
INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 1 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Survey of Model-Based Systems Engineering (MBSE)
Methodologies

Jeff A. Estefan

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California, U.S.A.

Jeffrey.A.Estefan@jpl.nasa.gov

1. Introduction

1.1 Purpose

The purpose of this report is to provide a cursory description of some of the leading Model-

Based Systems Engineering (MBSE) methodologies used in industry today. It is intended

that the material described herein provides a direct response to the INCOSE MBSE Roadmap

element for a “Catalog of MBSE lifecycle methodologies” [1].

In this report, a methodology is defined as a collection of related processes, methods, and

tools [2]. A MBSE methodology can be characterized as the collection of related processes,

methods, and tools used to support the discipline of systems engineering in a “model-

based” or “model-driven” context. The intent of this survey is to educate the reader about

the various candidate MBSE methodologies that are commercially available as well as the

control- and state-based MBSE methodology that has been developed at NASA’s Jet

Propulsion Laboratory (JPL), which has been published in the open literature.

1.2 Scope

This memo describes the result of a MBSE methodology survey only; it is not a methodology

assessment. The material contained herein is expected to be reviewed and shared by the

INCOSE MBSE Initiative team and its governing leaders. It should be noted that this is a

cursory survey and only the top-level synopses of each candidate methodology is described.

Detailed descriptions of each can be found in the cited references.

While it is recognized that modern day systems are not only gaining in overall complexity,

they are also becoming more software intensive. Nevertheless, the scope of this survey

report is on MBSE methodologies from the holistic, lifecycle wide systems engineering

perspective and not specifically targeted toward embedded systems or software-intensive

systems in general. There are some notable model-based methodologies that focus on

embedded and software-intensive systems such as the Embedded Computer System

Analysis and Modeling (ECSAM) methodology from Lavi and Kudish [3],[4] and Model-Based

[System] Architecture and Software Engineering (MBASE) from Boehm and Port [5],[6];

however, these methodologies are not described herein. The interested reader can review

the cited references at the end of this report for more information on these methodologies.

In future revisions of this survey, the scope may expand to include model-based

methodologies for embedded and software-intensive systems in addition to mainstream

MBSE methodologies.

As will be described, tools are an important element of any MBSE methodology; however, a

survey of MBSE tools is beyond the scope of this report. It is expected that during an

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 2 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

organization’s candidate MBSE methodology assessment process (including impact to native

processes and procedures), a tool survey and assessment will occur concurrently or shortly

thereafter, followed by selection and piloting of relevant tools. This latter effort requires

participation from the organization’s systems engineering practitioner community because

that is the community that will most heavily be using the tools.

It is intended that this report be a living document and updated on a periodic basis based

on feedback and input by not only members of the INCOSE MBSE Initiative team but also by

members of the INCOSE community at large.

1.3 Overview

This report is organized as follows: Section 2 characterizes the difference between

methodologies and processes, methods, and lifecycle models (development, acquisition, and

systems engineering). Also described is the role of models in the systems engineering

process and the seminal work by Wymore on the mathematical foundation of MBSE.

Section 3 documents the survey results of leading MBSE methodologies used in industry.

Section 4 describes the role of the Object Management Group™ (OMG™) Unified Modeling

Language™ (UML®) and Systems Modeling Language™ (OMG SysML™), which are industry-

standard, visual modeling languages used to support the disciplines of software and

systems engineering, and how these modeling standards relate to MBSE methodologies.

Section 5 discusses the role of OMG™ Model-Driven Architecture® (MDA®) to the discipline

of systems engineering. In addition, the Executable UML Foundation is briefly introduced.

Section 6 provides a list of references used in preparation of this survey report and for the

benefit of the reader. Finally, Section 7 provides a list of acronyms and abbreviations used

in this report.

2. Differentiating Methodologies from Processes, Methods, and
Lifecycle Models

In order to better understand key features of the various leading MBSE methodologies

surveyed in this study, it is critically important to establish the terminology associated with

processes, methods, and methodology, and to acknowledge the myriad lifecycle models

used in the acquisition and development of large-scale, complex systems. Without such

grounding, it will be extremely difficult to map any assessment and selection of candidate

MBSE methodologies into the fabric of the systems engineering environment within a

particular organization.

2.1 Process, Method, Tool, Methodology, and Environment Defined

The word methodology is often erroneously considered synonymous with the word process.

For purposes of this study, the following definitions from Martin [2] are used to distinguish

methodology from process, methods, and tools:

� A Process (P) is a logical sequence of tasks performed to achieve a particular

objective. A process defines “WHAT” is to be done, without specifying “HOW” each

task is performed. The structure of a process provides several levels of aggregation

to allow analysis and definition to be done at various levels of detail to support

different decision-making needs.

� A Method (M) consists of techniques for performing a task, in other words, it defines

the “HOW” of each task. (In this context, the words “method,” “technique,”

“practice,” and “procedure” are often used interchangeably.) At any level, process

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 3 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

tasks are performed using methods. However, each method is also a process itself,

with a sequence of tasks to be performed for that particular method. In other words,

the “HOW” at one level of abstraction becomes the “WHAT” at the next lower level.

� A Tool (T) is an instrument that, when applied to a particular method, can enhance

the efficiency of the task; provided it is applied properly and by somebody with

proper skills and training. The purpose of a tool should be to facilitate the

accomplishment of the “HOWs.” In a broader sense, a tool enhances the “WHAT”

and the “HOW.” Most tools used to support systems engineering are computer- or

software-based, which also known as Computer Aided Engineering (CAE) tools.

Based on these definitions, a methodology can be defined as a collection of related

processes, methods, and tools. A methodology is essentially a “recipe” and can be thought

of as the application of related processes, methods, and tools to a class of problems that all

have something in common [7].

Associated with the above definitions for process, methods (and methodology), and tools is

environment. An Environment (E) consists of the surroundings, the external objects,

conditions, or factors that influence the actions of an object, individual person or group [2].

These conditions can be social, cultural, personal, physical, organizational, or functional.

The purpose of a project environment should be to integrate and support the use of the

tools and methods used on that project. An environment thus enables (or disables) the

“WHAT” and the “HOW.”

A visual graphic that depicts the relationship between the so-called “PMTE” elements

(Process, Methods, Tools, and Environment) is illustrated in Figure 2-1 along with the

effects of technology and people on the PMTE elements.

Figure 2-1. The PMTE Elements and Effects of Technology and People.

As stated by Martin [2], the capabilities and limitations of technology must be considered

when developing a systems engineering development environment. This argument extends,

of course, to an MBSE environment. Technology should not be used “just for the sake of

technology.” Technology can either help or hinder systems engineering efforts. Similarly,

when choosing the right mix of PMTE elements, one must consider the knowledge, skills and

abilities (KSA) of the people involved [2]. When new PMTE elements are used, often the

KSAs of the people must be enhanced through special training and special assignments.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 4 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

2.2 Lifecycle Development Models

A number of lifecycle development models have been created and applied to large-scale

system and software development projects used in government, industry, and academia,

but most are grounded in one of three seminal models. These are 1) Royce’s Waterfall

Model [8], Boehm’s Spiral Model [9], and Forsberg and Moog’s “Vee” Model [10],[11]. A

graphical depiction of each of these lifecycle development models is shown in Figure 2-2.

