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1. Introduction 

1.1 Purpose 

The purpose of this report is to provide a cursory description of some of the leading Model-

Based Systems Engineering (MBSE) methodologies used in industry today.  It is intended 

that the material described herein provides a direct response to the INCOSE MBSE Roadmap 

element for a “Catalog of MBSE lifecycle methodologies” [1]. 

 

In this report, a methodology is defined as a collection of related processes, methods, and 

tools [2].  A MBSE methodology can be characterized as the collection of related processes, 

methods, and tools used to support the discipline of systems engineering in a “model-

based” or “model-driven” context.  The intent of this survey is to educate the reader about 

the various candidate MBSE methodologies that are commercially available as well as the 

control- and state-based MBSE methodology that has been developed at NASA’s Jet 

Propulsion Laboratory (JPL), which has been published in the open literature. 

1.2 Scope 

This memo describes the result of a MBSE methodology survey only; it is not a methodology 

assessment.  The material contained herein is expected to be reviewed and shared by the 

INCOSE MBSE Initiative team and its governing leaders.  It should be noted that this is a 

cursory survey and only the top-level synopses of each candidate methodology is described.  

Detailed descriptions of each can be found in the cited references. 

 

While it is recognized that modern day systems are not only gaining in overall complexity, 

they are also becoming more software intensive.  Nevertheless, the scope of this survey 

report is on MBSE methodologies from the holistic, lifecycle wide systems engineering 

perspective and not specifically targeted toward embedded systems or software-intensive 

systems in general.  There are some notable model-based methodologies that focus on 

embedded and software-intensive systems such as the Embedded Computer System 

Analysis and Modeling (ECSAM) methodology from Lavi and Kudish [3],[4] and Model-Based 

[System] Architecture and Software Engineering (MBASE) from Boehm and Port [5],[6]; 

however, these methodologies are not described herein.  The interested reader can review 

the cited references at the end of this report for more information on these methodologies.  

In future revisions of this survey, the scope may expand to include model-based 

methodologies for embedded and software-intensive systems in addition to mainstream 

MBSE methodologies. 

 

As will be described, tools are an important element of any MBSE methodology; however, a 

survey of MBSE tools is beyond the scope of this report.  It is expected that during an 



INCOSE MBSE Initiative 

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 2 of 70 

Rev. B May 23, 2008 

INCOSE MBSE Initiative 

 

organization’s candidate MBSE methodology assessment process (including impact to native 

processes and procedures), a tool survey and assessment will occur concurrently or shortly 

thereafter, followed by selection and piloting of relevant tools.  This latter effort requires 

participation from the organization’s systems engineering practitioner community because 

that is the community that will most heavily be using the tools. 

 

It is intended that this report be a living document and updated on a periodic basis based 

on feedback and input by not only members of the INCOSE MBSE Initiative team but also by 

members of the INCOSE community at large. 

1.3 Overview 

This report is organized as follows: Section 2 characterizes the difference between 

methodologies and processes, methods, and lifecycle models (development, acquisition, and 

systems engineering).  Also described is the role of models in the systems engineering 

process and the seminal work by Wymore on the mathematical foundation of MBSE.  

Section 3 documents the survey results of leading MBSE methodologies used in industry.  

Section 4 describes the role of the Object Management Group™ (OMG™) Unified Modeling 

Language™ (UML®) and Systems Modeling Language™ (OMG SysML™), which are industry-

standard, visual modeling languages used to support the disciplines of software and 

systems engineering, and how these modeling standards relate to MBSE methodologies.  

Section 5 discusses the role of OMG™ Model-Driven Architecture® (MDA®) to the discipline 

of systems engineering.  In addition, the Executable UML Foundation is briefly introduced.  

Section 6 provides a list of references used in preparation of this survey report and for the 

benefit of the reader.  Finally, Section 7 provides a list of acronyms and abbreviations used 

in this report. 

2. Differentiating Methodologies from Processes, Methods, and 
Lifecycle Models 

In order to better understand key features of the various leading MBSE methodologies 

surveyed in this study, it is critically important to establish the terminology associated with 

processes, methods, and methodology, and to acknowledge the myriad lifecycle models 

used in the acquisition and development of large-scale, complex systems.  Without such 

grounding, it will be extremely difficult to map any assessment and selection of candidate 

MBSE methodologies into the fabric of the systems engineering environment within a 

particular organization. 

2.1 Process, Method, Tool, Methodology, and Environment Defined 

The word methodology is often erroneously considered synonymous with the word process.  

For purposes of this study, the following definitions from Martin [2] are used to distinguish 

methodology from process, methods, and tools: 

� A Process (P) is a logical sequence of tasks performed to achieve a particular 

objective.  A process defines “WHAT” is to be done, without specifying “HOW” each 

task is performed.  The structure of a process provides several levels of aggregation 

to allow analysis and definition to be done at various levels of detail to support 

different decision-making needs. 

� A Method (M) consists of techniques for performing a task, in other words, it defines 

the “HOW” of each task.  (In this context, the words “method,” “technique,” 

“practice,” and “procedure” are often used interchangeably.)  At any level, process 
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tasks are performed using methods.  However, each method is also a process itself, 

with a sequence of tasks to be performed for that particular method.  In other words, 

the “HOW” at one level of abstraction becomes the “WHAT” at the next lower level. 

� A Tool (T) is an instrument that, when applied to a particular method, can enhance 

the efficiency of the task; provided it is applied properly and by somebody with 

proper skills and training.  The purpose of a tool should be to facilitate the 

accomplishment of the “HOWs.”  In a broader sense, a tool enhances the “WHAT” 

and the “HOW.”  Most tools used to support systems engineering are computer- or 

software-based, which also known as Computer Aided Engineering (CAE) tools. 

Based on these definitions, a methodology can be defined as a collection of related 

processes, methods, and tools.  A methodology is essentially a “recipe” and can be thought 

of as the application of related processes, methods, and tools to a class of problems that all 

have something in common [7]. 

 

Associated with the above definitions for process, methods (and methodology), and tools is 

environment.  An Environment (E) consists of the surroundings, the external objects, 

conditions, or factors that influence the actions of an object, individual person or group [2].  

These conditions can be social, cultural, personal, physical, organizational, or functional. 

The purpose of a project environment should be to integrate and support the use of the 

tools and methods used on that project.  An environment thus enables (or disables) the 

“WHAT” and the “HOW.” 

 

A visual graphic that depicts the relationship between the so-called “PMTE” elements 

(Process, Methods, Tools, and Environment) is illustrated in Figure 2-1 along with the 

effects of technology and people on the PMTE elements. 

 

 

Figure 2-1.  The PMTE Elements and Effects of Technology and People. 

 

As stated by Martin [2], the capabilities and limitations of technology must be considered 

when developing a systems engineering development environment.  This argument extends, 

of course, to an MBSE environment.  Technology should not be used “just for the sake of 

technology.”  Technology can either help or hinder systems engineering efforts.  Similarly, 

when choosing the right mix of PMTE elements, one must consider the knowledge, skills and 

abilities (KSA) of the people involved [2].  When new PMTE elements are used, often the 

KSAs of the people must be enhanced through special training and special assignments. 
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2.2 Lifecycle Development Models 

A number of lifecycle development models have been created and applied to large-scale 

system and software development projects used in government, industry, and academia, 

but most are grounded in one of three seminal models.  These are 1) Royce’s Waterfall 

Model [8], Boehm’s Spiral Model [9], and Forsberg and Moog’s “Vee” Model [10],[11].  A 

graphical depiction of each of these lifecycle development models is shown in Figure 2-2. 

 

There are large volumes of literature that describe each of these models; therefore, 

elaboration of each will not be provided here.  Suffice it to say that variations of the 

waterfall and spiral models to support structured as well as iterative and incremental 

development have been used extensively in software development projects, while the “Vee” 

model and modified versions of the “Vee” have been applied extensively in the areas of 

systems engineering and systems development. 

 

In addition to recognizing that such major lifecycle development models exist, they can also 

serve as metamodels for lifecycle development.  In other words, they provide the lifecycle 

development templates on which project- or domain-specific plans are built.  This will be 

more evident during the review of the various MBSE methodologies described in Section 3, 

many of which leverage one of these three lifecycle development models. 

2.3 Acquisition Lifecycle Models 

U.S. Government departments and agencies such as the U.S. Department of Defense (DoD) 

and the National Aeronautics and Space Administration (NASA) are responsible for 

managing billions of tax payer dollars annually in the development and acquisition of large-

scale, complex systems.  Consequently, these agencies must follow rigid acquisition 

guidelines to insure that they are good stewards of U.S. tax payer dollars, and that there is 

accountability for investment in such large-scale, potentially very costly programs. 

 

DoD acquisition reform was instituted in May 2003 to help streamline the defense 

acquisition process, which in the past, was so onerous it took literally decades to field new 

weapons systems.  DoD best practices for acquisition are rooted in DoD policy directives and 

instructions, namely, DoD Directive (DoDD) 5000.1 The Defense Acquisition System and 

DoD Instruction (DoDI) 5000.2 Operation of the Defense Acquisition System [12],[13].  

DoD’s revised acquisition policy includes a lifecycle framework and is depicted in Figure 2-3. 

 

Milestone A represents the start of the development phase, Milestone B represents program 

start, and Milestone C represents production commitment.  Milestones correspond to 

decision “gates” on which major programmatic decisions (e.g., funding) are made during 

gate review processes.  IOC and FOC are abbreviations for Initial and Full Operational 

Capability, respectively.  Further elaboration of the DoD acquisition lifecycle model will not 

be provided here.  What is important to note for this report is that the acquisition model 

contains key lifecycle phases as well as decision milestones and gate reviews. 

 

Similar to the DoD acquisition lifecycle model, the NASA lifecycle model has a set of key 

lifecycle phases as well as decision milestones and gate reviews (see Figure 2-4). 
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Figure 2-2.  Seminal Lifecycle Development Models:  (a) Waterfall, 

(b) Spiral, (c) “Vee”. 
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Figure 2-3.  DoD Lifecycle Framework. 

 

 

Figure 2-4.  NASA Project Lifecycle. 

 

NASA best practices for acquisition are rooted in NASA policy directives and requirements; 

specifically, NASA Policy Directive (NPD) 7120.4 Program/Project Management and NASA 

Policy Requirement (NPR) 7120.5 NASA Program and Project Management Processes and 

Requirements [14],[15].  Because NASA is a federal agency, programs the agency funds 

must also pass decision milestones and gate reviews to ensure programs are meeting cost, 

schedule, and technical baselines. 

 

As with the development lifecycle models described in Section 2.2, the DoD and NASA 

acquisition lifecycle models captured here can be considered metamodels on which project- 

or domain-specific plans are built.  Development lifecycles and acquisition lifecycles differ in 

many ways, but the critical difference between them is that development lifecycles can be 

applied one or more times during a single acquisition lifecycle. 

 

One of the reasons for describing acquisition models as part of this MBSE survey is to 

acknowledge the heritage of these traditional, document-driven, programmatic reviews and 

the challenge organizations face when attempting to adopt more advanced, electronic- or 

model-driven techniques such as MBSE.  Traditionally, acquisition program reviews have 
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relied on paper documents, because that was the state-of-the-art at the time government 

acquisition lifecycle models were first initiated [16].  Advances in information technology 

over the last decade or so have afforded the opportunity to create “electronic” documents 

using Microsoft® Word and PowerPoint and Adobe® Acrobat®; however, such electronic 

resources are still often considered “hardcopy” document artifacts.  This is evident as these 

artifacts are almost always printed on paper for members of review boards during decision 

milestone and gate reviews.  Despite the fact that information technology has advanced to a 

point where the technology can easily support fully electronic- or model-driven 

programmatic reviews, the traditional document-driven approach is likely to continue for the 

foreseeable future.  Therefore, whatever MBSE methodology and approach that is assessed 

and utilized by an organization will have to ultimately map back to the organization’s project 

lifecycle and decision milestones and gates (and subsequently gate products) as part of the 

programmatic review process.  

2.4 Systems Engineering Process Standards and Capability Models 

A systems engineering (SE) process is a process model that defines the primary activities 

(“WHAT”) that must be performed to implement systems engineering.  SE processes are 

related to the phases in an acquisition lifecycle model in that the process usually begins at 

an early stage of the system lifecycle, typically the very beginning of a project; however, on 

some occasions, the SE process can also begin at the middle of an acquisition lifecycle. 

 

A variety of SE process standards have been proposed by different international standards 

bodies, but most SE process standards in use today have evolved from the early days of 

DoD-MIL-STD 499.  The heritage of these SE process standards together with industry 

standard capability models and the relationship between them is illustrated in Figure 2-5 

[17].  Also shown is the relationship to relevant ISO/IEC software process standards. 

 

The ANSI/EIA 632 Processes for Engineering a System standard [18] and the IEEE 1220-

1998 Standard for Application and Management of the Systems Engineering Process [19] 

were sources into the creation of ISO/IEC 15288:2002 Systems Engineering—System Life 

Cycle Processes [20].  ISO/IEC 19760 Guide for ISO/IEC 15288 — System Life Cycle 

Processes is, as the name implies, a guidance document for ISO/IEC 15288. 

 

The Institute for Electrical and Electronic Engineers (IEEE) has since standardized on 

ISO/IEC 15288 (which they refer to as IEEE Std 15288™-2004) [21].  In addition, the 

International Council on Systems Engineering (INCOSE) has announced a commitment to 

adoption of the 15288 standard, some of the elements of which have been integrated into 

the INCOSE Systems Engineering Handbook v3 [22]. 

