate. Somehow surprisingly, for binary clas-
sifiers, the best results are obtained for low threshold values. This is probably due to
the unclean division between the classes defined in every binary subproblem, that leads
to an incorrect parameter estimation. Taking into account the correlation between the
classes may help to alleviate the problem.

5 Conclusions

In this paper we have discussed some possibilities to handle the multi-label classifi-
cation problem. The methods are quite general and can be applied to a wide range of
statistical classifiers. Results on text classification with the Reuters-21578 corpus have
been presented, where the accumulated posterior probability approach performs better
that the most widely used binary classifiers.

However, in these approaches we did not take the relation between the different
classes into account. Modeling this information may provide a better estimation of the
parameters and better results can be expected. For the Reuters-21578 corpus in par-
ticular, a better exploitation of the unlabeled data can also lead to an improvement in
performance.
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