There are large volumes of literature that describe each of these models; therefore,

elaboration of each will not be provided here. Suffice it to say that variations of the

waterfall and spiral models to support structured as well as iterative and incremental

development have been used extensively in software development projects, while the “Vee”

model and modified versions of the “Vee” have been applied extensively in the areas of

systems engineering and systems development.

In addition to recognizing that such major lifecycle development models exist, they can also

serve as metamodels for lifecycle development. In other words, they provide the lifecycle

development templates on which project- or domain-specific plans are built. This will be

more evident during the review of the various MBSE methodologies described in Section 3,

many of which leverage one of these three lifecycle development models.

2.3 Acquisition Lifecycle Models

U.S. Government departments and agencies such as the U.S. Department of Defense (DoD)

and the National Aeronautics and Space Administration (NASA) are responsible for

managing billions of tax payer dollars annually in the development and acquisition of large-

scale, complex systems. Consequently, these agencies must follow rigid acquisition

guidelines to insure that they are good stewards of U.S. tax payer dollars, and that there is

accountability for investment in such large-scale, potentially very costly programs.

DoD acquisition reform was instituted in May 2003 to help streamline the defense

acquisition process, which in the past, was so onerous it took literally decades to field new

weapons systems. DoD best practices for acquisition are rooted in DoD policy directives and

instructions, namely, DoD Directive (DoDD) 5000.1 The Defense Acquisition System and

DoD Instruction (DoDI) 5000.2 Operation of the Defense Acquisition System [12],[13].

DoD’s revised acquisition policy includes a lifecycle framework and is depicted in Figure 2-3.

Milestone A represents the start of the development phase, Milestone B represents program

start, and Milestone C represents production commitment. Milestones correspond to

decision “gates” on which major programmatic decisions (e.g., funding) are made during

gate review processes. IOC and FOC are abbreviations for Initial and Full Operational

Capability, respectively. Further elaboration of the DoD acquisition lifecycle model will not

be provided here. What is important to note for this report is that the acquisition model

contains key lifecycle phases as well as decision milestones and gate reviews.

Similar to the DoD acquisition lifecycle model, the NASA lifecycle model has a set of key

lifecycle phases as well as decision milestones and gate reviews (see Figure 2-4).

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 5 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

 (a) (b)

(c)

Figure 2-2. Seminal Lifecycle Development Models: (a) Waterfall,

(b) Spiral, (c) “Vee”.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 6 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 2-3. DoD Lifecycle Framework.

Figure 2-4. NASA Project Lifecycle.

NASA best practices for acquisition are rooted in NASA policy directives and requirements;

specifically, NASA Policy Directive (NPD) 7120.4 Program/Project Management and NASA

Policy Requirement (NPR) 7120.5 NASA Program and Project Management Processes and

Requirements [14],[15]. Because NASA is a federal agency, programs the agency funds

must also pass decision milestones and gate reviews to ensure programs are meeting cost,

schedule, and technical baselines.

As with the development lifecycle models described in Section 2.2, the DoD and NASA

acquisition lifecycle models captured here can be considered metamodels on which project-

or domain-specific plans are built. Development lifecycles and acquisition lifecycles differ in

many ways, but the critical difference between them is that development lifecycles can be

applied one or more times during a single acquisition lifecycle.

One of the reasons for describing acquisition models as part of this MBSE survey is to

acknowledge the heritage of these traditional, document-driven, programmatic reviews and

the challenge organizations face when attempting to adopt more advanced, electronic- or

model-driven techniques such as MBSE. Traditionally, acquisition program reviews have

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 7 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

relied on paper documents, because that was the state-of-the-art at the time government

acquisition lifecycle models were first initiated [16]. Advances in information technology

over the last decade or so have afforded the opportunity to create “electronic” documents

using Microsoft® Word and PowerPoint and Adobe® Acrobat®; however, such electronic

resources are still often considered “hardcopy” document artifacts. This is evident as these

artifacts are almost always printed on paper for members of review boards during decision

milestone and gate reviews. Despite the fact that information technology has advanced to a

point where the technology can easily support fully electronic- or model-driven

programmatic reviews, the traditional document-driven approach is likely to continue for the

foreseeable future. Therefore, whatever MBSE methodology and approach that is assessed

and utilized by an organization will have to ultimately map back to the organization’s project

lifecycle and decision milestones and gates (and subsequently gate products) as part of the

programmatic review process.

2.4 Systems Engineering Process Standards and Capability Models

A systems engineering (SE) process is a process model that defines the primary activities

(“WHAT”) that must be performed to implement systems engineering. SE processes are

related to the phases in an acquisition lifecycle model in that the process usually begins at

an early stage of the system lifecycle, typically the very beginning of a project; however, on

some occasions, the SE process can also begin at the middle of an acquisition lifecycle.

A variety of SE process standards have been proposed by different international standards

bodies, but most SE process standards in use today have evolved from the early days of

DoD-MIL-STD 499. The heritage of these SE process standards together with industry

standard capability models and the relationship between them is illustrated in Figure 2-5

[17]. Also shown is the relationship to relevant ISO/IEC software process standards.

The ANSI/EIA 632 Processes for Engineering a System standard [18] and the IEEE 1220-

1998 Standard for Application and Management of the Systems Engineering Process [19]

were sources into the creation of ISO/IEC 15288:2002 Systems Engineering—System Life

Cycle Processes [20]. ISO/IEC 19760 Guide for ISO/IEC 15288 — System Life Cycle

Processes is, as the name implies, a guidance document for ISO/IEC 15288.

The Institute for Electrical and Electronic Engineers (IEEE) has since standardized on

ISO/IEC 15288 (which they refer to as IEEE Std 15288™-2004) [21]. In addition, the

International Council on Systems Engineering (INCOSE) has announced a commitment to

adoption of the 15288 standard, some of the elements of which have been integrated into

the INCOSE Systems Engineering Handbook v3 [22].

Because all three full SE process standards are available and used in practice, it is important

to at least acknowledge the distinction between them. A graphical depiction of the three full

standards that illustrates their primary scope is shown in Figure 2-6.

NASA too has recognized the importance of these industry standards with elements

referenced and incorporated into the recently ratified NASA NPR 7123.1A Systems

Engineering Processes and Requirements [23]. The NPR distinguishes between the three

industry standards as follows: “ANSI/EIA 632 is a commercial version that evolved from the

never released, but fully developed, 1994 Mil-Std 499B. It was intended to provide a

framework for developing and supporting a universal SE discipline for both defense and

commercial environments. ANSI/EIA 632 was intended to be a top-tier standard further

defined to lower-level tier standards that define specific practices. IEEE 1220 is a second-

tier standard that implements ANSI/EIA 632 by defining one way to practice systems

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 8 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

engineering. ISO/IEC 15288, on the other hand, defines system lifecycle processes for the

international set, plus for any domain (i.e., transportation, medical, commercial, et al.).”

Figure 2-5. Heritage of Systems Engineering Process Standards and

Capability Models.1

Figure 2-6. Breadth and Depth of Leading SE Process Standards.

As seen in Figure 2-6, the ISO/IEC 15288 standard follows more closely the acquisition

lifecycle models that were described in Section 2.3. The 15288 Std. system lifecycle is

1 Note that the status of some of these SE process standards and maturity models is somewhat dated

since the source of this diagram was extracted from a G. Roedler briefing dated Sep. 17, 2002 [17].