 

Because all three full SE process standards are available and used in practice, it is important 

to at least acknowledge the distinction between them.  A graphical depiction of the three full 

standards that illustrates their primary scope is shown in Figure 2-6. 

 

NASA too has recognized the importance of these industry standards with elements 

referenced and incorporated into the recently ratified NASA NPR 7123.1A Systems 

Engineering Processes and Requirements [23].  The NPR distinguishes between the three 

industry standards as follows: “ANSI/EIA 632 is a commercial version that evolved from the 

never released, but fully developed, 1994 Mil-Std 499B.  It was intended to provide a 

framework for developing and supporting a universal SE discipline for both defense and 

commercial environments.  ANSI/EIA 632 was intended to be a top-tier standard further 

defined to lower-level tier standards that define specific practices.  IEEE 1220 is a second-

tier standard that implements ANSI/EIA 632 by defining one way to practice systems 
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engineering.  ISO/IEC 15288, on the other hand, defines system lifecycle processes for the 

international set, plus for any domain (i.e., transportation, medical, commercial, et al.).” 

 

 

Figure 2-5.  Heritage of Systems Engineering Process Standards and 

Capability Models.1 

 

 

 

Figure 2-6.  Breadth and Depth of Leading SE Process Standards. 

 

As seen in Figure 2-6, the ISO/IEC 15288 standard follows more closely the acquisition 

lifecycle models that were described in Section 2.3.  The 15288 Std. system lifecycle is 

                                           
1 Note that the status of some of these SE process standards and maturity models is somewhat dated 

since the source of this diagram was extracted from a G. Roedler briefing dated Sep. 17, 2002 [17].  

In ISO/IEC terms, PDTR stands for Preliminary Draft Technical Report and FDIS stands for Final Draft 

Technical Standard; ISO/IEC 19760 has since been released as a final technical report [Source: 

Michael Gayle, Jet Propulsion Laboratory (private communication), Mar. 16, 2007]. 
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shown in Figure 2-7 while system lifecycle process elements of the 15288 Std. are captured 

in Figure 2-8. 

 

 

 

Figure 2-7.  ISO/IEC 15288 System Lifecycle. 

 

 

 

 

Figure 2-8.  ISO/IEC 15288 Process Elements. 

 

The purpose of each major SE process model standard can be summarized as follows [17]: 

� ISO/IEC 15288 – Establish a common framework for describing the lifecycle of 

systems. 

� ANSI/EIA 632 – Provide an integrated set of fundamental processes to aid a 

developer in the engineering or re-engineering of a system. 

� IEEE 1220 – Provide a standard for managing a system. 

 

Indeed, the IEEE 1220 provides useful guidance on developing a Systems Engineering 

Management Plan (SEMP), and a template is provided in Annex B of the standard.  The 

NASA NPR 7123.1A also provides useful guidance on preparation of a SEMP.  The NPR 

defines a SEMP as providing “the specifics of the technical effort and describes what 

technical processes will be used, how the processes will be applied using appropriate 

activities, how the project will be organized to accomplish the activities, and the cost and 

schedule associated with accomplishing the activities.”  Relative to the NASA acquisition 

lifecycle, the SEMP is used to “establish the technical content of the engineering work early 

in the Formulation Phase for each project and updated throughout the project life cycle.” 
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2.5 Models in Support of SE Processes 

In a nutshell, model-based engineering (MBE) is about elevating models in the engineering 

process to a central and governing role in the specification, design, integration, validation, 

and operation of a system.  For many organizations, this is a paradigm shift from traditional 

document-based and acquisition lifecycle model approaches, many of which follow a “pure” 

waterfall model of system definition, system design, and design qualification.  One of the 

biggest communication barriers that exists between the traditional engineering design 

disciplines (including the discipline of systems engineering) and MBE is that in a model-

based process, activities that support the engineering process are to be accomplished 

through development of increasing detailed models.  Skipper suggests that this 

communication chasm has existed for years and many managers and practitioners still do 

not identify with the fact that various MBE process models and supporting methodologies 

are intended to show emphasis rather than be purely waterfall, and that the entire system 

model grows over time (see Figure 2-9).2 

 

 

Figure 2-9.  Generic SE Process and Integrated Model (Entire Model grows over 

Time, Not “Pure” Waterfall). 

 

Baker et al. [24] articulate some of the key foundational concepts of model driven system 

design (MDSD) and contrast the model-driven approach with standard SE process models; 

in this case, the SE process model specified by the IEEE 1220 standard.3  The authors 

suggest that basic sub-processes apply to each of the major development phases of a 

project (i.e., system definition, preliminary design, detailed design, and design qualification) 

                                           
2 Joseph Skipper, Jet Propulsion Laboratory (private communication), California Institute of 

Technology, Apr. 6, 2007. 
3 Some authors use the term “MDSD” (Model-Driven System Design) and other use MBSE (Model-

Based Systems Engineering).  While subtleties exist between the two terms, the latter is primarily 

used in this report and any reference to MDSD is intended to be synonymous with MBSE. 
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and that MDSD the basic sub-processes are repeated as many times as necessary.  An 

illustration of the basic sub-processes for MDSD is shown in Figure 2-10. 

 

The authors proceed to describe various distinctive features of MDSD for each of the four 

major development phases of the project.  The interested reader is encouraged to review 

these features in the cited reference as they will not be repeated here. 

 

 

Figure 2-10.  Sub-Processes for MDSD. 

 

Another important concept that is introduced in the Baker et al. paper [24] is the notion of 

an information model for MDSD, which is illustrated in Figure 2-11. 

 

 

Figure 2-11.  Information Model for MDSD. 

 

Boxes show kinds of information, lines represent relationships, arrows show the direction of 

the relationship (not the direction of information flow), and bullets show a “many” 

relationship.  The diagram elements can be interpreted as follows: 

� Requirements specify Components 

� Requirements may be decomposed into other Requirements 

� Components may be decomposed into other Components 
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� Design Alternates satisfy Requirements 

� Design Alternates represent Components 

� Models execute Design Alternates 

� Models represent Components 

 

An information model is a very important part of MDSD as it facilitates the ability to view 

MDSD from the kinds of “information” to be used in such an approach and their 

relationships.  Once again, a concurrent, incremental process is encouraged in which, as 

Baker et al. state, “in early states, the models are low fidelity and geared towards decision 

making; eventually, models become sufficiently faithful for compliance assessment” [24].  

 

Also described in the cited paper is a useful and insightful contrast between document-

centered system design and MDSD. 

2.6 Mathematical Foundation of MBSE 

It is difficult to cover the subject of MBSE and not acknowledge the seminal contributions of 

A. Wayne Wymore to the mathematical foundations of systems science and systems 

engineering [25].  Although the mathematical theory described in Wymore’s early work is 

not for the faint of heart, his theory as applied to MBSE—published in the book entitled 

Model-Based Systems Engineering: An Introduction to the Mathematical Theory of Discrete 

Systems and to the Tricotyledon Theory of System Design—establishes a rigorous 

mathematical framework for the statement of the problem of the design of a system in a 

model-based context [26].  

 

According to Wymore’s autobiographical retrospectives, the work described in his MBSE 

book does not provide a mathematical structure which could lead to the actual design of the 

system [27]; however, it is suggested that body of work is currently under development as 

“Phase 2” of MBSE (MBSE2) under the name System Functional Analysis and System 

Design.  The interested reader need not wait for publication of MBSE2 in order to obtain 

exposure to a pragmatic perspective to system design and modeling that leverages some of 

the core Wymorian theory and principles.  For this, the reader should consider the book by 

Chapman, Bahill, and Wymore entitled Engineering Modeling and Design [28]. 

 

The basis of system theory and systems engineering, according to Wymore, is modeling, 

and the concept of “system” is human interpretation via senses (i.e., a mental model) 

[25],[29].  A system model is a description that separates the perceived universe into two 

parts, the part “inside” the system and the part “outside” the system.  From the “outside” 

the system receives inputs.  To the “outside” the system delivers outputs.  The “inside” of 

the system is described, initially, as states.  The state of the system at any time is a 

function of its state at a previous time and the intervening inputs (including “noise”).  

System designs are system models.  When modelers describe some part of reality as a 

“real” system, it means that their system mode “adequately” represents the reality.  For the 

purpose of accurate communication, mathematical definitions of various classes of system 

models are postulated [29]. 

 

In Wymore’s MBSE book, he starts by providing a discussion of the definition of systems 

engineering as well as a non-mathematical description of systems engineering process 

before embarking on the core mathematical theory.  The mathematical theory presented is 

restricted to discrete time system models were chosen primarily for pedagogical reasons.  

According to Wymore’s autobiographical account, “restrict[ing] all of MBSE to discrete time 
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and that the basic set of system models would be the set of sequential machines with Moore 

readout functions.  These decisions freed me from topological considerations occasioned by 

aspects of continuous time to allow me to concentrate on the mathematical structures of the 

objects of interest to systems engineers” [27]. 

 

A brief review of the book and its organization is described by Klir [30].  According to the 

Preface, “The material in the text was chosen to attain three principal objectives: 

� to provide the system theoretic foundations necessary to the study and practice of 

systems engineering,  

� to explicate mathematical system theory as the basis for the development of models 

and designs of large-scale, complex systems consisting of personnel, machine and 

software, and 

� to introduce the student to the tricotyledon theory of system design (T3SD) and to 

the considerations involved in applying the theory to the design of real systems.” 

 

The phrase tricotyledon theory was chosen by Wymore to name the specific mathematical 

system theory he developed to facilitate the process of system design.4  The three basic 

spaces of system design are described shortly.  The notation employed in the tricotyledon 

theory and examples of systems described in the book is often referred to as “Wymorian 

notation” [31]. 

 

Following the introduction of systems engineering and systems, the MBSE book provides a 

rigorous mathematical foundation of discrete time system models, aspects of discrete time 

models such as causality and time invariance, system coupling and resultants, system 

homomorphisms (of like “shape”), and system modes [26]. 

 

A key aspect that is elaborated on in the second part of the MBSE book is Wymore’s 

introduction of T3SD and identification of the six core categories of system design 

requirements (SDR), which he defines as follows: 

 

SDR = (IOR, TYR, PR, CR, TR, STR) where 

IOR is the I/O requirement, 

TYR is the technology requirement, 

PR is the performance requirement, 

CR is the cost requirement, 

TR is the trade-off requirement, and 

STR is the system test requirement. 

 

                                           
4 The term cotyledon (as opposed to tricotyledon) is actually a botanical term used to represent 

structure in the embryo of a seed plant that may form a leaf after germination, what is commonly 

known as a ‘seed leaf.’  Wymore comments that the term was adopted during early development of 

his theory when visual caricatures were drawn to help conceptualize the spaces of system designs of 

various kinds.  These caricatures or cartoons took on a leaf shape and an (unnamed) student 

suggested use of the term “cotyledons” (or seed leaves) because they were generated by the 

statement of the problem of the design of a system and the ultimate system design would eventually 

“flower” from these cotyledons.  Since there are three basic spaces of system designs, the theory 

came to be known as the tricotyledon theory of system design, or T3SD for short. 
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According to Wymore, across all projects, the system has to verify that these six conditions 

are met.  This has direct relevance to the discipline of systems engineering.  Systems 

engineering considers as many alternative implementable system designs as possible and 

selects the best with respect to the tradeoff requirement, finding the implementable 

systems design that is optimum with respect to the tradeoff requirement and most likely to 

pass the system test, if possible [26],[29]. 

 

Mathematical foundation and visual depiction of each of these six categories that comprise 

the SDR is further elaborated in the remaining chapters of MBSE book.  Application of the 

T3SD theory suggests that the statement of a system design problem requires the definition 

of three orders, one each over the functionality, the buildability, and the implementability 

cotyledons (or “spaces”) representing the mathematical structures of the PR, the CR, and 

the TR, respectively.  Also described in the MBSE book is the space of implementable 

system tests items, denoted ISTISR, associated with the STR as generated by the IOR and 

the TYR [26],[29].  A visual representation of ISTISR and its relation to the three system 

design spaces that comprise the tricodyledon is illustrated in Figure 2-12. 

 

 

Figure 2-12.  The system test requirement anchors the system design problem to 

the real world.5 

 

In summary, although Wymore’s roots as a pure mathematician with a background in 

topological algebra and functional analysis are clearly visible in his work on formulating the 

mathematical theory behind systems science and systems engineering (including MBSE), 

the value of his seminal work and its applicability to the discipline of systems engineering 

                                           
5 FSR, BSR, and ISR represent the functionality, buildability, and implementability cotyledons, 

respectively.  The contours within FSR represent equivalent functional system designs, generated by 

the performance requirement PR.  Similarly, contours within the BSR represent equivalent buildable 

system designs, generated by the cost requirement CR.  And contours within the ISR represent 

equivalent implementable system designs, generated by the trade-off requirement TR. 
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should not be overlooked.  We will continue to monitor the progress of Dr. Wymore’s 

research and future publications centered on Phase 2 of MBSE (MBSE2) and any other 

aspects related to MBSE. 

3. Leading MBSE Methodologies 

The following is a cursory review of some of the more notable MBSE methodologies that 

have received attention in the various industry forums and publications and are intended to 

serve as candidates for adoption and tailoring to an organization’s SE practices and 

procedures.  A brief synopsis of each methodology is described.  Also included in this survey 

of MBSE methodologies is a JPL-developed methodology known as State Analysis. 

