

191

EXTENDING ArgoUML© FOR REAL-TIME UML® *

Sérgio LOPES, Carlos SILVA, Adriano TAVARES, João MONTEIRO
Industrial Electronics Department, Engineering School, University of Minho,

Campus de Azurém, 4800-058 Guimarães, PORTUGAL,
<sergio.lopes, carlos.silva, adriano.tavares, joao.monteiro>@dei.uminho.pt

ABSTRACT
The “UML Profile for Schedulability, Performance and
Time Specification” (UML-SPT) is an extension of the
Unified Modeling Language™ (UML) for the real-time
domain, defined by the Object Management Group™
(OMG™)i. This profile includes a model of key domain
concepts that are mapped to UML in the form of
stereotypes, with their respective tagged values and
constraints. Software designers can annotate their
application models with these UML standard extension
mechanisms in order to model time-, schedulability-, and
performance-related aspects. At the present time, only one
tool declares support to the UML-SPT profile, however
these are closed commercial Computer-Aided Software
Engineering (CASE) tools from major vendors, and cannot
be easily tailored to more specific ends. ArgoUMLii is an
extensible platform-independent UML design tool with
cognitive support, developed as an open-source project
based on the Java™ programming languageiii. Extending it
has the advantage of enabling further refinements to the
real-time profile and also to have complete control over
the application, and thus the possibility to include special
features. Yet, there is no single and consistent document
describing completely the implementation of a
plugin/module for ArgoUML. This paper describes its
extension to support the implementation of the UML-SPT
profile, and presents our experience in developing the
respective module, namely the difficulties faced, the
discussion of different alternatives and the proposed final
solutions.

KEYWORDS
Unified Modeling Language, ArgoUML, Object-Oriented
Design, UML-SPT Profile, Embedded Systems, Design-
Patterns.

i Unified Modeling Language, UML and OMG are either registered
trademarks or trademarks of Object Management Group, Inc. in the
United States and/or other countries.
ii ArgoUML is copyrighted by The Regents of the University of
California.
iii Java is a trademark or registered trademark of Sun Microsystems, Inc.
in the United States and other countries.

1. Introduction

The Unified Modeling Language standard defined by the
OMG in [1], has been widely used in several different
domains. But, its success has not spread to the real-time
systems domain because UML does not provide by itself
the required modeling features.

Without changing UML fundamental modeling concepts,
the OMG defined the “UML Profile for Schedulability,
Performance and Time Specification”, described in [2],
which addresses real-time domain issues by taking
advantage of the standard UML extension mechanisms.
This profile is a model of key domain concepts and their
corresponding UML extensions, namely stereotypes,
tagged values and constraints, organized in several
packages. The annotation of UML models with these
extensions will enable to make predictive and quantitative
analysis regarding timeliness, schedulability and
performance. This has a major impact in building real-time
systems, not only because the existence of a standard
makes easier the design communication and tool
interoperability, but mostly because with the aid of a
CASE tool, designers can verify and validate the system
early in the development life cycle, thus increasing
significantly the quality and reducing the total cost.

Currently, only a few major CASE tool vendors give
support for real-time, and only one (the ARTISAN Real-
time Studio®) declares to provide a full implementation of
the UML-SPT profile. However, they are expensive
commercial tools that cannot be customized to meet
specific needs or experiments. On the other hand, there are
a few open-source software design tools supporting UML,
but most of them have one or more important limitations
(e.g. not platform independent, not extensible, don’t
provide extensive support to UML diagrams, not well
documented…). ArgoUML is an extensible UML tool,
developed by an internet community hosted at Tigris.org
(http://argouml.tigris.org). It is an open-source project of
pure Java programming language source code, which has a
very supportive web page, and is fairly documented ([3] is
the user manual and [4] describes the project from the
developer viewpoint). The latest stable release is version
0.16, and hereafter whenever any reference is made to
ArgoUML internals, it implicitly means that specific
version. ArgoUML gives the ability to add more

Proceedings of the IASTED International Conference
ADVANCES IN COMPUTER SCIENCE AND TECHNOLOGY
November 22-24, 2004, St. Thomas, US Virgin Islands

431-057

192

functionality to its environment, without modifying the
basic tool, through its module/plugin extension
mechanism.