In ISO/IEC terms, PDTR stands for Preliminary Draft Technical Report and FDIS stands for Final Draft

Technical Standard; ISO/IEC 19760 has since been released as a final technical report [Source:

Michael Gayle, Jet Propulsion Laboratory (private communication), Mar. 16, 2007].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 9 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

shown in Figure 2-7 while system lifecycle process elements of the 15288 Std. are captured

in Figure 2-8.

Figure 2-7. ISO/IEC 15288 System Lifecycle.

Figure 2-8. ISO/IEC 15288 Process Elements.

The purpose of each major SE process model standard can be summarized as follows [17]:

� ISO/IEC 15288 – Establish a common framework for describing the lifecycle of

systems.

� ANSI/EIA 632 – Provide an integrated set of fundamental processes to aid a

developer in the engineering or re-engineering of a system.

� IEEE 1220 – Provide a standard for managing a system.

Indeed, the IEEE 1220 provides useful guidance on developing a Systems Engineering

Management Plan (SEMP), and a template is provided in Annex B of the standard. The

NASA NPR 7123.1A also provides useful guidance on preparation of a SEMP. The NPR

defines a SEMP as providing “the specifics of the technical effort and describes what

technical processes will be used, how the processes will be applied using appropriate

activities, how the project will be organized to accomplish the activities, and the cost and

schedule associated with accomplishing the activities.” Relative to the NASA acquisition

lifecycle, the SEMP is used to “establish the technical content of the engineering work early

in the Formulation Phase for each project and updated throughout the project life cycle.”

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 10 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

2.5 Models in Support of SE Processes

In a nutshell, model-based engineering (MBE) is about elevating models in the engineering

process to a central and governing role in the specification, design, integration, validation,

and operation of a system. For many organizations, this is a paradigm shift from traditional

document-based and acquisition lifecycle model approaches, many of which follow a “pure”

waterfall model of system definition, system design, and design qualification. One of the

biggest communication barriers that exists between the traditional engineering design

disciplines (including the discipline of systems engineering) and MBE is that in a model-

based process, activities that support the engineering process are to be accomplished

through development of increasing detailed models. Skipper suggests that this

communication chasm has existed for years and many managers and practitioners still do

not identify with the fact that various MBE process models and supporting methodologies

are intended to show emphasis rather than be purely waterfall, and that the entire system

model grows over time (see Figure 2-9).2

Figure 2-9. Generic SE Process and Integrated Model (Entire Model grows over

Time, Not “Pure” Waterfall).

Baker et al. [24] articulate some of the key foundational concepts of model driven system

design (MDSD) and contrast the model-driven approach with standard SE process models;

in this case, the SE process model specified by the IEEE 1220 standard.3 The authors

suggest that basic sub-processes apply to each of the major development phases of a

project (i.e., system definition, preliminary design, detailed design, and design qualification)

2 Joseph Skipper, Jet Propulsion Laboratory (private communication), California Institute of

Technology, Apr. 6, 2007.
3 Some authors use the term “MDSD” (Model-Driven System Design) and other use MBSE (Model-

Based Systems Engineering). While subtleties exist between the two terms, the latter is primarily

used in this report and any reference to MDSD is intended to be synonymous with MBSE.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 11 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

and that MDSD the basic sub-processes are repeated as many times as necessary. An

illustration of the basic sub-processes for MDSD is shown in Figure 2-10.

The authors proceed to describe various distinctive features of MDSD for each of the four

major development phases of the project. The interested reader is encouraged to review

these features in the cited reference as they will not be repeated here.

Figure 2-10. Sub-Processes for MDSD.

Another important concept that is introduced in the Baker et al. paper [24] is the notion of

an information model for MDSD, which is illustrated in Figure 2-11.

Figure 2-11. Information Model for MDSD.

Boxes show kinds of information, lines represent relationships, arrows show the direction of

the relationship (not the direction of information flow), and bullets show a “many”

relationship. The diagram elements can be interpreted as follows:

� Requirements specify Components

� Requirements may be decomposed into other Requirements

� Components may be decomposed into other Components

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 12 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

� Design Alternates satisfy Requirements

� Design Alternates represent Components

� Models execute Design Alternates

� Models represent Components

An information model is a very important part of MDSD as it facilitates the ability to view

MDSD from the kinds of “information” to be used in such an approach and their

relationships. Once again, a concurrent, incremental process is encouraged in which, as

Baker et al. state, “in early states, the models are low fidelity and geared towards decision

making; eventually, models become sufficiently faithful for compliance assessment” [24].

Also described in the cited paper is a useful and insightful contrast between document-

centered system design and MDSD.

2.6 Mathematical Foundation of MBSE

It is difficult to cover the subject of MBSE and not acknowledge the seminal contributions of

A. Wayne Wymore to the mathematical foundations of systems science and systems

engineering [25]. Although the mathematical theory described in Wymore’s early work is

not for the faint of heart, his theory as applied to MBSE—published in the book entitled

Model-Based Systems Engineering: An Introduction to the Mathematical Theory of Discrete

Systems and to the Tricotyledon Theory of System Design—establishes a rigorous

mathematical framework for the statement of the problem of the design of a system in a

model-based context [26].

According to Wymore’s autobiographical retrospectives, the work described in his MBSE

book does not provide a mathematical structure which could lead to the actual design of the

system [27]; however, it is suggested that body of work is currently under development as

“Phase 2” of MBSE (MBSE2) under the name System Functional Analysis and System

Design. The interested reader need not wait for publication of MBSE2 in order to obtain

exposure to a pragmatic perspective to system design and modeling that leverages some of

the core Wymorian theory and principles. For this, the reader should consider the book by

Chapman, Bahill, and Wymore entitled Engineering Modeling and Design [28].

The basis of system theory and systems engineering, according to Wymore, is modeling,

and the concept of “system” is human interpretation via senses (i.e., a mental model)

[25],[29]. A system model is a description that separates the perceived universe into two

parts, the part “inside” the system and the part “outside” the system. From the “outside”

the system receives inputs. To the “outside” the system delivers outputs. The “inside” of

the system is described, initially, as states. The state of the system at any time is a

function of its state at a previous time and the intervening inputs (including “noise”).

System designs are system models. When modelers describe some part of reality as a

“real” system, it means that their system mode “adequately” represents the reality. For the

purpose of accurate communication, mathematical definitions of various classes of system

models are postulated [29].

In Wymore’s MBSE book, he starts by providing a discussion of the definition of systems

engineering as well as a non-mathematical description of systems engineering process

before embarking on the core mathematical theory. The mathematical theory presented is

restricted to discrete time system models were chosen primarily for pedagogical reasons.

According to Wymore’s autobiographical account, “restrict[ing] all of MBSE to discrete time

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 13 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

and that the basic set of system models would be the set of sequential machines with Moore

readout functions. These decisions freed me from topological considerations occasioned by

aspects of continuous time to allow me to concentrate on the mathematical structures of the

objects of interest to systems engineers” [27].