 

Reader Warning:  Although references to candidate MBSE methodologies will be made, 

some providers refer to or name their methodology a “process”—an unfortunate 

consequence that often leads to confusion.  For purposes of this survey, methodology is 

implied, even if the formal offering uses the term “process” to describe or name the 

methodology. 

3.1 IBM Telelogic Harmony-SE 

3.1.1. Overview 

Harmony-SE is a subset of a larger integrated systems and software development process 

known as Harmony® [32].  Development of Harmony-SE and Harmony® originated at I-

Logix, Inc., formerly a leading provider of modeling tools for the embedded market.6  Figure 

3-1 graphically depicts the Harmony integrated systems and software development process. 

 

 

Figure 3-1.  Harmony® Integrated Systems and Software Development Process. 

                                           
6 I-Logix was acquired by Telelogic AB in March 2006.  More recently, Telelogic AB was acquired by 

IBM Corporation in April 2008 and, while it retains the Telelogic brand, it is officially referred to as 

“Telelogic – An IBM Company.”  The IBM Telelogic product portfolio has grown in recent years not only 

due to the I-Logix acquisition by the former Telelogic AB but also its acquisition of Popkin Software, 

which included the System Architect tool that is widely used within the DoD acquisition community.  

IBM Telelogic is perhaps best known for its DOORS® product suite for requirements management and 

tracking. 
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The Harmony process was designed to be tool- and vendor-neutral, although elements of 

the process are supported by the Telelogic Rhapsody model-driven development 

environment (formerly, I-Logix Rhapsody) and by the Telelogic Tau offering.  Note that the 

Harmony process somewhat mirrors the classical “Vee” lifecycle development model of 

system design (cf., Section 2.2).  The process assumes model and requirements artifacts 

are maintained in a centralized model/requirements repository. 

 

The systems engineering component of Harmony shown in the upper left corner of Figure 

3-1 (i.e., Harmony-SE) has the following stated key objectives: 

 

� Identify / derive required system functionality. 

� Identify associated system states and modes. 

� Allocate system functionality / modes to a physical architecture. 

 

Harmony-SE uses a “service request-driven” modeling approach along with Object 

Management Group™ Systems Modeling Language™ (OMG SysML™) artifacts [33].  In the 

service request-driven modeling approach, system structure is described by means of 

SysML structure diagrams using blocks as basic structure elements.  Communication 

between blocks is based on messages (services requests).  Provided services are at the 

receiving part of service requests and state/mode change or operations (activities) are 

described as operational contracts.  Functional decomposition is handled through 

decomposition of activity operational contracts.  A SysML visual representation of the 

service request-driven approach is shown in Figure 3-2. 

 

Task flow and work products (artifacts) in the Harmony-SE process include the following 

three top-level process elements: 

 

� Requirements analysis 

� System functional analysis 

� Architectural design 

 

Figure 3-3 better illustrates these process elements along with the flow of some of the 

primary work products: 

 

Note that in addition to the use of a model/requirements repository as shown in the 

Harmony process (Figure 3-1), a test data repository is also recommended in order to 

capture use case scenarios. 

 

Detailed task flows and work products are provided for each of the three process elements 

(shown as the dark filled boxes in the center of Figure 3-3) with detailed guidance provided 

in the Harmony-SE/SysML Deskbook [34]. 

 

An example of such a task flow and associated work products for the System Functional 

Analysis process element is illustrated in Figure 3-4.  Similarly, an example of the task flow 

and associated work products for the Subsystem Architectural Design sub-process of the 

Architectural Design process is depicted in Figure 3-5. 
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Figure 3-2.  OMG SysML™ Representation of Service Request-Driven Approach. 

 

 

 

 

Figure 3-3.  Harmony-SE Process Elements. 
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Figure 3-4.  System Functional Analysis Task Flow and Work Products. 

 

 

 

 

Figure 3-5.  Subsystem Architectural Design Task Flow and Work Products. 
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3.1.2. Tool Support 

No process framework tool exists from IBM Telelogic or a third-party provider for Harmony-

SE or the integrated systems and software engineering process, Harmony. 

 

Recall that the Harmony-SE and Harmony were created as tool- and vendor-neutral, model-

based methodologies.  Tool support for MBSE that supports the methods specified by 

Harmony-SE and Harmony is, of course, provided by IBM Telelogic via the Telelogic Tau and 

Telelogic Rhapsody product offerings. 

3.1.3. Offering/Availability 

As stated earlier, a Harmony-SE/SysML Deskbook has been published to help guide the 

systems engineer and project manager through the entire MBSE methodology [22].  In 

addition, IBM Telelogic offers professional services to support methodology adoption. 

3.2 INCOSE Object-Oriented Systems Engineering Method (OOSEM) 

3.2.1. Overview 

The Object-Oriented Systems Engineering Method (OOSEM) integrates a top-down, model-

based approach that uses OMG SysML™ to support the specification, analysis, design, and 

verification of systems.  OOSEM leverages object-oriented concepts in concert with more 

traditional top down systems engineering methods and other modeling techniques, to help 

architect more flexible and extensible systems that can accommodate evolving technology 

and changing requirements.  OOSEM is also intended to ease integration with object-

oriented software development, hardware development, and test. 

 

OOSEM evolved from work in the mid 1990’s at the Software Productivity Consortium (now 

the Systems and Software Consortium) in collaboration with Lockheed Martin Corporation.7  

The methodology was applied in part to a large distributed information system development 

at Lockheed Martin that included hardware, software, database, and manual procedure 

components.  INCOSE Chesapeake Chapter established the OOSEM Working Group in 

November 2000 to help further evolve the methodology.8  OOSEM is summarized in various 

industry and INCOSE papers [35],[36],[37], and more recently, in  the forthcoming book 

entitled Practical Guide to SysML:  Systems Modeling Language by Fridenthal, Moore, and 

Steiner [38].  An introduction to the methodology is also available as a full day tutorial [39]. 

 

The OOSEM objectives are the following: 

� Capture and analysis of requirements and design information to specify complex 

systems. 

� Integration with object-oriented (OO) software, hardware, and other engineering 

methods. 

� Support for system-level reuse and design evolution. 

 

As stated above, OOSEM is a hybrid approach that leverages object-oriented techniques and 

a systems engineering foundation.  It also introduces some unique techniques as indicated 

in see Figure 3-6. 

                                           
7 Sanford Friedenthal, Lockheed Martin Corporation (private communication), Apr. 4, 2007. 
8 David Griffith, Northrop Grumman Corporation (private communication), Mar. 15, 2007. 
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Figure 3-6.   Foundation of OOSEM. 

 

The OOSEM supports a SE process as illustrated in Figure 3-7. 

 

 

Figure 3-7.  OOSEM Activities in the Context of the System Development Process. 

 

The core tenets of OOSEM include recognized practices essential to systems engineering 

that include: 1) Integrated Product Development (IPD), essential to improve 

communications, and 2) a recursive “Vee” lifecycle process model that is applied to each 

multiple level of the system hierarchy. 

 

As shown in Figure 3-8, OOSEM includes the following development activities: 

� Analyze Stakeholder Needs 

� Define System Requirements 

� Define Logical Architecture 

� Synthesize Candidate Allocated Architectures 

� Optimize and Evaluate Alternatives 

� Validate and Verify System 
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These activities are consistent with typical systems engineering “Vee” process that can be 

recursively and iteratively applied at each level of the system hierarchy.  Fundamental 

tenets of systems engineering, such as disciplined management processes (i.e. risk 

management, configuration management, planning, measurement, etc.) and the use of 

multi-disciplinary teams, must be applied to support each of these activities to be effective. 

 

OOSEM utilizes a model-based approach to represent the various artifacts generated by the 

development activities using OMG SysML as the predominant modeling language.  As such, 

it enables the systems engineer to precisely capture, analyze, and specify the system and 

its components and ensure consistency among various system views. The modeling artifacts 

can also be refined and reused in other applications to support product line and evolutionary 

development approaches.  A summary description of the activities and artifacts is provided 

on the following pages [37]. 

 

 

Figure 3-8.  OOSEM Activities and Modeling Artifacts. 

 

 

Analyze Stakeholder Needs 

This activity captures the “as-is” systems and enterprise, their limitations and potential 

improvement areas.  The results of the “as-is” analysis is used to develop the to-be 

enterprise and associated mission requirements.  An enterprise model depicts the 

enterprise, its constituent systems, including the systems to be developed or modified, and 

enterprise actors (entities external to the enterprise).  The as-is enterprise is analyzed using 

causal analysis techniques to determine its limitations, and used as a basis for deriving the 

mission requirements and to-be enterprise model.  The mission requirements are specified 

in terms of the mission / enterprise objectives, measures of effectiveness, and top-level use 

cases.  The use cases and scenarios capture the enterprise functionality. 
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Define System Requirements 

This activity is intended to specify the system requirements that support the mission 

requirements.  The system is modeled as a black box that interacts with the external 

systems and users represented in the enterprise model.  The system-level use cases and 

scenarios reflect the operational concept for how the system is used to support the 

enterprise.  The scenarios are modeled using activity diagrams with swim lanes that 

represent the black box system, users, and external systems.  The scenarios for each use 

case are used to derive the black box system functional, interface, data, and performance 

requirements.  The requirements management database is updated during this activity to 

trace each system requirement to the enterprise/mission level use case and mission 

requirements. 

 

Requirements variation is evaluated in terms of the probability that a requirement will 

change, which is included in the risks, and later analyzed to determine how to design the 

system to accommodate the potential change.  A typical example may be a system interface 

that is likely to change or a performance requirement that is expected to increase. 

 

Define Logical Architecture 

This activity includes decomposing and partitioning the system into logical components that 

interact to satisfy the system requirements.  The logical components capture the system 

functionality.  Examples may include a user interface that is realized by a web browser, or 

an environmental monitor that is realized by a particular sensor.  The logical 

architecture/design mitigates the impact of requirements changes on the system design, 

and helps to manage technology changes. 

 

OOSEM provides guidelines for decomposing the system into its logical components. The 

logical scenarios preserve system black box interactions with its environment.  In addition, 

the logical component functionality and data are repartitioned based on partitioning criteria 

such as cohesion, coupling, design for change, reliability, performance, and other 

considerations.  

 

Synthesize Candidate Allocated Architectures 

The allocated architecture describes relationship among the physical components of the 

system including hardware, software, data and procedures.  The system nodes define the 

distribution of resources. Each logical component is first mapped to a system node to 

address how the functionality is distributed.  Partitioning criteria is applied to address 

distribution concerns such as performance, reliability, and security.  The logical components 

are then allocated to hardware, software, data, and manual procedure components.  The 

software, hardware, and data architecture are derived based on the component 

relationships.  The requirements for each component are traced to the system requirements 

and maintained in the requirements management database. 

 

Optimize and Evaluate Alternatives  

This activity is invoked throughout all other OOSEM activities to optimize the candidate 

architectures and conduct trade studies to select the preferred architecture.  Parametric 

models for modeling performance, reliability, availability, life-cycle cost, and other specialty 

engineering concerns, are used to analyze and optimize the candidate architectures to the 

level needed to compare the alternatives.  The criteria and weighting factors used to 

perform the trade studies are traceable to the system requirements and measures of 
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effectiveness.  This activity also includes the monitoring of technical performance measures 

and identifies potential risks. 

 

Validate and Verify System 

This activity is intended to verify that the system design satisfies its requirements and to 

validate that the requirements meet the stakeholder needs.  It includes the development of 

verification plans, procedures, and methods (e.g., inspection, demonstration, analysis, 

test).  System-level use cases, scenarios, and associated requirements are primary inputs 

to the development of the test cases and associated verification procedures.  The 

verification system can be modeled using the same activities and artifacts described above 

for modeling the operational system.  The requirements management database is updated 

during this activity to trace the system requirements and design information to the system 

verification methods, test cases, and results. 

 

The full description of each OOSEM activity and process flows are provided in the cited book 

by Friedenthal, Moore, and Steiner [38] and the referenced OOSEM tutorial [39]. 

3.2.2. Tool Support 

A dedicated process framework tool for OOSEM does not exist; however, tool support for 

OOSEM can be provided by COTS-based OMG SysML tools and associated requirements 

management tools.  Other tools required to support the full system lifecycle should be 

integrated with the SysML and requirements management tools, such as configuration 

management, performance modeling, and verification tools. 

 

A more complete set of OOSEM tool requirements is provided in the referenced OOSEM 

tutorial [39]. 

3.2.3. Offering/Availability 

The OOSEM tutorial and training materials can be made available by contacting the INCOSE 

OOSEM Working Group to gain access through the INCOSE Connect collaboration space.  

Unlike other industry-provided MBSE methodologies, OOSEM is not a formal offering that 

can be purchased from any specific vendor, including professional services.  Support 

services may be available by contacting representatives of the INCOSE OOSEM Working 

Group.9 

3.3 IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-
Driven Systems Development (MDSD) 

3.3.1. Overview 

The Rational Unified Process for Systems Engineering (RUP SE) is a derivative of the 

Rational Unified Process® (RUP®).  RUP is a methodology that is both a process framework 

and process product from IBM Rational and has been used extensively in government and 

industry to manage software development projects [40]. 