This paper describes the development of the SPT module
for ArgoUML, which implements the UML-SPT profile. It
explains the extension of ArgoUML trying to abstract as
much as possible from its internals. A more detailed
perspective is given in [5]. Section 2 describes how the
SPT module is attached to ArgoUML, namely the first
user interface (UI) items. The creation of UML diagrams
supporting the UML-SPT profile is introduced in section
3, and section 4 discusses the insertion of new elements in
ArgoUML diagrams. Section 5 describes the proposed
solution to add SPT extensions to the standard UML
diagrams. In section 6 the remaining module’s UI is
explained, namely how the SPT extensions’ data is
displayed and how it can be edited. Finally, the
conclusions are drawn.

2. Attaching the SPT Module

This section discusses how the first elements of the
modules’ graphical user interface (GUI) are attached to
the ArgoUML native UI. These UI elements are the entry
door to the SPT module. At first, the extension options
offered by the ArgoUML’s Application Program Interface
(API) are discussed, then the approach chosen to
implement the SPT module is presented.

2.1. ArgoUML API

ArgoUML can be extended through modules and plugins.
Modules have to interact with internal elements of its
architecture. A plugin is a kind of passive module that
provides methods that are attached at predefined places of
ArgoUML core (for a more detailed discussion about
modules and plugins see [4]). These predefined places are
specified by Java interfaces. Figure 1 illustrates some of
the interfaces that allow extensions to connect to
ArgoUML core. In the current implementation, plugins
and modules are loaded in the same way (described in
[6]), when the application starts.

Shortly, it can be said that modules implement the
ArgoModule or ArgoSingletonModule interfaces,
and plugins implement the Pluggable interface or any
of its derived sub-interfaces. By implementing one or
more of these interfaces, a plugin is automatically attached
to specific components of ArgoUML, thus simplifying the
extension of the tool. On the other hand, the classes of a
module extend ArgoUML behaviour by interacting
directly with its internal architectural elements,
consequently becoming dependent on that code. But there
is no other alternative if a module wants, for example, to
provide some fancy user interface features, because the
extensions available through Pluggable interfaces are
limited. Therefore, the available extension options through

the plugin mechanism are restricted.

<<Interface>>

ArgoModule

initializeModule() : boolean

shutdownModule() : boolean

setModuleEnabled(in tf : boolean) : void

isModuleEnabled() : boolean

getModuleName() : String

getModuleDescription() : String

getModuleVersion() : String

getModuleAuthor() : String

getModulePopUpActions(in popUpActions : Vector,in context : Object) : Vector

getModuleKey() : String

<<Interface>>

ArgoSingletonModule

canActivateSingleton() : boolean

canDeactivateSingleton() : boolean

deactivateSingleton() : void

activateSingleton() : void

getSingletonType() : Class

<<Interface>>

Pluggable

inContext(in context : Object[]) : boolean

<<Interface>>

PluggableAboutTab

getAboutTabPanel() : AboutTabPanel

<<Interface>>

PluggableMenu

getMenuItem(in context : Object[]) : JMenuItem

buildContext(in parentMenuItem : JMenuItem,in menuType : String) : Object[]

<<Interface>>

PluggablePropertyPanel

getClassForPanel() : Class

getPropertyPanel() : PropPanel

Figure 1 – ArgoUML Extension Interfaces.

A relevant aspect to the decision between modules and
plugins is the insertion of new menu items for the creation
of diagrams supporting the UML-SPT profile. This can be
accomplished with plugins implementing the
PluggableMenu interface (see [7] for a detailed
description). The getMenuItem(…) method of each
plugin returns the menu item for the respective diagram
creation, and the inContext(…) method returns true if
the context received corresponds to the “Create Diagram”
menu. This results in new menu items being added
immediately after the ones for creation of standard UML
diagrams, without any separator, thus making the “Create
Diagram” menu long and confusing. Furthermore, the
order of appearance of the new menu entries is
unpredictable, because the order plugins are listed in the
project’s JAR manifest file does not determines their
loading order (as described in [8]).