A brief review of the book and its organization is described by Klir [30]. According to the

Preface, “The material in the text was chosen to attain three principal objectives:

� to provide the system theoretic foundations necessary to the study and practice of

systems engineering,

� to explicate mathematical system theory as the basis for the development of models

and designs of large-scale, complex systems consisting of personnel, machine and

software, and

� to introduce the student to the tricotyledon theory of system design (T3SD) and to

the considerations involved in applying the theory to the design of real systems.”

The phrase tricotyledon theory was chosen by Wymore to name the specific mathematical

system theory he developed to facilitate the process of system design.4 The three basic

spaces of system design are described shortly. The notation employed in the tricotyledon

theory and examples of systems described in the book is often referred to as “Wymorian

notation” [31].

Following the introduction of systems engineering and systems, the MBSE book provides a

rigorous mathematical foundation of discrete time system models, aspects of discrete time

models such as causality and time invariance, system coupling and resultants, system

homomorphisms (of like “shape”), and system modes [26].

A key aspect that is elaborated on in the second part of the MBSE book is Wymore’s

introduction of T3SD and identification of the six core categories of system design

requirements (SDR), which he defines as follows:

SDR = (IOR, TYR, PR, CR, TR, STR) where

IOR is the I/O requirement,

TYR is the technology requirement,

PR is the performance requirement,

CR is the cost requirement,

TR is the trade-off requirement, and

STR is the system test requirement.

4 The term cotyledon (as opposed to tricotyledon) is actually a botanical term used to represent

structure in the embryo of a seed plant that may form a leaf after germination, what is commonly

known as a ‘seed leaf.’ Wymore comments that the term was adopted during early development of

his theory when visual caricatures were drawn to help conceptualize the spaces of system designs of

various kinds. These caricatures or cartoons took on a leaf shape and an (unnamed) student

suggested use of the term “cotyledons” (or seed leaves) because they were generated by the

statement of the problem of the design of a system and the ultimate system design would eventually

“flower” from these cotyledons. Since there are three basic spaces of system designs, the theory

came to be known as the tricotyledon theory of system design, or T3SD for short.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 14 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

According to Wymore, across all projects, the system has to verify that these six conditions

are met. This has direct relevance to the discipline of systems engineering. Systems

engineering considers as many alternative implementable system designs as possible and

selects the best with respect to the tradeoff requirement, finding the implementable

systems design that is optimum with respect to the tradeoff requirement and most likely to

pass the system test, if possible [26],[29].

Mathematical foundation and visual depiction of each of these six categories that comprise

the SDR is further elaborated in the remaining chapters of MBSE book. Application of the

T3SD theory suggests that the statement of a system design problem requires the definition

of three orders, one each over the functionality, the buildability, and the implementability

cotyledons (or “spaces”) representing the mathematical structures of the PR, the CR, and

the TR, respectively. Also described in the MBSE book is the space of implementable

system tests items, denoted ISTISR, associated with the STR as generated by the IOR and

the TYR [26],[29]. A visual representation of ISTISR and its relation to the three system

design spaces that comprise the tricodyledon is illustrated in Figure 2-12.

Figure 2-12. The system test requirement anchors the system design problem to

the real world.5

In summary, although Wymore’s roots as a pure mathematician with a background in

topological algebra and functional analysis are clearly visible in his work on formulating the

mathematical theory behind systems science and systems engineering (including MBSE),

the value of his seminal work and its applicability to the discipline of systems engineering

5 FSR, BSR, and ISR represent the functionality, buildability, and implementability cotyledons,

respectively. The contours within FSR represent equivalent functional system designs, generated by

the performance requirement PR. Similarly, contours within the BSR represent equivalent buildable

system designs, generated by the cost requirement CR. And contours within the ISR represent

equivalent implementable system designs, generated by the trade-off requirement TR.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 15 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

should not be overlooked. We will continue to monitor the progress of Dr. Wymore’s

research and future publications centered on Phase 2 of MBSE (MBSE2) and any other

aspects related to MBSE.

3. Leading MBSE Methodologies

The following is a cursory review of some of the more notable MBSE methodologies that

have received attention in the various industry forums and publications and are intended to

serve as candidates for adoption and tailoring to an organization’s SE practices and

procedures. A brief synopsis of each methodology is described. Also included in this survey

of MBSE methodologies is a JPL-developed methodology known as State Analysis.

Reader Warning: Although references to candidate MBSE methodologies will be made,

some providers refer to or name their methodology a “process”—an unfortunate

consequence that often leads to confusion. For purposes of this survey, methodology is

implied, even if the formal offering uses the term “process” to describe or name the

methodology.

3.1 IBM Telelogic Harmony-SE

3.1.1. Overview

Harmony-SE is a subset of a larger integrated systems and software development process

known as Harmony® [32]. Development of Harmony-SE and Harmony® originated at I-

Logix, Inc., formerly a leading provider of modeling tools for the embedded market.6 Figure

3-1 graphically depicts the Harmony integrated systems and software development process.

Figure 3-1. Harmony® Integrated Systems and Software Development Process.

6 I-Logix was acquired by Telelogic AB in March 2006. More recently, Telelogic AB was acquired by

IBM Corporation in April 2008 and, while it retains the Telelogic brand, it is officially referred to as

“Telelogic – An IBM Company.” The IBM Telelogic product portfolio has grown in recent years not only

due to the I-Logix acquisition by the former Telelogic AB but also its acquisition of Popkin Software,

which included the System Architect tool that is widely used within the DoD acquisition community.

IBM Telelogic is perhaps best known for its DOORS® product suite for requirements management and

tracking.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 16 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

The Harmony process was designed to be tool- and vendor-neutral, although elements of

the process are supported by the Telelogic Rhapsody model-driven development

environment (formerly, I-Logix Rhapsody) and by the Telelogic Tau offering. Note that the

Harmony process somewhat mirrors the classical “Vee” lifecycle development model of

system design (cf., Section 2.2). The process assumes model and requirements artifacts

are maintained in a centralized model/requirements repository.

The systems engineering component of Harmony shown in the upper left corner of Figure

3-1 (i.e., Harmony-SE) has the following stated key objectives:

� Identify / derive required system functionality.

� Identify associated system states and modes.

� Allocate system functionality / modes to a physical architecture.

Harmony-SE uses a “service request-driven” modeling approach along with Object

Management Group™ Systems Modeling Language™ (OMG SysML™) artifacts [33]. In the

service request-driven modeling approach, system structure is described by means of

SysML structure diagrams using blocks as basic structure elements. Communication

between blocks is based on messages (services requests). Provided services are at the

receiving part of service requests and state/mode change or operations (activities) are

described as operational contracts. Functional decomposition is handled through

decomposition of activity operational contracts. A SysML visual representation of the

service request-driven approach is shown in Figure 3-2.

Task flow and work products (artifacts) in the Harmony-SE process include the following

three top-level process elements:

� Requirements analysis

� System functional analysis

� Architectural design

Figure 3-3 better illustrates these process elements along with the flow of some of the

primary work products:

Note that in addition to the use of a model/requirements repository as shown in the

Harmony process (Figure 3-1), a test data repository is also recommended in order to

capture use case scenarios.

Detailed task flows and work products are provided for each of the three process elements

(shown as the dark filled boxes in the center of Figure 3-3) with detailed guidance provided

in the Harmony-SE/SysML Deskbook [34].