 

RUP SE was created to specifically address the needs of systems engineering projects 

[41],[42].  The objective for its creation was to apply the discipline and best practices of the 

RUP for software development to the challenges of system specification, analysis, design, 

and development.  Its goal is to help organizations save time, cut costs, reduce risk, and 

                                           
9 L. Mark Walker, Lockheed Martin Corporation (private communication), Apr. 19, 2007. 
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improve the quality of the systems they build.  According to Cantor,10 in current parlance, 

“RUP SE is the extension of the Rational Unified Process [RUP] to support Model-Driven 

Systems Development [MDSD].”  The spirit of MDSD as envisioned by key IBM systems 

engineering leaders is documented in the cited reference by Balmelli et al. and will not be 

replicated here [16]. 

 

Before describing the guiding principles, methods, and architectural framework of RUP SE to 

support MDSD, it is helpful to familiarize the reader with the software development lifecycle 

focused RUP.  RUP is based on a set of building blocks, or content elements, describing what 

is to be produced, the necessary skills required, and the step-by-step explanation describing 

how specific development goals are achieved.  A graphical depiction of the RUP process 

framework is shown in Figure 3-9 [40] sometimes referred to in the industry as the “whale 

chart.” 

 

 

Figure 3-9. The Rational Unified Process® (RUP®) (“Whale Chart”). 

 

The main content elements of the RUP are the following: 

� Roles (“WHO”) – A role defines a set of related skills, competencies, and 

responsibilities.  

� Work Products (“WHAT”) – A work product represents something resulting from a 

task, including all the documents and models produced while working through the 

process.  

� Tasks (“HOW”) – A task describes a unit of work assigned to a role that provides a 

meaningful result.  

 

Within each iteration, the tasks are categorized into a total of nine (9) disciplines: 

 

                                           
10 Murray Cantor, IBM Corporation (private communication), Feb. 27, 2007. 
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Engineering Disciplines: 

1. Business modeling 

2. Requirements 

3. Analysis and design 

4. Implementation 

5. Test 

6. Deployment 

 

Supporting Disciplines: 

7. Configuration and change management 

8. Project management 

9. Environment 

 

The RUP lifecycle is an implementation of the spiral model for iterative and incremental 

development (cf., Section 2.2).  It was created by assembling the content elements into 

semi-ordered sequences.  Consequently the RUP lifecycle is available as a work breakdown 

structure (WBS), which can be customized to address the specific needs of a project.  The 

RUP lifecycle organizes the tasks into phases and iterations. 

 

A project has four phases: 

� Inception 

� Elaboration 

� Construction 

� Transition 

 

A typical project profile showing the relative sizes of the four phases is shown in Figure 3-10 

[40]. 

 

 

Figure 3-10.  Typical Profile Showing Relative Sizes of the Four RUP Phases. 

 

Because RUP SE is derived from RUP, it retains RUP’s cornerstone principles, which have 

been refined and extended to enhance their utility for systems engineering efforts.  RUP SE 

brings the RUP style of concurrent design and iterative development to systems engineering 

(as illustrated in Figure 3-11) [43].  In addition, it provides the highly configurable discipline 
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(workflow) templates required to identify the hardware, software, and worker role 

components that comprise a systems engineering project. 

 

RUP and RUP SE both are designed to help teams systematically define, organize, 

communicate, and manage requirements.  Both methodologies support change control and 

quality initiatives.  Without these capabilities, no systems engineering project is likely to be 

deemed a success relative to cost or business objectives. 

 

Key elements in RUP SE that extend the RUP to systems engineering include the following: 

 

� New roles.  In RUP SE, the development team includes system engineers in addition 

to worker roles such as architects, developers, testers, etc.  The role of the system 

engineer is primarily concerned with the specification of the overall system and 

deployment thereof, and to help address overall system requirements. 

 

 

Figure 3-11.  Illustration of RUP SE lifecycle. 

 

� New artifacts and workflows. RUP includes full support for software system 

concerns, such as usability, maintainability, performance, and scalability.  RUP SE 

adds artifacts and workflows that address additional concerns in the systems 

engineering domain, such as security, training, and logistics support. 

� An emphasis on business modeling. Whatever kind of system being architected, 

it is important to understand the business purpose it will serve.  Otherwise, system 

requirements will not accurately reflect business activities.  RUP SE does not include 

changes to the business modeling features of RUP.  However, RUP SE users are 

strongly encouraged to create business use cases with the associated identification of 
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business actors and the flow of business events, in order to adequately define 

system requirements. Furthermore, the RUP SE use-case flowdown activity is applied 

to derive system requirements from business requirements. 

� Viewpoints for systems engineering. An architecture framework for RUP SE has 

been developed that contains the elements of model levels, viewpoints, and views 

(see Table 3-1).  The concept of viewpoints and views used in the RUP SE 

architecture framework is consistent with industry standard definitions as articulated 

by the ISO/ITU 10746 standard Reference Model for Open Distributed Processing 

(RM-ODP) [44] and the ANSI/IEEE 1471-2000 standard Recommended Practice for 

Architectural Description of Software-Intensive Systems [45].  The cells in RUP SE 

architecture framework represent views. 

RUP SE supports domain-specific viewpoints common to system architectures, such 

as safety, security, and mechanical.  Modeling levels are similar for most systems 

regardless of their complexity. 

Table 3-1.  The RUP SE architecture framework. 

Model Viewpoints 
Model 
Levels Worker Logical Information Distribution Process Geometric 

Context Role 

definition, 
activity 
modeling 

Use case 

diagram 
specification 

Enterprise 
data view 

Domain-

dependent 
views 

 Domain-

dependent 
views 

Analysis Partitioning 
of system 

Product logical 
decomposition 

Product data 
conceptual 
schema 

Product 
locality view 

Product 
process 
view 

Layouts 

Design Operator 
instructions 

Software 

component 
design 

Product data 
schema 

ECM 

(electronic 
control media 
design) 

Timing 
diagrams 

MCAD 

(mechanical 
computer-
assisted 
design) 

Implementation Hardware and software configuration 

 

Note: The Distribution viewpoint describes how the functionality of the system is 

distributed across physical resources.  At the analysis level, it is necessary to describe 

a generalized view of resources, capturing the attributes needed to support the 

transformation from analysis and design.  Cantor introduced the concept of locality to 

represent a generalized resource [41].  A locality is defined as a member of a system 

partition representing a generalized or abstract view of the physical resources.  

Localities can perform operations and have attributes appropriate for specifying 

physical designs.  Localities are linked to each other with connections.  Connections 

are defined as generalized physical linkages in RUP SE.  Connections are 

characterized by what they carry or transmit and the necessary performance and 

quality attributes in order to specify their physical realization at the design level.  A 

RUP SE distribution diagram showing two localities and a connection between them is 

illustrated in Figure 3-12. 
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Figure 3-12.  Two Localities and a Connection. 

 

A model level is defined as a subset of the architecture model that represents a 

certain level of specificity (abstract to concrete); lower levels capture more specific 

technology choices.  Model levels are not levels of abstraction; in fact, a model level 

may contain multiple levels of abstraction.  Model levels are elements designed to 

group artifacts with a similar level of detail (see Table 3-2). 

 

Table 3-2.  Model levels in the RUP SE architecture framework. 

Model Level Expresses 

Context System black box—the system and its actors (through this is a black-box view 
for the system, it is a white-box view for the enterprise containing the system. 

Analysis System white box—initial system partitioning in each viewpoint that establishes 
the conceptual approach. 

Design Realization of the analysis level in hardware, software, and people 

Implementation Realization of the design model into specific configurations 

� Scalability enhancements. Once design decisions have been captured in 

viewpoints and specified via model levels, the system architecture is captured in a 

set of OMG™ UML®/SysML™ diagrams; these further describe it from the various 

viewpoints and model levels.  Although many of these artifacts are similar across 

RUP and RUP SE, there are a couple of important differences. In a nutshell, these 

new artifacts allow you to break the system down (1) by subsystems, and (2) by the 

localities where processing takes place.  Each subsystem coupled with its locality has 

its own derived requirements in RUP SE, enabling the process to scale to meet the 

needs of even the largest and most complex projects. 

� Allocated versus derived requirements. RUP SE encompasses two types of 

system requirements: use-cases, which capture functional requirements; and 

supplementary requirements, which cover non-functional (quality) attributes like 

reliability and maintainability (see Figure 3-13) [43].  With respect to the 

requirements associated with subsystems and localities, RUP SE makes a further 
distinction between those requirements that are allocated and those that are derived.  

A locality or subsystem requirement is allocated if a locality or subsystem is assigned 

sole responsibility for fulfilling a system requirement.  A locality or subsystem 

requirement is derived if it is identified by studying how the subsystem or locality 

collaborates with others to meet a system requirement. 
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� Subsystem-level flowdown activity. RUP SE derives system requirements from 

business requirements via use-case flowdown activities.  However, RUP SE departs 

from the RUP in that it also specifies a flow of events in a subsystem-level, "white 

box" view that references specific architectural elements.11  This extra step is 

necessary in order to make decisions about where events are hosted, and to relate 

processes to events. 

� Support for designing additional components.  The design-level specification of 

system components with RUP SE is similar to its software-only counterpart in RUP.  

The key difference, as previously mentioned, is that systems engineering typically 

entails additional types of components than software engineering, such as hardware.  

Delineation of these components is supported via analysis of the RUP SE subsystem 

and locality use-case surveys that are generated prior to specifying component 

designs. 

 

 

 

Figure 3-13.  RUP SE Requirements Allocation/Derivation Method. 

                                           
11 The classical notion of a “white box” (the elements or parts that make up a system) and “black box” 

(characteristics of the system as a whole: the services it provides, the requirements it meets) 

characterization of a system is consistent with the IBM Model-Driven Systems Development (MDSD) 

approach and is described as part of the RUP SE methodology [16]. 
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3.3.2. Tool Support 

Unlike most of the other MBSE methodologies surveyed, a process framework tool does 

exist to support RUP SE and is available via the RUP SE plugin for the Rational Method 

Composer (RMC) product offering from IBM Rational® software.  At the time of this writing, 

RUP SE V3.0 is included as part of RMC V7.2.  A complete list of RMC plugins can be found 

at:  

http://www.ibm.com/developerworks/rational/downloads/07/rmc_v7.2/ 

 

Direct MBSE tool support is provided by IBM through its Rational® suite of tool offerings that 

support analysis, modeling, design, and construction, albeit mostly with a software 

development focus; IBM Rational® has not historically been known as a provider of systems 

engineering tools per se.  The Rational Rose product family, Rational Systems Developer 

(RSD), and Rational Software Modeler/Architect (RSM/RSA) offerings do support OMG™ 

UML®.  Support for OMG™ SysML® is provided via the EmbeddedPlus SysML Toolkit, which 

is a third party offering from EmbeddedPlus Engineering. 

 

Most of these tools mentioned, including RMC, are supported on the Eclipse™ open source 

platform managed under the auspices of the Eclipse Foundation, Inc. 

3.3.3. Offering/Availability 

As stated in Section 3.3.2, RUP SE tool support is provided by the RUP SE plugin for 

Rational® Method Composer (RMC); however, it is recommended that adoption and tailoring 

of the RUP SE methodology be supported through IBM professional services; specifically, 

IBM Software Services.  A textbook by Kruchten exist for the baseline RUP® methodology 

that details core tenets and elements of the methodology and provides tailoring guidelines 

[40].  Such a companion text does not yet exist for RUP SE, at least not at the time of this 

survey report. 

3.4 Vitech Model-Based System Engineering (MBSE) Methodology 

3.4.1. Overview 

Vitech Corporation, providers of the CORE® product suite, offer a MBSE methodology via a 

set of tutorials developed and offered by Vitech CEO and Chief Methodologist James (“Jim”) 

E. Long [46].  A variation of the tutorial has been delivered at a number of INCOSE 

International Symposia as a half-day event [47].  Although the Vitech MBSE methodology is 

considered “tool-independent,” there is a strong tie of the tutorial materials to the CORE 

tool set. 

 

The Vitech MBSE methodology is based on four primary concurrent SE activities that are 

linked and maintained through a common System Design Repository (see Figure 3-14). 
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Figure 3-14.  Vitech MBSE Primary SE Activities. 

 

Each of these primary SE activities is linked within the context of associated “domains” as 

illustrated in Figure 3-15, where the SE activities are considered elements of a particular 

kind of domain known as the Process Domain. 

 

In the Vitech MBSE methodology, it is stressed that a MBSE System Definition Language 

(SDL) is needed to manage model artifacts, which means that an agreed-upon information 

model in the form of a schema or ontology is necessary to manage the syntax (structure) 

and semantics (meaning) of the model artifacts [48],[49].  Such an “SDL” has a number of 

uses such as providing a structured, common, explicit, context-free language for technical 

communication serving as a guide for requirements analysts, system designers, and 

developers, and providing a structure for the graphic view generators, report generator 

scripts, and consistency checkers.12  An example of a Vitech-specified MBSE SDL is 

illustrated in Table 3-3.  Vitech MBSE System Definition Language (SDL). and based on and 

Entity-Relationship-Attribute (ERA) model. 

                                           
12 Many of these features of an MBSE SDL are targeted at the MBSE tool that interacts with or hosts 

the system design repository and is beyond the scope of other key elements of MBSE methodologies 

such as processes and methods.  Nevertheless, the importance of specifying, owning, and utilizing an 

MBSE information model is acknowledged and a factor that is not explicitly called out in the literature 

of other MBSE methodologies surveyed in this study. 
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Figure 3-15.  Vitech MBSE Primary SE Domains. 