Another issue is the improvement of the GUI through the
addition of a new toolbar, e.g. for easier creation of the
new diagrams. But, there is no Pluggable interface
providing that possibility to plugins.

For these reasons, the module option was chosen to
implement the menus and toolbar that create the extended
diagrams. The modular plugin alternative has the proper
support for inserting the diagrams’ property panels.

2.2. Creation of New Diagrams

ArgoUML uses JFC/Swing to implement its GUI (see [9]
for a reference guide about JFC/Swing). Figure 2 and 3
describe the classes involved in the implementation of the

193

SPT module UI for the diagram level (sections 5 and 6
deal with UI for the elements in the diagrams), i.e. creating
the SPT diagrams and displaying their properties.

RTClassDiagram

JMenuItem

<<create>> JMenuItem(in text : String,in icon : Icon)

addActionListener(in action : Action) : void

ActionAddDiagram

createDiagram(in ns : Object) : UMLDiagram

isValidNamespace(in handle : Object) : boolean

actionPerformed(in e : ActionEvent) : void

<<singleton
>>ActionRTClassDiagram

ToolBar

<<create>> ToolBar(in name : String)
JMenu

<<create>> JMenu(in name : String)

add(in menuItem : JMenuItem) : JMenuItem

RTprofileModule ModuleLoader

initialize() : void

ProjectBrowser

getInstance() : ProjectBrowser

getJMenuBar() : JMenuBar

getTabProps() : TabProps

GenericArgoMenuBar

getCreateDiagramToolbar() : JToolBar

JMenuBar

add(in menu : JMenu) : JMenu
JPanel

add(in comp : Component,in constraints : Object) : void

<<Interface>>

ArgoModule

+listenergenerator

<<instantiate>>

toolbarActions
0..*

+

menuItems
0..*

+

subMenu

0..*

+

<<instantiate>>

getMenuAndToolbarPanel

+

_menuBar
+

menus
0..*

+

toolbars
0..*

+

/toolbarPanel+

Figure 2 – UI for Diagram Creation (Menu and Toolbar).

Figure 2 describes the implementation of the module’s UI
responsible for the creation of the diagrams, and its
dependencies on the ArgoUML internal structure.
RTprofileModule is the module’s main class, which
builds the menus and toolbar GUI objects, and integrates
them with ArgoUML native UI ([4] and [10] describe the
screen frame and the object structure behind it). When
ArgoUML starts, the ModuleLoader class loads
RTprofileModule. The latter obtains, through
ProjectBrowser (ArgoUML main window), the
objects behind the “Create Diagram” menu and the toolbar
panel. A “SPT Diagram” cascading sub-menu is inserted
under the “Create Diagram” main menu, and the “SPT
Toolbar” is added to the panel with the ArgoUML native
toolbars. Both the menu and the toolbar contain the
actions for the creation of diagrams implementing the SPT
profile extensions – each action is added to the toolbar and
registered as listener for the respective menu item.

Figure 3 shows the implementation of a plugin responsible
for attaching the properties panel describing one type of
diagram. Each diagram plugin implements the
PluggablePropertyPanel interface (e.g.,
RTClassDiagramPlugin class) and returns/creates
the properties panel for the respective diagram (e.g.,
PropPanelRTClassDiagram class). The properties
panels are automatically added to the properties tab
container of the ArgoUML details panel by the plugin
extension mechanism. When a diagram is being visualized
in the editor panel, the properties tab displays the
respective properties panel.

PropPanelDiagram

ModuleLoader

initialize() : void

RTClassDiagramPlugin

getClassForPanel() : Class

getPropertyPanel() : PropPanel

PropPanelRTClassDiagram

<<create>> PropPanelRTClassDiagram()

RTClassDiagram

<<Interface>>

PluggablePropertyPanel

<<instantiate>>

<<instantiate>>

<<implicit>>

+item +properties

identifies

+
Figure 3 – UI for Diagrams’ Property Panel.