An example of such a task flow and associated work products for the System Functional

Analysis process element is illustrated in Figure 3-4. Similarly, an example of the task flow

and associated work products for the Subsystem Architectural Design sub-process of the

Architectural Design process is depicted in Figure 3-5.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 17 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-2. OMG SysML™ Representation of Service Request-Driven Approach.

Figure 3-3. Harmony-SE Process Elements.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 18 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-4. System Functional Analysis Task Flow and Work Products.

Figure 3-5. Subsystem Architectural Design Task Flow and Work Products.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 19 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

3.1.2. Tool Support

No process framework tool exists from IBM Telelogic or a third-party provider for Harmony-

SE or the integrated systems and software engineering process, Harmony.

Recall that the Harmony-SE and Harmony were created as tool- and vendor-neutral, model-

based methodologies. Tool support for MBSE that supports the methods specified by

Harmony-SE and Harmony is, of course, provided by IBM Telelogic via the Telelogic Tau and

Telelogic Rhapsody product offerings.

3.1.3. Offering/Availability

As stated earlier, a Harmony-SE/SysML Deskbook has been published to help guide the

systems engineer and project manager through the entire MBSE methodology [22]. In

addition, IBM Telelogic offers professional services to support methodology adoption.

3.2 INCOSE Object-Oriented Systems Engineering Method (OOSEM)

3.2.1. Overview

The Object-Oriented Systems Engineering Method (OOSEM) integrates a top-down, model-

based approach that uses OMG SysML™ to support the specification, analysis, design, and

verification of systems. OOSEM leverages object-oriented concepts in concert with more

traditional top down systems engineering methods and other modeling techniques, to help

architect more flexible and extensible systems that can accommodate evolving technology

and changing requirements. OOSEM is also intended to ease integration with object-

oriented software development, hardware development, and test.

OOSEM evolved from work in the mid 1990’s at the Software Productivity Consortium (now

the Systems and Software Consortium) in collaboration with Lockheed Martin Corporation.7

The methodology was applied in part to a large distributed information system development

at Lockheed Martin that included hardware, software, database, and manual procedure

components. INCOSE Chesapeake Chapter established the OOSEM Working Group in

November 2000 to help further evolve the methodology.8 OOSEM is summarized in various

industry and INCOSE papers [35],[36],[37], and more recently, in the forthcoming book

entitled Practical Guide to SysML: Systems Modeling Language by Fridenthal, Moore, and

Steiner [38]. An introduction to the methodology is also available as a full day tutorial [39].

The OOSEM objectives are the following:

� Capture and analysis of requirements and design information to specify complex

systems.

� Integration with object-oriented (OO) software, hardware, and other engineering

methods.

� Support for system-level reuse and design evolution.

As stated above, OOSEM is a hybrid approach that leverages object-oriented techniques and

a systems engineering foundation. It also introduces some unique techniques as indicated

in see Figure 3-6.

7 Sanford Friedenthal, Lockheed Martin Corporation (private communication), Apr. 4, 2007.
8 David Griffith, Northrop Grumman Corporation (private communication), Mar. 15, 2007.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 20 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-6. Foundation of OOSEM.

The OOSEM supports a SE process as illustrated in Figure 3-7.

Figure 3-7. OOSEM Activities in the Context of the System Development Process.

The core tenets of OOSEM include recognized practices essential to systems engineering

that include: 1) Integrated Product Development (IPD), essential to improve

communications, and 2) a recursive “Vee” lifecycle process model that is applied to each

multiple level of the system hierarchy.

As shown in Figure 3-8, OOSEM includes the following development activities:

� Analyze Stakeholder Needs

� Define System Requirements

� Define Logical Architecture

� Synthesize Candidate Allocated Architectures

� Optimize and Evaluate Alternatives

� Validate and Verify System

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 21 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

These activities are consistent with typical systems engineering “Vee” process that can be

recursively and iteratively applied at each level of the system hierarchy. Fundamental

tenets of systems engineering, such as disciplined management processes (i.e. risk

management, configuration management, planning, measurement, etc.) and the use of

multi-disciplinary teams, must be applied to support each of these activities to be effective.

OOSEM utilizes a model-based approach to represent the various artifacts generated by the

development activities using OMG SysML as the predominant modeling language. As such,

it enables the systems engineer to precisely capture, analyze, and specify the system and

its components and ensure consistency among various system views. The modeling artifacts

can also be refined and reused in other applications to support product line and evolutionary

development approaches. A summary description of the activities and artifacts is provided

on the following pages [37].

Figure 3-8. OOSEM Activities and Modeling Artifacts.

Analyze Stakeholder Needs

This activity captures the “as-is” systems and enterprise, their limitations and potential

improvement areas. The results of the “as-is” analysis is used to develop the to-be

enterprise and associated mission requirements. An enterprise model depicts the

enterprise, its constituent systems, including the systems to be developed or modified, and

enterprise actors (entities external to the enterprise). The as-is enterprise is analyzed using

causal analysis techniques to determine its limitations, and used as a basis for deriving the

mission requirements and to-be enterprise model. The mission requirements are specified

in terms of the mission / enterprise objectives, measures of effectiveness, and top-level use

cases. The use cases and scenarios capture the enterprise functionality.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 22 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Define System Requirements

This activity is intended to specify the system requirements that support the mission

requirements. The system is modeled as a black box that interacts with the external

systems and users represented in the enterprise model. The system-level use cases and

scenarios reflect the operational concept for how the system is used to support the

enterprise. The scenarios are modeled using activity diagrams with swim lanes that

represent the black box system, users, and external systems. The scenarios for each use

case are used to derive the black box system functional, interface, data, and performance

requirements. The requirements management database is updated during this activity to

trace each system requirement to the enterprise/mission level use case and mission

requirements.

Requirements variation is evaluated in terms of the probability that a requirement will

change, which is included in the risks, and later analyzed to determine how to design the

system to accommodate the potential change. A typical example may be a system interface

that is likely to change or a performance requirement that is expected to increase.

Define Logical Architecture

This activity includes decomposing and partitioning the system into logical components that

interact to satisfy the system requirements. The logical components capture the system

functionality. Examples may include a user interface that is realized by a web browser, or

an environmental monitor that is realized by a particular sensor. The logical

architecture/design mitigates the impact of requirements changes on the system design,

and helps to manage technology changes.

OOSEM provides guidelines for decomposing the system into its logical components. The

logical scenarios preserve system black box interactions with its environment. In addition,

the logical component functionality and data are repartitioned based on partitioning criteria

such as cohesion, coupling, design for change, reliability, performance, and other

considerations.

Synthesize Candidate Allocated Architectures

The allocated architecture describes relationship among the physical components of the

system including hardware, software, data and procedures. The system nodes define the

distribution of resources. Each logical component is first mapped to a system node to

address how the functionality is distributed. Partitioning criteria is applied to address

distribution concerns such as performance, reliability, and security. The logical components

are then allocated to hardware, software, data, and manual procedure components. The

software, hardware, and data architecture are derived based on the component

relationships. The requirements for each component are traced to the system requirements

and maintained in the requirements management database.