 

Five core tenets help drive the Vitech MBSE methodology: 

1. Model via modeling “language” the problem and the solution space; include 

semantically-meaningful graphics to stay explicit and consistent.  This helps facilitate 

model traceability, consistent graphics, automatic documentation and artifacts, 

dynamic validation and simulation, and promotes more precise communication. 

2. Utilize a MBSE system design repository. 

3. Engineer the system horizontally before vertically, i.e., do it in complete, converging 

layers. 

4. Use tools to do the “perspiration stuff” and your brain to do the “inspiration stuff.” 

 

To support tenet #3 above, the Vitech MBSE utilizes an incremental SE process known as 

the “Onion Model,” which allows complete interim solutions at increasing levels of detail 

during the system specification process [50].  A visual representation of the Onion Model is 

illustrated in Figure 3-16. 

Table 3-3.  Vitech MBSE System Definition Language (SDL). 

SDL 

Language* 

English 

Equivalent 

MBSE Example 

Element Noun • Requirement: Place Orders 

• Function: Cook Burgers 

• Component: Cooks 

Relationship Verb • Requirement basis of Functions 

• Functions are allocated to Components 
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Attribute Adjective • Creator 

• Creation Date 

• Description 

Attribute of 

Relationship 

Adverb • Resource consumed by Function 

• Amount (of Resource) 

• Acquire Available (Priority) 

Structure N/A • Viewed as Enhanced Function Flow Block Diagram (EFFBD) or 
FFBD 

*Mapped to model element property sheets in Vitech CORE® 

 

 

 

Figure 3-16.  Vitech MBSE "Onion Model." 

 

The Onion Model iterates the primary concurrent SE activities at each layer.  According to 

Childers and Long [50], as the SE team successfully completes one level of system design, 

they “peel off a layer of the onion” and start to explore the next layer.  When the team 

reaches the desired level of detail (the center), their design is complete.  The primary 

benefit of the Onion Model over say more traditional waterfall SE approaches is that it 

provides a lower risk design approach since complete solutions at increasing levels of detail 

are available for early review and validation [50]. 

 

Completeness and convergence are essential principles of the Onion Model in that the SE 

team must complete a layer before moving to the next layer (completeness) and the team 

cannot iterate back more than one layer (convergence).  If no valid, consistent solution can 

be found at any layer, the team must check if the system statement is overly constrained 

and may need to negotiate modifications such as modifications to the design 

implementation at the previous layer [50].  It is important to discover such constraints early 

as system design breakage that occurs in several layers lower in the iterative process can 

adversely impact cost and schedule.  Guidance for determining completeness at each layer 

is provided in Table 3-4. 
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Table 3-4.  Completion Criteria for Each Layer of the "Onion Model." 

Process Element Completion Criteria 

1. Originating Requirements 1. Agreement on Acceptance Criteria. 

2. Behavior/Functional Architecture 2. Each function is uniquely allocated to at most 
one component. 

3. Physical Architecture Definition 3. Segment/component specs are complete 

requirements documents. 

4. Qualification 4.  V&V requirements have been traced to test 

system components. 

 

The Onion Model is supported by two sets of SE activities timelines that are intend to apply 

to each layer of the “Onion;” one for a top down process (Figure 3-17a) and one for reverse 

engineering (Figure 3-17b). 

 

Note that schedule is read as increasing in time from left to right in these SE activity 

timelines  and the activity bars represent movement of the “center of gravity” of the SE 

team.  Further, it is important to re-iterate that concurrent engineering is assumed. 

 

 

(a) 
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(b) 

Figure 3-17.  Vitech MBSE Activities Timeline - Top Down (a) and 

(b) Reverse Engineering. 

 

According to Long [48], three models are necessary and sufficient to completely specify a 

system: (1) control (functional behavior) model, (2) interface (I/O) model, and (3) physical 

architecture (component) model.  Performance requirements/resources are captured with 

parts or combinations of one of these three models.  These three models provide a basis for 

knowing when the SE of the system has been completed, i.e., when—within projected 

technology—an achievable design specification for all system components has been reached, 

and the system V&V plans are defined and fully traced. 

 

The Vitech MBSE methodology that is taught as part of the tutorial includes methods in 

support of a set of learning objectives for each of the four top-level SE activities areas 

articulated in Figure 3-14.  Details of each method and tooling support will not be described 

here; however, as an example, the learning objectives associated with Source Requirements 

and Analysis and Architecture/Synthesis are shown in Table 3-5.  Additional details on 

methods associated with the Vitech MBSE methodology are also described by Baker and 

Long [49], although described in the context to what the authors refer to as the “System 

Logic Modeling (SLM)” Process. 

Table 3-5.  Learning Objectives and Sub-Activities for Vitech MBSE Top-Level SE 

Activities of Source Requirements Analysis and Architecture/Synthesis. 

 Source Requirements & Analysis Architecture/Synthesis 

Objective Identify structure and analyze 

requirements from a source. 

Expand our understanding of the system. 

Activities 1. Identify and extract 

requirements 

2. Organize requirements 

3. Analyze requirements 

3.1 Discover and identify 

issues 

1. Define: 

1.1 System boundaries 

1.2 Potential interfaces 

1.3 Preliminary physical architecture 
components 

1.4 Preliminary functionality 
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3.2 Discover and identify risks 

4. Establish requirements 
relationships 

5. View the requirements 
graphically 

6. Generate the requirements and 
related information in a table 

2. Maintain traceability to originating 
requirements 

3. Identify performance factors 

4. Identify constraints 

5. Continue to mitigate issues and risks 

 

Methods used in the Vitech MBSE methodology to support the Functional/Behavior Analysis 

top-level activity is based on a set of visual behavior models and constructs in an 

executable graphical language known as Enhanced Function Flow Block Diagrams (EFFBDs).  

Other supporting visual modeling languages to support Functional/Behavior Analysis include 

standard FFBDs, N2 charts, and Behavior diagrams; each of these modeling constructs is 

described in greater detail by Long [51].  Note that the Vitech MBSE tool CORE does not 

currently support the standard visual modeling language standards of the UML® or OMG 

SysML™.  This contrast, particularly with respect to EFFBDs, is described in greater detail in 

Section 3.6.  Although an assessment of use of the UML in support of the Vitech MBSE 

methodology was described by Skipper in 2003 [52], it is not yet clear that UML and/or 

SysML are on the Vitech CORE product roadmap for future support. 

 

Methods associated with the Vitech MBSE methodology to support the Design Verification 

and Validation (V&V) top-level activity include test plan development and test planning with 

best practices emphasizing that test planning begins during the originating requirements 

extraction and analysis phase.  Test threads are also described with test paths specified as 

derived from system behavior.  Software testing methods are highlighted as well as system 

testing methods.  The primary system testing methods described by the MBSE methodology 

are summarized in Table 3-6. 

Table 3-6.  System Testing Methods Defined in the Vitech MBSE Methodology. 

Functional Testing Test conditions are set up to ensure that the correct outputs are 

produced, based upon the inputs of the test conditions.  Focus is on 

whether the outputs are correct given the inputs (also called “black box” 
testing). 

Structural Testing Examines the structure of the system and its proper functioning.  Includes 

such elements as performance, recovery, stress, security, safety, 
availability.  Some of the less obvious elements are described below. 

Performance Examination of the system performance under a range of nominal 

conditions, ensures system is operational as well. 

Recovery Various failure modes are created and the system’s ability to return to an 

operational mode is determined. 

Interface Examination of all interface conditions associated with the system’s 
reception of inputs and sending of outputs. 

Stress Testing Above-normal loads are placed on the system to ensure that the system 

can handle them; these above-normal loads are increased to determine 

the system’s breaking point; these tests proceed for a long period of time 
in an environment as close to real as possible. 

3.4.2. Tool Support 

There is no process framework tool offered by Vitech Corporation or third party provider 

that supports the Vitech MBSE methodology.  Vitech does offer an MBSE tool set via its 

CORE® product suite. 
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3.4.3. Offering/Availability 

In the past, a half-day tutorial on the Vitech MBSE methodology was offered at various 

INCOSE International Workshops and Symposia [47].  This tutorial was entitled “H0D: 

Model Based Systems Engineering for Project Success: The Complete Process (PM)” and was 

taught by James (“Jim”) E. Long.  More detailed, multi-day courses are offered through the 

Vitech training services (see http://vitechcorp.com/services/). 

3.5 JPL State Analysis (SA) 

3.5.1. Overview 

State Analysis (SA) is a JPL-developed MBSE methodology that leverages a model- and 

state-based control architecture (see Figure 3-18), where state is defined to be “a 

representation of the momentary condition of an evolving system,” and models describe 

how state evolves [40]. 

 

Figure 3-18.  Model- and State-Based Control Architecture ("Control Diamond"). 

 

SA provides a process for capturing system and software requirements in the form of 

explicit models, thereby helping reduce the gap between the requirements on software 

specified by systems engineers and the implementation of these requirements by software 

engineers.  Traditionally, software engineers must perform the translation of requirements 

into system behavior, hoping to accurately capture the system engineer’s understanding of 

the system behavior, which is not always explicitly specified.  In SA, model-based 

requirements map directly to software. 

 

In SA, it is important to distinguish between the “state” of a system and the “knowledge” of 

that state.  The real state may be arbitrarily complex, but ones knowledge of it is generally 

captured in simpler abstractions that one finds useful and sufficient to characterize the 

system state.  These abstractions are called state variables.  The known state of the system 

is the value of its state variables at the time of interest.  Together, state and models supply 

what is needed to operate a system, predict future state, control toward a desired state, 

and assess performance. 
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Note:  State defined in the context of SA extends the classical control theory definition of 

state (e.g., spacecraft position and attitude and corresponding rates) to include all aspects 

of the system that the system engineer is interested in for the purpose of control, and that 

might need to be estimated.  This could include, for example, device operating modes and 

health, temperatures and pressures, resource levels (e.g., propellant; volatile and non-

volatile memory) and any other “care abouts” for purposes of control [53]. 

 

Given the above definitions of state and state variables, it is useful to articulate the key 

features of the “Control Diamond” illustrated in Figure 3-18: 

� State is explicit. The full knowledge of the state of the system under control is 

represented in a collection of state variables. 

� State estimation is separate from state control. Estimation and control are 

coupled only through state variables.  Keeping these two tasks separate promotes 

objective assessment of system state, ensures consistent use of state across the 

system, simplifies the design, promotes modularity, and facilitates implementation in 

software. 

� Hardware adapters provide the sole interface between the system under 

control and the control system.  They form the boundary of the state 

architecture, provide all the measurement and command abstractions used for 

control and estimation, and are responsible for translating and managing raw 

hardware input and output. 

� Models are ubiquitous throughout the architecture.  Models are used both for 

the execution (estimating and controlling state) and higher-level planning (e.g., 

resource management).  SA requires that the models be documented explicitly, in 

whatever form is most convenient for the given application. 

� The architecture emphasizes goal-directed closed-loop operation.  Instead of 

specifying desired behavior in terms of low-level open-loop commands, SA uses 

goals, which are constraints on state variables over a time interval. 

� The architecture provides a straightforward mapping into software.  The 

control diamond elements can be mapped directly into components in a modular 

software architecture, such as Mission Data System (MDS).13 

 

In addition to these features of the model- and state-based control architecture on which SA 

is based, there are a set of three core tenets that serve as guiding principles behind the SA 

methodology: 

� Control subsumes all aspects of the system operation.  It can be understood and 

exercised intelligently only through models of the system under control.  Therefore, a 

clear distinction must be made between the control system and the system under 

control.14 

                                           
13 MDS is an embedded software architecture intended to provide multi-mission information and 

control architecture for robotic exploration spacecraft [54].  The regular structure of SA is replicated in 

the MDS architecture, with every SA product having a direct counterpart in the software 

implementation. 
14 A control system has cognizance over the system under control.  This means that the control 

system is aware of the state of the system under control, and it has a model of how the system under 

control behaves.  The premise of SA is that this knowledge of state and its behavior is complete, i.e., 

no other information is required to control a system [53]. 
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� Models of the system under control must be explicitly identified and used in a way 

that assures consensus among systems engineers.  Understanding state if 

fundamental to successful modeling.  Everything we need to know and everything we 

want to do can be expressed in terms of the state of the system under control. 

� The manner in which models inform software design and operation should be direct, 

requiring minimal translation. 

 

The SA methodology defines an iterative process for state discovery and modeling, which 

allows the models to evolve as appropriate across the project lifecycle.  (A tool known as 

the State Database compiles information that is traditionally documented in a variety of 

systems engineering artifacts [55].)   In addition, mechanisms are specified by which the 

models are used to design software and operations artifacts.  In summary then, SA provides 

a methodical and rigorous approach for the following three primary activities: 

1. State-based behavioral modeling. Modeling behavior in terms of system state 

variables and the relationships between them. 

2. State-based software design. Describing the methods by which objectives will be 

achieved. 

3. Goal-directed operations engineering.  Capturing mission objectives in detailed 

scenarios motivated by operator intent. 

 

It should be noted that state-based behavior modeling directly influences/contributes to 

state-based software design and goal-directed operations engineering.  This makes the SA 

approach to systems engineering ideally suited for application to complex embedded 

systems, autonomy, and closed-loop commanding.  In fact, for JPL managed space missions 

with such characteristics, this author recommends that the SA methodology be fully 

exploited. 

 

A detailed description of the methods (“HOWs”) for each of the three aspects of SA 

identified above will not be described here as there are a myriad of published resources and 

training materials available to the JPL community (see [56] and [57] for example). 