3. Extended Diagrams

This section briefly introduces the foundation of
ArgoUML diagrams, and clearly identifies the steps
necessary to extend the standard UML diagrams
implemented in it.

ArgoUML uses the Java Graph Editing Framework
(GEF)iv to build the UML diagrams. GEF is another open-
source Java based project hosted at Tigris.org
(http://gef.tigris.org). Just to introduce the GEF concepts
behind the diagrams architecture, and avoiding too much
of its internal details (briefly described in [6]), a diagram
is composed of a title, a toolbar, a model, a renderer for
nodes and a renderer for edges, and the graphical
elements (derived from Fig class). The model defines the
rules for connecting the elements in the diagram, and the
renderers provide their graphical representation. There are
two types of Fig elements: nodes which are nodal
elements, and edges that make the connections between
nodes (further details in the next section). This simplified
architecture is illustrated in figure 4, which also includes
the derived structure of a ArgoUML diagram.

Diagram

String

ToolBar

Fig

<<Interface>>

GraphModel

<<Interface>>

GraphEdgeRenderer

<<Interface>>

GraphNodeRenderer

UMLClassDiagram

ClassDiagramRenderer

ClassDiagramGraphModel

UMLDiagram

getUMLActions() : Object[]

title

+

toolbar

+

model

+

nodeRenderer

+
edgeRenderer

+

objects

0..*

+

<<instantiate>>

<<instantiate>>

Figure 4 – An ArgoUML Diagram derived from GEF.

ArgoUML introduces some changes, namely, the renderers
for nodes and edges are unified in one class, and it isolates
the variation of the diagrams’ toolbars through the
getUMLActions() abstract method. Creating an
extended UML diagram becomes a simplified task,

iv GEF is copyrighted by The Regents of the University of California,
not to be confused with the Eclipse Graphical Editing Framework
(http://www.eclipse.org/gef).

194

because we can inherit the current implementation of a
standard diagram in ArgoUML, see figure 5. The
necessary tasks are:

· derive the standard diagram, model and renderer
classes;

· provide the title in the constructor of the diagram class,
or through the getNewDiagramName(…) static
method;

· create the model and renderer objects in the
setNamespace(…) method, like it is done in the
same method of the super-class.

· provide the actions for adding new elements to the
diagram through the getUMLActions() method;
these actions are placed in the toolbar;

· augment the model behaviour by overriding the
methods listed in the derived model class of figure 5;

· extend the fig renderer by overriding the methods
listed in the derived renderer class of figure 5.

RTClassDiagram

<<create>> RTClassDiagram()

<<create>> RTClassDiagram(in name : String,in m : Object)

<<create>> RTClassDiagram(in m : Object)

setNamespace(in handle : Object) : void

getUmlActions() : Object[]

getNewDiagramName() : String

RTClassDiagramRenderer

getFigNodeFor(in gm : GraphModel,in lay : Layer,in node : Object) : FigNode

getFigEdgeFor(in gm : GraphModel,in lay : Layer,in edge : Object) : FigEdge

UMLClassDiagram

ClassDiagramRenderer

ClassDiagramGraphModel RTClassDiagramGraphModel

canAddNode(in node : Object) : boolean

addNode(in node : Object) : void

canAddEdge(in edge : Object) : boolean

addEdge(in edge : Object) : void

<<instantiate>>

<<instantiate>>

<<instantiate>>
<<instantiate>>

Figure 5 – Extending a ArgoUML Diagram.

When extending UML, it is good to remember that the
standard language rules cannot be violated. The extended
diagrams aimed to more specific domains can only
augment the standard UML. Therefore, when deriving the
classes of a standard diagram, the overriden methods must
preserve their parents behaviour. For a different
perspective about how to implement a new diagram in
ArgoUML, see [7].

4. New Elements for the Diagrams

This section discusses the possibilities that ArgoUML
offers for adding new elements to UML diagrams, and
justifies the proposed solution.