Optimize and Evaluate Alternatives

This activity is invoked throughout all other OOSEM activities to optimize the candidate

architectures and conduct trade studies to select the preferred architecture. Parametric

models for modeling performance, reliability, availability, life-cycle cost, and other specialty

engineering concerns, are used to analyze and optimize the candidate architectures to the

level needed to compare the alternatives. The criteria and weighting factors used to

perform the trade studies are traceable to the system requirements and measures of

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 23 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

effectiveness. This activity also includes the monitoring of technical performance measures

and identifies potential risks.

Validate and Verify System

This activity is intended to verify that the system design satisfies its requirements and to

validate that the requirements meet the stakeholder needs. It includes the development of

verification plans, procedures, and methods (e.g., inspection, demonstration, analysis,

test). System-level use cases, scenarios, and associated requirements are primary inputs

to the development of the test cases and associated verification procedures. The

verification system can be modeled using the same activities and artifacts described above

for modeling the operational system. The requirements management database is updated

during this activity to trace the system requirements and design information to the system

verification methods, test cases, and results.

The full description of each OOSEM activity and process flows are provided in the cited book

by Friedenthal, Moore, and Steiner [38] and the referenced OOSEM tutorial [39].

3.2.2. Tool Support

A dedicated process framework tool for OOSEM does not exist; however, tool support for

OOSEM can be provided by COTS-based OMG SysML tools and associated requirements

management tools. Other tools required to support the full system lifecycle should be

integrated with the SysML and requirements management tools, such as configuration

management, performance modeling, and verification tools.

A more complete set of OOSEM tool requirements is provided in the referenced OOSEM

tutorial [39].

3.2.3. Offering/Availability

The OOSEM tutorial and training materials can be made available by contacting the INCOSE

OOSEM Working Group to gain access through the INCOSE Connect collaboration space.

Unlike other industry-provided MBSE methodologies, OOSEM is not a formal offering that

can be purchased from any specific vendor, including professional services. Support

services may be available by contacting representatives of the INCOSE OOSEM Working

Group.9

3.3 IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-
Driven Systems Development (MDSD)

3.3.1. Overview

The Rational Unified Process for Systems Engineering (RUP SE) is a derivative of the

Rational Unified Process® (RUP®). RUP is a methodology that is both a process framework

and process product from IBM Rational and has been used extensively in government and

industry to manage software development projects [40].

RUP SE was created to specifically address the needs of systems engineering projects

[41],[42]. The objective for its creation was to apply the discipline and best practices of the

RUP for software development to the challenges of system specification, analysis, design,

and development. Its goal is to help organizations save time, cut costs, reduce risk, and

9 L. Mark Walker, Lockheed Martin Corporation (private communication), Apr. 19, 2007.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 24 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

improve the quality of the systems they build. According to Cantor,10 in current parlance,

“RUP SE is the extension of the Rational Unified Process [RUP] to support Model-Driven

Systems Development [MDSD].” The spirit of MDSD as envisioned by key IBM systems

engineering leaders is documented in the cited reference by Balmelli et al. and will not be

replicated here [16].

Before describing the guiding principles, methods, and architectural framework of RUP SE to

support MDSD, it is helpful to familiarize the reader with the software development lifecycle

focused RUP. RUP is based on a set of building blocks, or content elements, describing what

is to be produced, the necessary skills required, and the step-by-step explanation describing

how specific development goals are achieved. A graphical depiction of the RUP process

framework is shown in Figure 3-9 [40] sometimes referred to in the industry as the “whale

chart.”

Figure 3-9. The Rational Unified Process® (RUP®) (“Whale Chart”).

The main content elements of the RUP are the following:

� Roles (“WHO”) – A role defines a set of related skills, competencies, and

responsibilities.

� Work Products (“WHAT”) – A work product represents something resulting from a

task, including all the documents and models produced while working through the

process.

� Tasks (“HOW”) – A task describes a unit of work assigned to a role that provides a

meaningful result.

Within each iteration, the tasks are categorized into a total of nine (9) disciplines:

10 Murray Cantor, IBM Corporation (private communication), Feb. 27, 2007.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 25 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Engineering Disciplines:

1. Business modeling

2. Requirements

3. Analysis and design

4. Implementation

5. Test

6. Deployment

Supporting Disciplines:

7. Configuration and change management

8. Project management

9. Environment

The RUP lifecycle is an implementation of the spiral model for iterative and incremental

development (cf., Section 2.2). It was created by assembling the content elements into

semi-ordered sequences. Consequently the RUP lifecycle is available as a work breakdown

structure (WBS), which can be customized to address the specific needs of a project. The

RUP lifecycle organizes the tasks into phases and iterations.

A project has four phases:

� Inception

� Elaboration

� Construction

� Transition

A typical project profile showing the relative sizes of the four phases is shown in Figure 3-10

[40].

Figure 3-10. Typical Profile Showing Relative Sizes of the Four RUP Phases.

Because RUP SE is derived from RUP, it retains RUP’s cornerstone principles, which have

been refined and extended to enhance their utility for systems engineering efforts. RUP SE

brings the RUP style of concurrent design and iterative development to systems engineering

(as illustrated in Figure 3-11) [43]. In addition, it provides the highly configurable discipline

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 26 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

(workflow) templates required to identify the hardware, software, and worker role

components that comprise a systems engineering project.

RUP and RUP SE both are designed to help teams systematically define, organize,

communicate, and manage requirements. Both methodologies support change control and

quality initiatives. Without these capabilities, no systems engineering project is likely to be

deemed a success relative to cost or business objectives.

Key elements in RUP SE that extend the RUP to systems engineering include the following:

� New roles. In RUP SE, the development team includes system engineers in addition

to worker roles such as architects, developers, testers, etc. The role of the system

engineer is primarily concerned with the specification of the overall system and

deployment thereof, and to help address overall system requirements.

Figure 3-11. Illustration of RUP SE lifecycle.

� New artifacts and workflows. RUP includes full support for software system

concerns, such as usability, maintainability, performance, and scalability. RUP SE

adds artifacts and workflows that address additional concerns in the systems

engineering domain, such as security, training, and logistics support.

� An emphasis on business modeling. Whatever kind of system being architected,

it is important to understand the business purpose it will serve. Otherwise, system

requirements will not accurately reflect business activities. RUP SE does not include

changes to the business modeling features of RUP. However, RUP SE users are

strongly encouraged to create business use cases with the associated identification of

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 27 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

business actors and the flow of business events, in order to adequately define

system requirements. Furthermore, the RUP SE use-case flowdown activity is applied

to derive system requirements from business requirements.

� Viewpoints for systems engineering. An architecture framework for RUP SE has

been developed that contains the elements of model levels, viewpoints, and views

(see Table 3-1). The concept of viewpoints and views used in the RUP SE

architecture framework is consistent with industry standard definitions as articulated

by the ISO/ITU 10746 standard Reference Model for Open Distributed Processing

(RM-ODP) [44] and the ANSI/IEEE 1471-2000 standard Recommended Practice for

Architectural Description of Software-Intensive Systems [45]. The cells in RUP SE

architecture framework represent views.

RUP SE supports domain-specific viewpoints common to system architectures, such

as safety, security, and mechanical. Modeling levels are similar for most systems

regardless of their complexity.

Table 3-1. The RUP SE architecture framework.