 

At first blush, SA appears to be a significant paradigm shift from document- and model-

driven system design approaches that utilize the traditional functional analysis & 

decomposition approach to systems engineering.  In actuality, SA is highly complementary 

to functional analysis; both approaches add value and reduce risk in the development of 

complex systems. 

 

Relation to Functional Analysis & Decomposition 

In support of a JPL internal research and development (R&D) activity entitled Model-Based 

Engineering Design (MBED) with the intent of demonstrating infusion of model-based 

concepts to engineering design applied to the formulation phase of a space system project 

lifecycle, Ingham [58] showed that SA could be synthesized with a functional analysis 

model-driven process as a more comprehensive and rigorous approach to system behavior 

modeling. 

 

Figure 3-19 illustrates the result of the iterative decomposition process that is part of 

traditional functional analysis & decomposition that ultimately results in a hierarchy of 

functions, physical components (product breakdown structure) and requirements and the 

linkages between the functional, physical, and requirements hierarchies [58]. 
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What Ingham and his colleagues showed as part of the MBED FY06 effort was that it was 

possible to augment the functional analysis schema used by the Vitech CORE® MBSE tool 

(which is patterned after the linkages and elements shown in Figure 3-19, consistent with 

traditional functional analysis) with the SA elements of state variables, commands, and 

measurements (see Figure 3-20). 

 

Figure 3-19.  Conceptual Layout of Requirements, Functions, and Physical 

Components.  (Operational Scenarios are also Shown.) 

 

 

 

 (a) (b) 

Figure 3-20.  (a) Functional Analysis Elements and Relationships, (b) Elements 

and Relationships of State Analysis Synthesized with Functional Analysis.15 

 

This ability to synthesize functional and state analysis as demonstrated under the MBED 

R&D task for the FY06 year highlighted the complementary nature of these two MBSE 

methodologies and promises to yield significant benefits, including: 

� Better understanding and documentation of designed behavior 

� Earlier identification of unexpected design challenges 

� Improved traceability to developed software 

� More robust fault protection in the design system 

                                           
15 Although the SA element of goals, is shown as part of the integrated schema in Figure 3-20b, the 

goal-based operations engineering aspect of SA was not demonstrated. 
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Relation to Hazard Analysis 

At the heart of the discipline of system safety is a practice known as Hazard Analysis, where 

hazard is defined as “a state or set of conditions that, together, with other conditions in the 

environment, may lead to an accident (loss event)” [59].16  Hazard Analysis is used for 

developing safety-related requirements and design constraints, validating those 

requirements and constraints, preparing operational procedures and instructions, test 

planning, and management planning.  Hazard analysis serves as a framework for design for 

safety and as a checklist to ensure management and technical responsibilities for safety are 

accomplished.  All hazard analysis techniques rest on an underlying model of how accidents 

are assumed to be caused.  Most traditional hazard analysis techniques are based on 

causal-chain accident models [60].  Fault Tree Analysis (FTA) and Failure Modes and Effects 

Criticality Analysis (FMECA) are examples of traditional, event-based hazard analysis 

techniques. 

 

A new hazard analysis technique that is being pursued by Leveson and her colleagues is 

known as the STAMP-Based Hazard Analysis, or STPA for short [61].  STAMP stands for 

Systems Theoretic Accident Modeling and Process, and it is an accident model in which 

accidents are conceived as resulting not from component failures, but from inadequate 

control of safety-related constraints on the design, development, and operation of the 

system.  The most basic concept in STAMP is not an event, but a constraint.  In STAMP, 

safety is viewed as a control problem, i.e., accidents occur when component failures, 

external disturbances, and/or dysfunctional interactions among system components are not 

adequately handled.  The control processes that enforce these constraints must limit system 

behavior to the safe adaptations implied by the constraints.  It is this “controls”-based 

aspect of STAMP and the derived STPA methodology—together with the new technical 

standards being levied by NASA on software safety [62]—that have initiated a new task at 

JPL aimed at the possible harmonization of the controls-based STPA hazard analysis 

methodology with the controls-based SA MBSE methodology. 

 

It is important to note that STPA does not supplant a traditional or model-based systems 

engineering process but rather augments it with a system safety process (see Figure 3-21) 

[59].  It is also important to acknowledge that hazard analysis is only one part of a 

comprehensive system safety process.  Other important elements such as Intent 

Specifications [63] and component-based systems engineering [64]] used in concert with 

hazard analysis techniques such as STPA provide an integrated approach to system, 

software, and safety engineering for complex, safety-critical systems [59]. 

 

                                           
16 An accident, as defined by Leveson [60], is “an undesired and unplanned (but not necessarily 

unexpected) [loss] event that results in (at least) a specified level of loss.”  Safety, in this context, is 

defined as “freedom from accidents or losses.”  System safety can be measured on a continuum where 

a system is considered to be either safe (no loss) or at some increasing level of loss. 



INCOSE MBSE Initiative 

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 42 of 70 

Rev. B May 23, 2008 

INCOSE MBSE Initiative 

 

 

Figure 3-21. Integrated Approach to Design for Safety. 

 

3.5.2. Tool Support 

Tool support for State Analysis (SA) is provided by the State Database [55], which utilizes a 

Structured Query Language (SQL)-compliant relational database management system 

(RDBMS) such as Oracle® with a front end user interface.  This tool supports developing, 

managing, inspecting, and validating system and software requirements capture as part of 

the SA process. 

 

To support system safety engineering techniques such as Hazard Analysis and Intent 

Specifications, commercial tools such as Specifications Tool and Requirements Methodology 

(SpecTRM) and the formal requirements language used in that tool, SpecTRM-RL, as well as 

SpecTRM-GSC (Generic Spacecraft Component) are available from Safeware Engineering 

(see http://safeware-eng.com/). 

3.5.3. Offering/Availability 

State Analysis (SA) is a JPL-developed MBSE methodology and the offering is available by 

means of a series of courseware and tutorials offered by SA experts.  These courses are 

offered through JPL Professional Development on a periodic, as-needed basis, or through 

reimbursable contract agreements with industry partners. As part of the hands-on 

exercises, access to the State Database tool and supporting training in use of the tool is 

provided.  In March 2008, a full-day tutorial as well as a distilled evening session entitled 

“State Analysis for Systems Engineers” was offered to members of the Los Angeles Chapter 

of INCOSE in collaboration with JPL and the California Institute of Technology [65]. 
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3.6 Dori Object-Process Methodology (OPM) 

3.6.1. Overview 

Dori defines the Object-Process Methodology (OPM) as a formal paradigm to systems 

development, lifecycle support, and evolution [66].  It combines formal yet simple visual 

models known as Object-Process Diagrams (OPDs) with constrained natural language 

sentences known as Object-Process Language (OPL) to express the function (what the 

system does or designed to do), structure (how the system is constructed), and behavior 

(how the system changes over time) of systems in an integrated, single model.  Every OPD 

construct is expressed by a semantically equivalent OPL sentence or part of a sentence and 

vice versa.  OPL is a dual-purpose language, oriented towards humans as well as machines 

[66]. 

 

The premise of OPM is that everything in the universe is ultimately either an object or a 

process.  At the modeling level, OPM is built on top of three types of entities: objects, 

processes, and states, with objects and processes being the higher-level building blocks, 

collectively called things.  OPM formally defines these entities as follows: 

� An object is a thing that exists or has the potential of existence, physically or 

mentally. 

� A process is a pattern of transformation that an object undergoes. 

� A state is a situation an object can be at. 

 

Objects exist, and processes transform the objects by generating, consuming, or affecting 

them.  States are used to describe (stateful) objects, and are not standalone things.  At any 

point in time, each stateful object is at some state.  The symbol for objects and processes 

are rectangles and ellipses, respectively.  The first letter of object and process names is 

always capitalized and process names are preferably expressed as gerunds (end in -ing) 

indicating they are active, dynamic things.  The symbol for state is a “roundtangle” 

(rounded corner rectangle) [credited to D. Harel].  State names start with a lower-case 

letter.  An elementary example that illustrates a simple OPD and OPL sentences, adapted 

from the OPM textbook [66], is illustrated in Figure 3-22 below. 

 

OPD 

 

OPL 

Person can be single or married. 

Marrying changes Person from single to 

married. 

Man and Woman are Persons. 

Marrying yields Couple. 

Couple consists of Man and Woman. 

 

Figure 3-22.  Simple OPD and OPL Modeling the Process of Marrying, which Yields 

Couple, which Consists of Man and Woman (in the Traditional Sense), Each Being a 

Specialization of Person. 
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In this simple visual OPD model, the open triangle that links Person to Man and Woman 

represents specialization, whereas the filled-in triangle that links Couple to Man and 

Woman represents aggregation.  Lines with closed arrowheads represent an input-output 

link pair, a consumption link, or a result link depending on its context.  In this example, the 

link from the state single to the process Marrying is an input link, the link from Marrying 

to married is an output link, and the link from Marrying to Couple is a result link.  The 

same link with an inverse direction (from an object to a process) would be a consumption 

link.  Tables A-1 through A-4 in the Appendix contain the OPM symbols as well as the core 

syntax and semantics of Object-Process Diagrams (OPDs)—the graphical part of OPM. 

 

As Tables A-2 through A-4 show, links are further classified in OPM to be either structural 

links, which express persistent, long-term relations among objects or among processes in 

the system, or procedural links, which express the behavior of the system.  In Figure 3-22, 

the input, output, and result links represent procedural links while the links exhibiting 

specialization and aggregation represent structural links.  Since the structural and 

procedural links are expressed in the same diagram, they provide a complete picture of the 

system in a single graphical model, which is complemented by a textual one [66]. 

 

OPM supports a very rich set of modeling semantics, far beyond the simple example 

described above.  For a complete description of the semantics of the graphical elements that 

make up OPDs as well as constructs for OPL sentences, the reader is referred to the OPM 

textbook [66].  Our interest for purposes of the MBSE methodology survey is not to focus 

on the semantics of the modeling constructs that describe OPDs and OPL sentences but 

rather the processes and methods to support lifecycle systems engineering; specifically, 

model-based systems engineering (MBSE). 

 

Dori has shown that OPM can be used to model systems, natural systems as well as artificial 

systems [66].17  In this respect, OPM is a holistic systems paradigm.  It can be used to 

document functions of a system architecture, which of course is a key deliverable in a 

systems engineering process.  (Recall that architecture prescribes the combination of the 

system’s structure and behavior that attains its required functions under given constraints.)  

A major contribution of OPM to systems science and engineering is the precise semantics 

and syntax it ascribes to graphic symbols (used in OPDs) and the unambiguous association 

of graphic symbols with natural language constructs (i.e., OPL sentences). 

 

In addition, OPM manages system complexity through three refinement/abstraction 

mechanisms:  Unfolding/folding, which is used for refining/abstracting the structural 

hierarchy of a thing; In-zooming/out-zooming, which exposes/hides the inner details of a 

thing within its frame; and state expressing/suppressing, which exposes/hides the states of 

an object [66],[67].  Using these mechanisms, OPM enables specifying a system to any 

desired level of detail without losing legibility and comprehension of the resulting 

specification. 

 

Dori notes that software developers often refer to the orderly development of software as 

software engineering, the software process, or shortly, process [66].  In OPM, the term 

“process” is a reserved word and has a very specific semantics of a thing that transforms 

and object; hence, OPM refers to the entire lifecycle of systems as system evolution rather 

than process.  It has a name, however, that retains the word process—“OPM system 

                                           
17 Dori defines system as “an object that carries out or supports a significant function (as opposed to a 

non-significant function).”   
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process,” which prescribes the development and lifecycle support of not just software 

systems, but systems in general, where software may be a component or a subsystem. 

 

Chapter 11 of the OPM textbook describes an OPM model of system lifecycle phases, which 

sets the stage and provides a base metamodel on which certain aspects are further 

elaborated in an additional reference by Dori and Reinhartz-Berger [67].  Here, OPM is used 

to specify a generic OPM-based system development process.  Dori and Reinhartz-Berger 

refer to the process of creating this type of methodology metamodel, described in the 

paper, as reflective metamodeling and to the methodology itself as a reflective 

methodology [67],[68].  The former models a methodology by the means and tools that 

the methodology itself provides; the latter is a self-contained approach that does not 

require auxiliary means or external tools to model itself.  The distinction between these 

powerful techniques is subtle but important.  The remainder of this section captures the 

essential threads of discussion directly adapted from the paper of Dori and Reinhartz-Berger 

paper [67].  They are included here for completeness to assist the reader and to complete 

our discussion of Dori OPM as a candidate MBSE methodology. 

 

Author’s Note:  The following supplemental material is adapted essentially verbatim from 

Dori and Reinhartz-Berger [67] and used by permission.18  Only the figure and reference 

numbers have been altered to be consistent with the numbering scheme used by this survey 

report.  Annotations captured as footnotes are added where deemed necessary to clarify 

certain concepts. 

 

 ________________  

 

The System Diagram, which is labeled SD and shown in Figure 3-23, is the top-level 

specification of the OPM metamodel.  It specifies Ontology, Notation, and the System 

Developing process as the major OPM features (characterizations).  Ontology includes the 

basic elements in OPM, their attributes, and the relations among them.  For example, 

objects, processes, states, and aggregations are all OPM elements.  The Notation 

represents the Ontology graphically (by OPDs) or textually (by OPL sentences).  For 

example, a process is represented graphically in an OPD by an ellipse, while an object is 

symbolized by a rectangle. 