The implementation of SPT diagrams (with UML model
elements annotated with SPT extensions) here described
follows the guidelines and examples illustrated in [2],
from which figure 6 is adapted. The SPT extensions
(stereotypes, tagged values and constraints) are
represented by UML notes connected to the annotated
element through a dashed line. The stereotype name comes
between guillemets (« ») or double angle-brackets (<<
>>), and the respective tagged values (pairs name = value)
come as a coma (,) separated list enclosed in braces ({ }).

Figure 6 – Annotated diagram example (adapted from [2]).

The designer builds his/her diagrams through UML
actions that add elements to the diagrams or change
elements properties. These actions operate on two separate
domains: the UML model, to which they add/change UML
meta-model elements; and, the GEF graphical model, to
which they add/change Fig nodes and/or edges.

GEF node-port-edge graphical model provides two
different types of commands for adding elements to the
diagrams – CmdCreateNode for nodes, and
CmdSetMode for edges –, for which the GEF
architecture will get the renderer Fig and insert it in the
model. In ArgoUML these simple commands are wrapped
by actions that are added to the diagrams’ toolbar (see
previous section). Adding new figs to the UML diagrams
through this kind of actions is described in [4]. To
annotate some element in a diagram, it is necessary one
command to build the annotation node, and another to
build the edge applying it to the element. Another
characteristic of GEF commands is that they create empty
UML model elements, e.g. a stereotype is created without
a name.

Nevertheless, another approach is possible. The actions
that manipulate the diagrams can be made more complex,
and add both node and edge figs. These actions derive
from the UMLChangeAction class and do not wrap
simple GEF commands, instead they interact directly with
the GEF model and renderer. In terms of software
architecture, the big difference between GEF commands
and these actions, is that, in the former case, the rules that
constrain the diagram construction are defined in the
model (in the canAddNode(…) and canAddEdge(…)
methods), while in the latter case, they are managed by the
actions themselves (in their shouldBeEnabled()
method). In functional terms, one single action can
accomplish the full task of annotating a diagram element
(see next section).

This leads to some important performance differences.
Annotating a diagram element with GEF commands
involves three user interventions (create an isolated empty
node, choose a specific SPT annotation to fill it, and later
link it to the element), whilst with UMLChangeAction
actions only one user intervention is needed. Furthermore,
with GEF commands, the UML-SPT meta-model rules
that restrict the application of annotations to diagram
elements, can only be verified at a late stage (the latest
step, when the user is trying to link them), whereas actions
can be enabled/disabled according to these rules before the

195

user makes a move.

Consequently, actions achieve a more anticipated
enforcement of the model syntactical correctness, are more
efficient and more intuitive. Therefore, they are chosen to
implement the addition of SPT annotations to the UML
diagrams.

5. Adding SPT Extensions

This section describes the implementation of actions
derived from UMLChangeAction that add SPT
annotations (SPT stereotypes and tagged values) to
extended UML diagrams. It also describes how the
syntactical correctness of the annotations is assured.

In terms of graphical tasks, these actions are similar to the
core ArgoUML class for adding notes to UML diagrams
(ActionAddNote class), since both have to create a
GEF node to hold the annotation, and a GEF edge to make
the connection between the annotation node and the node
representing the model element to be annotated. In what
concerns the changes to the UML model, they have to
create the SPT extension (a stereotype and the respective
tagged values) and apply it to the model element. This is
accomplished by the ActionAddRTStereotype class
in figure 7. To avoid dealing with the long list of
extensions defined in [2], this action exemplifies the
addition of a generic extension.

<<singleton
>>RTExtensionsFactory

getInstance() : RTExtensionsFactory

<<create>> RTExtensionsFactory()

buildStereotype(in me : Object,in name : String) : Object

FigRTComment

<<singleton
>>ActionAddRTStereotype

<<create>> ActionAddRTStereotype()

actionPerformed(in ae : ActionEvent) : void

shouldBeEnabled() : boolean

RTClassDiagram

UMLDiagram JToolBar

UMLChangeAction

TargetManager

getInstance() : TargetManager

getModelTarget() : Object

ModelFacade

AbstractUmlModelFactory

initialize(in o : Object) : void

FigEdgeRTNote

<<create>> FigEdgeRTNote(in fromNode : Object,in toNode : Object)

FigNodeModelElement

FigEdgeModelElement

diagramToolbar

+

diagramToolbarActions

0..*+returnsActions
0..*

+

buildStereotype+

getsTarget

+

addTags +

<<instantiate>>

<<instantiate>>

Figure 7 – Adding a UML-SPT Stereotype.