Model Viewpoints
Model
Levels Worker Logical Information Distribution Process Geometric

Context Role

definition,
activity
modeling

Use case

diagram
specification

Enterprise
data view

Domain-

dependent
views

 Domain-

dependent
views

Analysis Partitioning
of system

Product logical
decomposition

Product data
conceptual
schema

Product
locality view

Product
process
view

Layouts

Design Operator
instructions

Software

component
design

Product data
schema

ECM

(electronic
control media
design)

Timing
diagrams

MCAD

(mechanical
computer-
assisted
design)

Implementation Hardware and software configuration

Note: The Distribution viewpoint describes how the functionality of the system is

distributed across physical resources. At the analysis level, it is necessary to describe

a generalized view of resources, capturing the attributes needed to support the

transformation from analysis and design. Cantor introduced the concept of locality to

represent a generalized resource [41]. A locality is defined as a member of a system

partition representing a generalized or abstract view of the physical resources.

Localities can perform operations and have attributes appropriate for specifying

physical designs. Localities are linked to each other with connections. Connections

are defined as generalized physical linkages in RUP SE. Connections are

characterized by what they carry or transmit and the necessary performance and

quality attributes in order to specify their physical realization at the design level. A

RUP SE distribution diagram showing two localities and a connection between them is

illustrated in Figure 3-12.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 28 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-12. Two Localities and a Connection.

A model level is defined as a subset of the architecture model that represents a

certain level of specificity (abstract to concrete); lower levels capture more specific

technology choices. Model levels are not levels of abstraction; in fact, a model level

may contain multiple levels of abstraction. Model levels are elements designed to

group artifacts with a similar level of detail (see Table 3-2).

Table 3-2. Model levels in the RUP SE architecture framework.

Model Level Expresses

Context System black box—the system and its actors (through this is a black-box view
for the system, it is a white-box view for the enterprise containing the system.

Analysis System white box—initial system partitioning in each viewpoint that establishes
the conceptual approach.

Design Realization of the analysis level in hardware, software, and people

Implementation Realization of the design model into specific configurations

� Scalability enhancements. Once design decisions have been captured in

viewpoints and specified via model levels, the system architecture is captured in a

set of OMG™ UML®/SysML™ diagrams; these further describe it from the various

viewpoints and model levels. Although many of these artifacts are similar across

RUP and RUP SE, there are a couple of important differences. In a nutshell, these

new artifacts allow you to break the system down (1) by subsystems, and (2) by the

localities where processing takes place. Each subsystem coupled with its locality has

its own derived requirements in RUP SE, enabling the process to scale to meet the

needs of even the largest and most complex projects.

� Allocated versus derived requirements. RUP SE encompasses two types of

system requirements: use-cases, which capture functional requirements; and

supplementary requirements, which cover non-functional (quality) attributes like

reliability and maintainability (see Figure 3-13) [43]. With respect to the

requirements associated with subsystems and localities, RUP SE makes a further
distinction between those requirements that are allocated and those that are derived.

A locality or subsystem requirement is allocated if a locality or subsystem is assigned

sole responsibility for fulfilling a system requirement. A locality or subsystem

requirement is derived if it is identified by studying how the subsystem or locality

collaborates with others to meet a system requirement.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 29 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

� Subsystem-level flowdown activity. RUP SE derives system requirements from

business requirements via use-case flowdown activities. However, RUP SE departs

from the RUP in that it also specifies a flow of events in a subsystem-level, "white

box" view that references specific architectural elements.11 This extra step is

necessary in order to make decisions about where events are hosted, and to relate

processes to events.

� Support for designing additional components. The design-level specification of

system components with RUP SE is similar to its software-only counterpart in RUP.

The key difference, as previously mentioned, is that systems engineering typically

entails additional types of components than software engineering, such as hardware.

Delineation of these components is supported via analysis of the RUP SE subsystem

and locality use-case surveys that are generated prior to specifying component

designs.

Figure 3-13. RUP SE Requirements Allocation/Derivation Method.

11 The classical notion of a “white box” (the elements or parts that make up a system) and “black box”

(characteristics of the system as a whole: the services it provides, the requirements it meets)

characterization of a system is consistent with the IBM Model-Driven Systems Development (MDSD)

approach and is described as part of the RUP SE methodology [16].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 30 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

3.3.2. Tool Support

Unlike most of the other MBSE methodologies surveyed, a process framework tool does

exist to support RUP SE and is available via the RUP SE plugin for the Rational Method

Composer (RMC) product offering from IBM Rational® software. At the time of this writing,

RUP SE V3.0 is included as part of RMC V7.2. A complete list of RMC plugins can be found

at:

http://www.ibm.com/developerworks/rational/downloads/07/rmc_v7.2/

Direct MBSE tool support is provided by IBM through its Rational® suite of tool offerings that

support analysis, modeling, design, and construction, albeit mostly with a software

development focus; IBM Rational® has not historically been known as a provider of systems

engineering tools per se. The Rational Rose product family, Rational Systems Developer

(RSD), and Rational Software Modeler/Architect (RSM/RSA) offerings do support OMG™

UML®. Support for OMG™ SysML® is provided via the EmbeddedPlus SysML Toolkit, which

is a third party offering from EmbeddedPlus Engineering.

Most of these tools mentioned, including RMC, are supported on the Eclipse™ open source

platform managed under the auspices of the Eclipse Foundation, Inc.

3.3.3. Offering/Availability

As stated in Section 3.3.2, RUP SE tool support is provided by the RUP SE plugin for

Rational® Method Composer (RMC); however, it is recommended that adoption and tailoring

of the RUP SE methodology be supported through IBM professional services; specifically,

IBM Software Services. A textbook by Kruchten exist for the baseline RUP® methodology

that details core tenets and elements of the methodology and provides tailoring guidelines

[40]. Such a companion text does not yet exist for RUP SE, at least not at the time of this

survey report.

3.4 Vitech Model-Based System Engineering (MBSE) Methodology

3.4.1. Overview

Vitech Corporation, providers of the CORE® product suite, offer a MBSE methodology via a

set of tutorials developed and offered by Vitech CEO and Chief Methodologist James (“Jim”)

E. Long [46]. A variation of the tutorial has been delivered at a number of INCOSE

International Symposia as a half-day event [47]. Although the Vitech MBSE methodology is

considered “tool-independent,” there is a strong tie of the tutorial materials to the CORE

tool set.

The Vitech MBSE methodology is based on four primary concurrent SE activities that are

linked and maintained through a common System Design Repository (see Figure 3-14).

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 31 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-14. Vitech MBSE Primary SE Activities.

Each of these primary SE activities is linked within the context of associated “domains” as

illustrated in Figure 3-15, where the SE activities are considered elements of a particular

kind of domain known as the Process Domain.

In the Vitech MBSE methodology, it is stressed that a MBSE System Definition Language

(SDL) is needed to manage model artifacts, which means that an agreed-upon information

model in the form of a schema or ontology is necessary to manage the syntax (structure)

and semantics (meaning) of the model artifacts [48],[49]. Such an “SDL” has a number of

uses such as providing a structured, common, explicit, context-free language for technical

communication serving as a guide for requirements analysts, system designers, and

developers, and providing a structure for the graphic view generators, report generator

scripts, and consistency checkers.12 An example of a Vitech-specified MBSE SDL is

illustrated in Table 3-3. Vitech MBSE System Definition Language (SDL). and based on and

Entity-Relationship-Attribute (ERA) model.