 

The System Developing process, also shown in SD, is handled by the User, who is the 

physical and external (environmental) object that controls (is the agent of) the process.  

This process also requires Ontology and Notation as instruments (inputs) in order to 

create a System. 

 

                                           
18 Dov Dori, Technion, Israel Institute of Technology (private communication), May 21, 2008. 
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SD 

 

 

OPM exhibits Ontology and Notation, as 

well as System Developing. 

 Notation represents Ontology 

 System Developing requires 

 Notation and Ontology. 

 System Developing yields 

 System. 

User is environmental and physical. 

User handles System Developing. 

Figure 3-23.  The Top Level Specification of the OPM Metamodel. 

 

 

SD1 

 

Figure 3-24.  Zooming into System Developing. 

Note: The thick ellipses used to model key processes (i.e., System Developing and its sub-

processes Requirement Specifying, Analyzing & Designing, and Implementing) denote in-

zoomed processes or processes which are in-zoomed in a lower level OPD.19 

 

The OPL paragraph, which is equivalent to SD, is also shown in Figure 3-23.  Since OPL is a 

subset of English, users who are not familiar with the graphic notation of OPM can validate 

their specifications by inspecting the OPL sentences.  These sentences are automatically 

generated on the fly in response to the user's graphic input which creates the OPDs [69].  

                                           
19 Ibid. 
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Due to space limitations and the equivalence of OPM graphical and textual notations, we use 

only the OPD notation in the rest of the paper. 

  

Zooming into System Developing, SD1 (Figure 3-24) shows the common sequential20 

stages of system developing processes: Requirement Specifying, Analyzing & 

Designing, Implementing, and Using & Maintaining.  All of these processes use the 

same OPM Ontology, a fact that helps narrowing the gaps between the different stages of 

the development process.  SD1 shows that the Client and the System Architect, which, 

along with the Implementer, specialize User, handle the Requirement Specifying sub-

process.  Requirement Specifying takes OPM Ontology as input and creates a new 

System, which, at this point, consists only of a Requirement Document.  The termination 

of Requirement Specifying starts Analyzing & Designing, the next sub-process of 

System Developing. 

 

The Requirements Specifying Stage 

In SD1.1 (Figure 3-25), Requirement Specifying is zoomed into, showing its four 

subprocesses.  First, the System Architect and the Client define the problem to be solved 

by the system (or project).  This Problem Defining step creates the Problem Definition 

part of the current system Requirement Document.  Next, through the Requirement 

Reusing sub-process, the System Architect may reuse requirements that fit the problem 

at hand and are adapted from any existing System (developed by the organization). Reuse 

helps achieve high quality systems and reduce their development and debugging time.  

Hence, when developing large systems, such as Web applications or real-time systems, it is 

important to try first to reuse existing artifacts adapted from previous generations, 

analogous systems, or commercial off-the-shelf (COTS) products that fit the current system 

development project.  Existing, well-phrased requirements are often not trivial to obtain, so 

existing relevant requirements should be treated as a potential resource no less than code.  

Indeed, as the OPD shows, reusable artifacts include not only software or hardware 

components (which traditionally have been the primary target for reuse), but also 

requirements. 

 

After optional reuse of requirements from existing systems (or projects), the System 

Architect and the Client, working as a team, add new Requirements or update existing 

ones.  This step uses OPM Ontology in order to make the Requirement Document 

amenable to be processed by other potential OPM tools, and in particular to an OPL 

compiler.  The bi-modal property of OPM, and especially the use of OPL, a subset of English 

(and potentially any natural language), enables the Client to be actively involved in the 

critical Requirement Specifying stage.  Moreover, since the System Architect and the 

Client use OPM Ontology in defining the new requirements, the resulting Requirement 

Document is indeed expressed, at least partially, in OPL in addition to explanations in free 

natural English.  Such structured OPM-oriented specification enables automatic translation 

of the Requirement Document to an OPM analysis and design skeleton (i.e., a skeleton of 

an OPD-set and its corresponding OPL script).  Naturally, at this stage the use of free 

natural language beside OPM seems mandatory to document motivation, alternatives, 

considerations, etc. 

 

                                           
20 The time line in an OPD flows from the top of the diagram downwards, so the vertical axis within an 

in-zoomed process defines the execution order. The sub-processes of a sequential process are 

depicted in the in-zoomed frame of the process stacked on top of each other with the earlier process 

on top of a later one.  Analogously, subprocesses of a parallel process appear in the OPD side by side, 

at the same height. 
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Finally, the Requirement Adding process results in the Boolean object “Is Backtracking 

Required?”, which determines whether System Developing should be restarted.  If so, 

Development Process Backtracking invokes the entire System Developing.  Otherwise, 

Requirement Specifying terminates, enabling the Analyzing & Designing process to 

begin. 

 

SD1.1 

 

Figure 3-25.  Zooming into Requirement Specifying. 

 

The Analyzing and Designing Stage 

During the Analyzing & Designing stage, shown in SD1.2 (Figure 3-26), a skeleton of an 

OPL Script is created from the Requirement Document for the current system.  As 

noted, in order to make this stage as effective and as automatic as possible, the 

Requirement Document should be written using OPM, such that the resulting OPL script 

can be compiled.  The System Architect can then optionally reuse analysis and design 

artifacts from previous systems (projects), creating a basis for the current system analysis 

and design.  Finally, in an iterative process of Analysis & Design Improving (which is in-

zoomed in SD1.2.1), the System Architect can engage in OPL Updating, OPD 

Updating, System Animating, General Information Updating, or Analysis & Design 

Terminating.  

 

Any change a user makes to one of the modalities representing the model triggers an 

automatic response of the development environment software to reflect the change in the 

complementary modality.  Thus, as SD1.2.1 (Figure 3-27) shows, OPD Updating (by the 

System Architect) affects the OPD-set and immediately invokes OPL Generating, which 

changes OPL Script according to the new OPD-set.  Conversely, OPL Updating (also by 

the System Architect) affects the OPL Script, which invokes OPD Generating, reflecting 

the OPL changes in the OPD-set. 
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SD1.2 

 

Figure 3-26.  Zooming into Analyzing & Designing. 

 

 

SD1.2.1 

 

Figure 3-27.  Zooming into Analysis & Design Improving. 

 

Since OPM enables modeling system dynamics and control structures, such as events, 

conditions, branching, and loops, System Animating simulates an OPD-set, enabling 

System Architects to dynamically examine the system at any stage of its development.  

Presenting live animated demonstrations of system behavior reduces the number of design 
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errors percolated to the implementation phase.  Both static and dynamic testing help detect 

discrepancies, inconsistencies, and deviations from the intended goal of the system.  As part 

of the dynamic testing, the simulation enables designers to track each of the system 

scenarios before writing a single line of code.  Any detected mistake or omission is corrected 

at the model level, saving costly time and efforts required within the implementation level.  

Avoiding and eliminating design errors as early as possible in the system development 

process and keeping the documentation up-to-date contribute to shortening the system's 

delivery time (“time-to-market”). 

 

Upon termination of the Analysis & Design Improving stage, if needed, the entire 

System Developing process can restart or the Implementing stage begins. 

 

The Implementing Stage 

The Implementing stage, in-zoomed in SD1.3 (Figure 3-28), begins by defining the 

Implementation Profile, which includes the target Language (e.g., Java, C++, or SQL) 

and a default Directory for the artifacts.  Then, the Implementation Skeleton 

Generating process uses the OPL Script of the current system and inner Generation 

Rules in order to create a skeleton of the Implementation.  A Generation Rule saves 

pairs of OPL sentence types (templates) and their associated code templates in various 

target Languages. 

 

The initial skeleton of the Implementation, which includes both the structural and 

behavioral aspects of the system, is then modified by the Implementer during the 

Implementation Reusing and Implementation Improving steps. In the Testing & 

Debugging stage, the resulting Implementation is checked against the Requirement 

Document in order to verify that it meets the system requirements defined jointly by the 

Client and the System Architect.  If any discrepancy or error is detected, the System 

Developing process is restarted, else the system is finally delivered, assimilated and used.  

These sub-processes are embedded in the Using & Maintaining process at the bottom of 

SD1 (Figure 3-24).  While Using & Maintaining takes place, the Client collects new 

requirements that are eventually used when the next generation of the system is initiated.  

A built-in mechanism for recording new requirements in OPM format while using the system 

would greatly facilitate the evolution of the next system generation [66]. 
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SD1.3 

 

Figure 3-28.  Zooming into Implementing. 

 

 ____________________________  

3.6.2. Tool Support 

The latest revision of the commercial version at the time of this writing is OPCAT v3.0.  This 

product supports the concepts described in this section related to the OPM metamodel for 

the system development process, including modeling support of the System Diagram (SD).  

In addition the commercial OPCAT has a configurable template for all kinds of document 

artifacts, including but not limited to System Overview, The Current State, Future Goals, 

Business or Program Constraints, and Hardware and Software Requirements.  OPCAT has 

facilities for animated simulation, requirements management, and many other advanced 

features. 

 

A restricted version of OPCAT 3 for evaluation and academic use only can be downloaded 

from the official OPCAT website at: 

http://www.opcat.com/downloads/restricted/  

 

Information about the commercial version of OPCAT as well as product documentation and 

support and contact information can be found under the official OPCAT website at: 

http://www.opcat.com/ 

3.6.3. Offering/Availability 

Commercial OPCAT software for OPM systems modeling, systems engineering and lifecycle 

support, as well as professional services, and education & training can be obtained via: 

http://www.opcat.com/ 
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4. Role of OMG™ UML®/SysML™ 

The Unified Modeling Language™ (UML®) and Systems Modeling Language™ (OMG SysML™) 

are visual modeling language standards managed under the auspices of the Object 

Management Group™ (OMG™); an open membership, not-for-profit consortium that 

produces and maintains computer industry specifications for interoperable enterprise 

applications [71],[72].   

 

UML and OMG SysML are intended to be complementary. SysML was developed in 

partnership between the OMG and INCOSE and is based on the UML, specifically, UML 2.0 

(see Figure 4-1) [38],[72].  SysML provides an additional set of modeling diagrams to 

model complex systems that include hardware, software, data, procedures and other 

system components.  Together, UML and SysML go a long way to help unify what has 

historically been a communication chasm between the systems and software engineering 

communities. 

 

 

Figure 4-1.  UML 2 and OMG SysML. 

 

It is important to note that the UML and SysML are not software or systems methodologies 

but rather visual modeling languages that are agnostic to any one specific methodology.  

Several commercially-offered model-based systems and software engineering 

methodologies, including most of the MBSE methodologies surveyed in this study, 

incorporate the UML and/or SysML into specific methods and artifacts produced as part of 

the methodology. 

 

Use of industry-standard visual modeling languages allows members of a systems and 

software lifecycle development activity to communicate in an unambiguous fashion.  

Further, such industry standards facilitate the ability to leverage commercial visual modeling 

tools as well as education and training provided by industry and academia.  It is expected 

that more-and-more junior engineers in the discipline of systems and software engineering 

will be versed in one or both of these visual modeling standards in the coming years. 

 

Additional information about UML and OMG SysML can be found at the following web sites: 

� http://www.uml.org/ 

� http://www.omgsysml.org/ 
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Relevance to State Analysis 

 

With respect to State Analysis (SA), the UML component diagram is a modeling artifact that 

is currently used to describe the static structure of software components, although in 

somewhat a non-normative fashion.  The term “non-normative” means that the visual 

models are not fully compliant with the standard; this is not a problem provided the models 

are clearly labeled as non-normative.  It is recommended that SA component diagrams 

utilize the UML 2 standard and clearly delineate non-normative models. 

 

UML and OMG SysML are extensible by means of profiles and the use of stereotypes, which 

allows these visual modeling standards to be tailored to specific domain areas or areas of 

application.  Because of this extension/tailoring mechanism, it is recommended that, in 

addition to UML component diagrams, other UML/SysML structure and behavior diagrams be 

explored for adoption in the SA MBSE methodology, for example, state effects diagrams and 

state timelines. 

 

Relevance to EFFBDs (or other “de-facto” MBSE visual modeling standards) 

 

A recommendation for the MBSE tool vendors that currently do not support UML and/or 

OMG SysML is to add this capability to the product roadmap as soon as possible; 

particularly, SysML.  The advantage of using industry standard visual modeling languages 

over vendor-specific modeling languages is clear and does not warrant debate.  Some MBSE 

tools, for example, only support the Enhanced Function Flow Block Diagram (EFFBD) visual 

modeling capability, which in some cases (e.g., Vitech CORE/COREsim) support executable 

modeling constructs that allows the systems engineer to run discrete-event simulations 

based on EFFBD models.  This is a very powerful capability and there is no technical reason 

that such an executable capability could not be added to OMG SysML diagrams such as 

activity diagrams and state diagrams.  Bock [73],[74] has documented how both UML (UML 

2 specifically) and SysML can be used for activity modeling and how these standards can 

extended to fully support EFFBDs. 

 

5. Role of OMG™ MDA® and Executable UML Foundation 

5.1 Model-Driven Architecture 

An area of active research in the software architecture modeling community is the OMG’s 

Model-Driven Architecture® (MDA®) initiative.  MDA reflects OMG’s approach to using 

models in software development to help achieve the vision of integrated systems and 

applications that can be deployed, maintained and integrated with far less cost and 

overhead than traditional approaches [75],[76],[77]. 

 

The primary goals of MDA are portability, interoperability, and reusability through 

architectural separation of concerns.  Separation of concerns represents an established best 

practice of separating the specification of operation of a system from the details of the way 

that system uses the capabilities of its platform. 