Figure 7 illustrates also the other classes involved in the
addition of the annotation. In a more detailed way the
performed tasks are:

· create a stereotype with a given SPT name (if not yet
in the model) with its tag definitions and apply it to the
target model element (represented by the diagram fig
node selected at the moment), using the
RTExtensionsFactory;

· create the tags required by the stereotype, using the
RTExtensionsFactory, and apply them to the
target model element, through the ModelFacade;

· create the GEF node (FigRTComment) to display the
extension in textual form inside a note figure;

· create the GEF edge (FigEdgeRTNote) to connect
the target node (representing the model element being
annotated) and the annotation node (representing the
SPT extension) through a dashed line.

ArgoUML core has several factories (see [11] for a
description of the Abstract Factory pattern) named after
the packages of UML meta-model, to create the respective
elements. The factory for extension mechanisms elements
(ExtensionMechanismsFactory class) does not
allow the creation of stereotypes containing tags
definitions. This is not compatible with the
implementation the UML-SPT profile, not even with the
UML 1.5 standard. It is necessary to have stereotypes with
tag definitions, in order to create the corresponding tagged
values and apply them to the model elements extended by
the same stereotypes. For this purpose, the
RTExtensionsFactory class is introduced.

The shouldBeEnabled() method of each action
verifies the rules that enable/disable the respective button
in the toolbar. More specifically, it returns true if the
target’s meta-model class is one of the possible base
classes to which the stereotype is applicable, and if it is
not already extended by a stereotype with the same name.
This way the UML designer gets a fundamental help in
avoiding syntactic errors regarding the applicability of the
UML-SPT extensions to the different model elements, and
thus keeping the model correct from the early
development stages.

6. Extensions Handling

This section discusses how to provide an appropriate
display for the UML-SPT tags, and an interface to edit
their values in a manner that preserves the correct syntax.

In ArgoUML details panel (see [3] for a description of
ArgoUML screen) there are several tabs that describe
different aspects of the model. One of them
(TabTaggedValues) is dedicated to the display and
manipulation of the tagged values, in a double column
table implemented with JFC/Swing table framework.
Swing components are designed in a modified version of
the Model-View-Controller paradigm (see [12]), in which
the view and the controller are combined into an object
called a delegate. In a Swing table framework the delegate
is an instance of the JTable class, and the model is
defined by the TableModel interface which is
implemented by the AbstractTableModel class (see
[13] for more details).

The table model in TabTaggedValues treats all cells

196

as editable plain text, thus, they can have any text value,
without restrictions. Besides, more tags can be added and
existing tags can be removed.

This completely editable and dynamic table is an efficient
and good looking solution. However, it is not optimized
neither suitable for the UML-SPT tags, because they are
predefined (in number and name) and they contain
different types of values (boolean, enumerated, number
and strings). Furthermore, it would be very important to
syntactically validate their values. The previous section
described how to ensure that the UML-SPT stereotypes
are correctly applied to model elements, but the values of
the respective tags have to be correct also. For example, if
a tag is of boolean type, then it should be guaranteed that
it only has the true/false values.

Based on these considerations, it was necessary to
implement another tab to display the tags for model
elements annotated with UML-SPT extensions in a double
column table with following requirements:

· the first column is non editable and contains the tags’
names;

· the second column contains the tags’ values, of
different types of data, that should be editable in a
syntactic correctness preserving manner;

· it is not possible to add or remove tags.

The JFC/Swing table framework provides functionalities
that are very helpful in the implementation of a table
verifying these properties. Swing’s tables have column
oriented features like specifying/getting the type of data in
a column for rendering/edition effects, and provide default
cell views (renderers) and controllers (editors) for a
predefined list of data types (the ‘How to Use Tables’
section in [9] gives further details). Nonetheless, this
option is not valid to handle the UML-SPT tagged values,
because in the same column different types of data coexist.
One way around it is to provide views and controllers per
cell, by overriding the JTable’s methods
getCellRenderer(…) and getCellEditor(…).

A generic table was implemented, in order to cope with
these constrictions. This table is constituted by a delegate
of type DynamicPropertyTable, and an extensible
model of type DynamicPropertyTableModel that
manages a set of elements of type Property (see figure
8). The delegate class provides suitable renderers and
editors, based on information provided by the Property
class. It gets the default renderers and editors for the data
types supported by Swing, and provides JComboBox
editors with the appropriate SPT options for enumerated
types, thus keeping the syntactic correctness of the model.
The model is very simple and generic. It provides methods
to add and remove properties, read and update the
properties, and makes the first column non-editable. The
Property class, that is part of the code in the CVS of
ArgoUML project, defines a set of property characteristics
(name, value, type…), and a set of methods to access

those characteristics.

The generic table presented, still needs to be tailored to
handle properly the UML-SPT tagged values inside
ArgoUML. More specifically, the
RTTaggedValuesTableModel class makes the
bridge between JFC/Swing table’s model and the UML
model. The setTarget(…) method transfers the tagged
values from the UML model to the table properties, and
the setValueAt(…) is overridden to propagate the
changes on the table properties to the tagged values in the
UML model. To help with the translations between tagged
values (UML model) and properties (GUI), an auxiliary
class RTExtensionsProperties was introduced. It
creates the Property objects for all the tagged values of
the UML-SPT stereotypes.

TabRTTaggedValues

<<create>> TabRTTaggedValuesTable()

resizeColumns() : void

setTarget(in target : Object) : void

getTarget() : Object

refresh() : void

shouldBeEnabled(in target : Object) : boolean

targetAdded(in e : TargetEvent) : void

targetRemoved(in e : TargetEvent) : void

targetSet(in e : TargetEvent) : void

RTTaggedValuesTableModel

<<create>> RTTaggedValuesTableModel()

setTarget(in t : Object) : void

setValueAt(in value : Object,in row : int,in column : int) : void

ConfigLoader

DynamicPropertyTable

<<create>> DynamicPropertyTable(in props : Property[],in nameCol : String,in valueCol : String)

<<create>> DynamicPropertyTable(in model : DynamicPropertyTableModel)

getCellEditor(in row : int,in column : int) : TableCellEditor

getCellRenderer(in row : int,in column : int) : TableCellRenderer

DynamicPropertyTableModel

Property

TabSpawnable

JPanel

JScrollPane

<<create>> JScrollPane()

JLabel

<<create>> JLabel()

setText(in text : String) : void

<<Interface>>

TabModelTarget

<<Interface>>

TabTarget

setTarget(in target : Object)

getTarget() : Object

refresh() : void

shouldBeEnabled(in target : Object) : boolean

JTable

AbstractTableModel

RTExtensionsProperties

managesTags

#

_model
#

managesProperties0..*

-

tagsTable
#

title

#
scrollPane

+

displaysTags

+

+

<<create>>

<<use>> <<instantiate>>

Figure 8 – Tab for the UML-SPT Tagged Values.

The tabs in the details panel are loaded by the
ConfigLoader class, which reads the tabs’ class names
from the file named ‘Argo.ini’ (complementary
information can be found in [10]).

7. Conclusion

This paper describes how the ArgoUML can be extended
to implement the UML-SPT Profile. Some capabilities of
its architecture are identified, and a few limitations are
analyzed and worked around. The current ArgoUML API
does not support pluggable toolbars and it is not possible
to have the pluggable menus ordered. A description of
how to overcome these issues, and provide a user-friendly
interface, is given. The diagrams supporting the UML-
SPT profile can be derived from the core ArgoUML

197

diagrams, thus resulting more simple. The different tasks
for adding UML-SPT extensions should be grouped in a
dedicated class, requiring only one user intervention, thus
improving the tool’s efficiency. The current ArgoUML
core does not allow the creation of stereotypes containing
tag definitions, and consequently does not fully supports
the UML specification. An abstract The implementation of
such functionality is presented, to make possible the
annotation of model elements with UML-SPT extensions.
ArgoUML provides a tab panel which displays the tagged
values without dictating any restrictions to their
manipulation. Another tab panel with improved GUI is
introduced, which handles the different tagged values with
appropriate controls.