 

As an architectural framework, MDA prescribes certain kinds of models to be used, how 

those models may be prepared and the relationships of different kinds of models.  To be 

more precise, these models are actually viewpoint models or views that represent a system 

from the perspective of a chosen viewpoint.  The MDA framework specifies three viewpoints 
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on a system, a computation independent viewpoint, a platform21 independent viewpoint, and 

a platform specific viewpoint [75].  The three viewpoint models (views) that are associated 

with these viewpoints are briefly described below: 

� Computation Independent Model (CIM) – A view of a system from the computation 

independent viewpoint.  A CIM does not show details of the structure of systems.  A 

CIM is sometimes called a domain model and a vocabulary that is familiar to the 

practitioners of the domain in question is used in its specification. 

� Platform Independent Model (PIM) – A view of a system from the platform 

independent viewpoint.  A PIM exhibits a specified degree of platform independence 

so as to be suitable for use with a number of different platforms of similar type. 

� Platform Specific Model (PSM) – A view of a system from the platform specific 

viewpoint.  A PSM combines the specifications in the PIM with the details that specify 

how that system uses a particular type of platform. 

 

A graphic depiction of a typical software lifecycle process in applying MDA and how these 

models relate is depicted in Figure 5-1 [78]. 

 

 
 

Figure 5-1.  Applying MDA: Typical (Software) Process. 

  

As an architectural approach, MDA provides for, and enables tools to be provided for: 

� Specifying a system independently of the platform that supports it 

� Specifying platforms 

� Choosing a particular platform for the system 

� Transforming the system specification into one for a particular platform 

 

                                           
21 OMG MDA defines a platform as a set of subsystems and technologies that provide a coherent set of 

functionality through interfaces and specified usage patterns, which any application supported by that 

platform can use without concern for the details of how the functionality provided by the platform is 

implemented. 
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There is a great deal more to OMG MDA including metamodeling, model transformation, and 

pervasive services.  The interested reader is also encouraged to review plethora of white 

papers, presentations, online materials, and textbooks on the subject. 

 

A link to the official OMG MDA website can be found at: 

� http://www.omg.org/mda/ 

 

More recently, there has been an effort led by Cloutier [78],[79] to investigate the 

applicability of OMG MDA to the discipline of systems engineering; specifically, model-based 

systems engineering (MBSE).  Cloutier hypothesizes that MDA may provide the types of 

productivity gains in systems engineering efforts on par with the kinds of productivity gains 

that have been demonstrated in the software engineering community.  It is suggested that 

perhaps as much as 10-20% efficiency improvement may be realized on existing systems 

engineering projects once the methodology is understood and adapted for systems 

engineering [79]. 

 

A graphical depiction of applying OMG MDA to a typical systems engineering lifecycle 

process is shown in Figure 5-2 along with the various artifacts and deliverables associated 

with each MDA view, and the applicability of a common model repository and configuration 

and release tools that would comprise a MBSE tool suite [78]. 

 

 

Figure 5-2.  Applying MDA: Systems Engineering Process. 

 

In the MDA MBSE approach, the CIM view plays a critical role in the lifecycle process.  It is 

used to capture and model the concept of operations (CONOPS) for the system, taking a 

black-box view, and detailing how the system will interact with other systems and external 

actors.  This CIM view is analogous to an operational architecture [79]. 

 

Also to be considered as part of the CIM view are the system goals, system requirements 

(in context), system stakeholder needs, and business rules that impact the system.  This is 

not an exhaustive list of models that comprise the MBSE CIM view, but some of the more 

notable ones.  It is expected that an OMG SysML-compliant MBSE tool would be used 
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capture use case diagrams, and sequence diagrams or activity diagrams that model the 

mission use cases and mission scenarios. 

 

These diagrams would then be “transformed” (in an MDA context) to the next lower level of 

detail with greater specificity into the system PIM view.  Where the CIM view defines WHAT 

the system would do as it interacts with other systems and external actors, the PIM view 

defines HOW it performs those capabilities or functions at the system level [79].  It is 

expected that in the near term, this would be a manual transformation process.  As future 

tooling becomes more mature that provides full support of MDA in an MBSE context, then 

greater automation of the transformation process could be introduced. 

 

The PIM level of the system model will represent the system architecture, and the allocation 

of customer requirements to the system requirements.  Unlike the PIM view for software 

systems that represents the computing platform, the PIM view for MBSE represents the 

complete deployment platform (e.g., tank, aircraft, ship, etc.).  For MDA applied to MBSE, it 

may be necessary to create a multi-level PIM view to capture the necessary levels of detail 

to represent the complexity of the entire system while not providing too much detail in any 

single model [79].  In the PIM view, the MBSE process decomposes the business rules and 

system requirements and they are transformed into a more specific detailed model of the 

system.  Here, the major parts of the system begin to take form as the capabilities of the 

system are more thoroughly defined and derived.  Common capability groups (allocated 

from the system specifications) and logical subsystems begin to emerge from these 

groupings.   

 

Cloutier and his colleagues are also investigating emerging patterns for systems and 

systems architecture that will enable the application of a high level of system pattern to the 

CIM view, and the decomposition of that pattern applied at the PIM view.  References to 

that body of work are cited in the Cloutier paper [79]. 

5.2 Executable UML Foundation 

Another area of active research is Executable UML; technically, Executable UML Foundation 

[80],[81].  At the time of this writing, this work is managed under the auspices of the 

OMG’s Analysis and Design (A&D) Platform Task Force, an OMG Platform Technology 

Committee (TC) Work in Progress.  This particular TC Work in Progress is chaired by 

Stephen J. Mellor and focused on managing a single, joint submission to the Executable UML 

Foundation RFP.  The original RFP was issued on April 15, 2005 and formally entitled 

“Semantics of a Foundation Subset for Executable UML Models” RFP [80].   It is expected 

that the work of this TC will yield a public release of a second submission to the OMG for 

review at the end of June 2008 and a third submission to be formally voted on at the end of 

September 2008.22 

 

Quoting directly from the Executable UML Foundation RFP, “The objective of this RFP is to 

enable a chain of tools that support the construction, verification, translation, and execution 

of computationally complete executable models.”  The RFP objective statement goes on to 

state that proposals are solicited for the definition of a computationally complete and 

compact subset of UML 2.0 to be known as an “Executable UML Foundation,” along with a 

full specification of the execution semantics of this subset.  Here, “computationally 

complete” means that the subset shall be sufficiently expressive to allow definition of 

models that can be executed on a computer either through interpretation or as equivalent 

                                           
22 Nicolas Rouquette, Jet Propulsion Laboratory, California Institute of Technology (private 

communication), Apr. 18, 2008. 
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computer programs generated from models through some kind of transformations.  And 

“compact subset” means that the selected metamodel should include as small a subset of 

the UML concepts as is practicable to achieve computational completeness. 

 

Given the scope of the objectives for an Executable UML Foundation stated in the RFP, it not 

hard to see how Executable UML models could provide not only a solid foundation for the 

OMG MDA paradigm described earlier (see Section 5.1) but also a unified paradigm for 

precisely specifying structural and behavioral properties for requirements, verification, 

compliance, acceptance and simulation purposes, to name but a few. 

 

Why does this body of work have relevance to the MBSE community?  Because should a 

formal standard for Executable UML models emerge that is based on UML 2.0 semantics, it 

would be natural to extend this capability to OMG SysML, which, of course, builds on UML 

2.0.  This could result in a standards-based Executable SysML models as opposed to today’s 

environment in which [UML and OMG SysML] executable models are tightly coupled to a 

particular vendor solution offering.  A combined Executable UML/SysML specification could, 

for example, enable users to specify the minimum structural and behavioral requirements 

that an analysis model must fulfill in order to support a range of simulation techniques for 

domain-specific engineering analysis. 

 

Progress on this emerging OMG specification and eventual standard for Executable UML 

Foundation will be monitored and reported in a future revision of this MBSE methodology 

survey report. 
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Appendix 

Main Object-Process Methodology (OPM) concepts, their symbols, and their meaning 

(adapted from [70]). 

 

 

Table A-1.  ENTITIES 
 

Name  Symbol OPL Definition 

T
h
in
g
s
 

Object 

 

 

 

 
Process 

 

 

B is physical. 
(shaded rectangle) 
 

C is physical and 

environmental. 
(shaded dashed 

rectangle) 

 

E is physical. 
(shaded ellipse) 

 

F is physical and 

environmental. 
(shaded dashed ellipse) 

 

An object is a thing that 

exists. 

  

A process is a thing that 

transforms at least one 

object.  

 

Transformation is object 

generation or consumption, 

or effect—a change in the 

state of an object. 

State 

 

A is s1. 

 

 

B can be s1 or s2. 

 

 

C can be s1, s2, 

or s3. 

s1 is initial. 

s3 is final. 

A state is situation an object 

can be at or a value it can 

assume.  

 

States are always within an 

object. 

 

States can be initial or final. 
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Table A-2.  STRUCTURAL LINKS AND 

COMPLEXITY MANAGEMENT  

Name  Symbol OPL Semantics 

 

A consists of 

B and C. 

Aggregation-

Participation 

 

A consists of 

B and C. 

A is the whole, B and C are 

parts. 

 

A exhibits B, 

as well as C.  
Exhibition- 

Characterizati

on  

 

A exhibits B, 

as well as C. 

Object B is an attribute of A 

and process C is its operation 

(method). 

 

A can be an object or a 

process. 

 

 

B is an A. 

C is an A.  

Generalization

- 

Specialization 

 

B is A.  

C is A. 

A specializes into B and C. 

 

A, B, and C can be either all 

objects or all processes. 

F
u
n
d
a
m
e
n
ta
l S

tru
c
tu
ra
l R

e
la
tio

n
s
 

Classification-

Instantiation 

 

B is an 

instance of A. 

C is an 

instance of A. 

Object A is the class, for which 

B and C are instances. 

Applicable to processes too. 

Unidirectional & 

bidirectional 

tagged structural 

links  

  
 

A relates to 

B. 
(for 

unidirectional) 

 

A and C are 

related. 
(for 

bidirectional) 

A user-defined textual tag 

describes any structural 

relation between two objects or 

between two processes. 

In-zooming 
A exhibits C. 

A consists of 

B. 

A zooms into 

B, as well as 

Zooming into process A, B is its 

part and C is its attribute. 
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C.  

 

 

A exhibits C. 

A consists of 

B. 

A zooms into 

B, as well as 

C.  

Zooming into object A, B is its 

part and C is its operation. 

 

 

Table A-3.  ENABLING AND TRANSFORMING 

PROCEDURAL LINKS  

Name  Symbol OPL Semantics 

Agent Link 

 

A handles 

B. 

Denotes that the object is a 

human operator.  

Instrumen

t Link 
 

B requires 

A. 

"Wait until" semantics: 

Process B cannot happen if 

object A does not exist.  

E
n
a
b
lin
g
 lin

k
s
 State-

Specified  

Instrumen

t Link  

B requires 

s1 A. 

"Wait until" semantics: 

Process B cannot happen if 

object A is not at state s1. 

Consumpti

on Link  

B consumes 

A.  

Process B consumes Object 

A. 

State-

Specified  

Consumpti

on Link  

B consumes 

s1 A. 

Process B consumes Object 

A when it is at State s1. 

Result Link 

 

B yields A. Process B creates Object A. 

State-

Specified 

Result Link 

  

B yields s1 

A. 

Process B creates Object A 

at State s1. 

T
ra
n
s
fo
rm

in
g
 lin

k
s
 

Input-

Output 

Link Pair 

 

B changes 

A from s1 

to s2. 

Process B changes the state 

of Object A from State s1 to 

State s2. 
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Effect Link 

 

B affects A.  

Process B changes the state 

of Object A; the details of 

the effect may be added at 

a lower level.  

 

 

Table A-4.  EVENT, CONDITION, AND 

INVOCATION PROCEDURAL LINKS  

Name Symbol OPL Semantics 

Instrument  

Event Link 

 
 

A triggers B. 

B triggers A. 

Existence or generation of object 

A will attempt to trigger process 

B once. Execution will proceed if 

the triggering failed. 

State-

Specified  

Instrument 

Event Link  

A triggers B. 

when it 

enters s1. 

B requires s1 

A. 

Entering state s1 will attempt to 

trigger the process once. 

Execution will proceed if the 

triggering failed. 

Consumpti

on  

Event Link   

A triggers B.  

B consumes 

A. 

Existence or generation of object 

A will attempt to trigger process 

B once. If B is triggered, it will 

consume A. Execution will 

proceed if the triggering failed. 

State-

Specified 

Consumpti

on Event 

Link 
 

A triggers B 

when it 

enters s2.  

B consumes 

s2 A. 

Entering state s2 will attempt to 

trigger the process once. If B is 

triggered, it will consume A. 

Execution will proceed if the 

triggering failed. 

Condition 

Link 
 

B occurs if A 

exists. 

Existence of object A is a 

condition to the execution of B.  

If object A does not exist, then 

process B is skipped and regular 

system flow continues. 

State-

Specified 

Condition 

Link  

B occurs if A 

is s1. 

Existence of object A at state s2 

is a condition to the execution of 

B.  

If object A does not exist, then 

process B is skipped and regular 

system flow continues. 

Invocation 

Link  

 

B invokes C. 

Execution will proceed if the 

triggering failed (due to failure 

to fulfill one or more of the 

conditions in the precondition 

set). 
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