The extension of ArgoUML is presented from the classes
attaching to Argo to the last UI items, with a strong effort
to systematize all the points necessary to implement a
complete module. Hiding the ArgoUML internal details is
a constant concern, and hence, an abstract and integrated
perspective of the ArgoUML extension architecture is
given.

The solutions provided enforce the syntactic correctness of
the SPT diagrams at design time. It was described how to
guarantee that the stereotypes were applied to allowed
base classes. Likewise, the table that handles the SPT
tagged values ensures that their values are valid. Carrying
out this error verification at design time is advantageous
because it can decrease a project’s costs and significantly
accelerate the development process.

The UML-SPT is just a base for a more complete real-
time profile, as stated in the standard itself. Having an
open-source tool that implements it, is therefore a
invaluable framework for the implementation and test of
more refined profiles for that domain, and also for the
study of different annotated UML diagrams to deal with
other concepts and problems. ArgoUML exports the UML
models in XMI format, which is also a door to
innumerable analysis possibilities.

References
[1] Object Management Group, Unified Modeling
Language Specification (UML), version 1.5, March 2003.
<http://www.omg.org/technology/documents/formal/
uml.htm>
[2] Object Management Group, UML™ Profile for
Schedulability, Performance and Time Specification,
version 1.0, September 2003. <http://www.omg.org/
technology/documents/formal/ schedulability.htm>
[3] M. Wulp, ArgoUML User Manual: A tutorial and
reference description, revision 1.9. <http://
argouml.tigris.org/documentation/defaulthtml/manual/>

[4] L. Tolke & M. Klink, Cookbook for Developers of
ArgoUML: An Introduction to Developing ArgoUML,
revision 1.19. <http://argouml.tigris.org/documentation/
defaulthtml/cookbook/>
[5] S. Lopes & A. Tavares, Building a ArgoUML
Module, ESRG Technical Report 04-01, University of
Minho, Portugal, 2004.
[6] Florent de Lamotte, Présentation d’ArgoUML, [cited
September 2004]. <http://lootre.free.fr/argopno/doc/
presentation/Presentation.html>
[7] Florent de Lamotte, Ajout d’un diagramme à
ArgoUML, [cited September 2004]. <http://lootre.free.fr/
argopno/doc/tutorials/nouveau_diagramme/nouveau_diagr
amme.html>
[8] Sun Microsystems, Inc., JAR File Specification,
[cited September 2004]. <http://java.sun.com/j2se/1.4.2/
docs/guide/jar/jar.html>
[9] Sun Microsystems, Inc., Creating a GUI with
JFC/Swing, [cited September 2004]. <http://java.sun.com/
docs/books/tutorial/ uiswing/TOC.html>
[10] Florent de Lamotte, Ajouter une nouvelle Tab dans le
DetailsPane d’ArgoUML, [cited September 2004].
<http://lootre.free.fr/argopno/doc/tutorials/nouvelle_tab/
nouvelle_tab.html>
[11] E. Gamma, R. Helm, R. Johnson & J. Vlisides,
Design Patterns: Elements of Reusable Object-Oriented
Software (Reading, MA: Addison-Wesley Longman,
1995)
[12] S. Burbeck, Applications Programming in Smalltalk-
80™: How to use Model-View-Controller (MVC), 1987-
1992. <http://st-www.cs.uiuc.edu/users/smarch/st-docs/
mvc.html>
[13] J. Zukowski, S. Stanchfield, Fundamentals of
JFC/Swing: Part 2, MageLang Institute, April 1999.
<http://java.sun.com/developer/onlineTraining/GUI/
Swing2/shortcourse.html>

* This work was supported by the “Fundação para a Ciência e a
Tecnologia - PRAXIS XXI” program of the Ministério da Ciência e
Tecnologia of the Portuguese Government.