12 Many of these features of an MBSE SDL are targeted at the MBSE tool that interacts with or hosts

the system design repository and is beyond the scope of other key elements of MBSE methodologies

such as processes and methods. Nevertheless, the importance of specifying, owning, and utilizing an

MBSE information model is acknowledged and a factor that is not explicitly called out in the literature

of other MBSE methodologies surveyed in this study.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 32 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-15. Vitech MBSE Primary SE Domains.

Five core tenets help drive the Vitech MBSE methodology:

1. Model via modeling “language” the problem and the solution space; include

semantically-meaningful graphics to stay explicit and consistent. This helps facilitate

model traceability, consistent graphics, automatic documentation and artifacts,

dynamic validation and simulation, and promotes more precise communication.

2. Utilize a MBSE system design repository.

3. Engineer the system horizontally before vertically, i.e., do it in complete, converging

layers.

4. Use tools to do the “perspiration stuff” and your brain to do the “inspiration stuff.”

To support tenet #3 above, the Vitech MBSE utilizes an incremental SE process known as

the “Onion Model,” which allows complete interim solutions at increasing levels of detail

during the system specification process [50]. A visual representation of the Onion Model is

illustrated in Figure 3-16.

Table 3-3. Vitech MBSE System Definition Language (SDL).

SDL

Language*

English

Equivalent

MBSE Example

Element Noun • Requirement: Place Orders

• Function: Cook Burgers

• Component: Cooks

Relationship Verb • Requirement basis of Functions

• Functions are allocated to Components

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 33 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Attribute Adjective • Creator

• Creation Date

• Description

Attribute of

Relationship

Adverb • Resource consumed by Function

• Amount (of Resource)

• Acquire Available (Priority)

Structure N/A • Viewed as Enhanced Function Flow Block Diagram (EFFBD) or
FFBD

*Mapped to model element property sheets in Vitech CORE®

Figure 3-16. Vitech MBSE "Onion Model."

The Onion Model iterates the primary concurrent SE activities at each layer. According to

Childers and Long [50], as the SE team successfully completes one level of system design,

they “peel off a layer of the onion” and start to explore the next layer. When the team

reaches the desired level of detail (the center), their design is complete. The primary

benefit of the Onion Model over say more traditional waterfall SE approaches is that it

provides a lower risk design approach since complete solutions at increasing levels of detail

are available for early review and validation [50].

Completeness and convergence are essential principles of the Onion Model in that the SE

team must complete a layer before moving to the next layer (completeness) and the team

cannot iterate back more than one layer (convergence). If no valid, consistent solution can

be found at any layer, the team must check if the system statement is overly constrained

and may need to negotiate modifications such as modifications to the design

implementation at the previous layer [50]. It is important to discover such constraints early

as system design breakage that occurs in several layers lower in the iterative process can

adversely impact cost and schedule. Guidance for determining completeness at each layer

is provided in Table 3-4.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 34 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Table 3-4. Completion Criteria for Each Layer of the "Onion Model."

Process Element Completion Criteria

1. Originating Requirements 1. Agreement on Acceptance Criteria.

2. Behavior/Functional Architecture 2. Each function is uniquely allocated to at most
one component.

3. Physical Architecture Definition 3. Segment/component specs are complete

requirements documents.

4. Qualification 4. V&V requirements have been traced to test

system components.

The Onion Model is supported by two sets of SE activities timelines that are intend to apply

to each layer of the “Onion;” one for a top down process (Figure 3-17a) and one for reverse

engineering (Figure 3-17b).

Note that schedule is read as increasing in time from left to right in these SE activity

timelines and the activity bars represent movement of the “center of gravity” of the SE

team. Further, it is important to re-iterate that concurrent engineering is assumed.

(a)

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 35 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

(b)

Figure 3-17. Vitech MBSE Activities Timeline - Top Down (a) and

(b) Reverse Engineering.

According to Long [48], three models are necessary and sufficient to completely specify a

system: (1) control (functional behavior) model, (2) interface (I/O) model, and (3) physical

architecture (component) model. Performance requirements/resources are captured with

parts or combinations of one of these three models. These three models provide a basis for

knowing when the SE of the system has been completed, i.e., when—within projected

technology—an achievable design specification for all system components has been reached,

and the system V&V plans are defined and fully traced.

The Vitech MBSE methodology that is taught as part of the tutorial includes methods in

support of a set of learning objectives for each of the four top-level SE activities areas

articulated in Figure 3-14. Details of each method and tooling support will not be described

here; however, as an example, the learning objectives associated with Source Requirements

and Analysis and Architecture/Synthesis are shown in Table 3-5. Additional details on

methods associated with the Vitech MBSE methodology are also described by Baker and

Long [49], although described in the context to what the authors refer to as the “System

Logic Modeling (SLM)” Process.

Table 3-5. Learning Objectives and Sub-Activities for Vitech MBSE Top-Level SE

Activities of Source Requirements Analysis and Architecture/Synthesis.

 Source Requirements & Analysis Architecture/Synthesis

Objective Identify structure and analyze

requirements from a source.

Expand our understanding of the system.

Activities 1. Identify and extract

requirements

2. Organize requirements

3. Analyze requirements

3.1 Discover and identify

issues

1. Define:

1.1 System boundaries

1.2 Potential interfaces

1.3 Preliminary physical architecture
components

1.4 Preliminary functionality

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 36 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

3.2 Discover and identify risks

4. Establish requirements
relationships

5. View the requirements
graphically

6. Generate the requirements and
related information in a table

2. Maintain traceability to originating
requirements

3. Identify performance factors

4. Identify constraints

5. Continue to mitigate issues and risks

Methods used in the Vitech MBSE methodology to support the Functional/Behavior Analysis

top-level activity is based on a set of visual behavior models and constructs in an

executable graphical language known as Enhanced Function Flow Block Diagrams (EFFBDs).

Other supporting visual modeling languages to support Functional/Behavior Analysis include

standard FFBDs, N2 charts, and Behavior diagrams; each of these modeling constructs is

described in greater detail by Long [51]. Note that the Vitech MBSE tool CORE does not

currently support the standard visual modeling language standards of the UML® or OMG

SysML™. This contrast, particularly with respect to EFFBDs, is described in greater detail in

Section 3.6. Although an assessment of use of the UML in support of the Vitech MBSE

methodology was described by Skipper in 2003 [52], it is not yet clear that UML and/or

SysML are on the Vitech CORE product roadmap for future support.

Methods associated with the Vitech MBSE methodology to support the Design Verification

and Validation (V&V) top-level activity include test plan development and test planning with

best practices emphasizing that test planning begins during the originating requirements

extraction and analysis phase. Test threads are also described with test paths specified as

derived from system behavior. Software testing methods are highlighted as well as system

testing methods. The primary system testing methods described by the MBSE methodology

are summarized in Table 3-6.

Table 3-6. System Testing Methods Defined in the Vitech MBSE Methodology.

Functional Testing Test conditions are set up to ensure that the correct outputs are

produced, based upon the inputs of the test conditions. Focus is on

whether the outputs are correct given the inputs (also called “black box”
testing).

Structural Testing Examines the structure of the system and its proper functioning. Includes

such elements as performance, recovery, stress, security, safety,
availability. Some of the less obvious elements are described below.

Performance Examination of the system performance under a range of nominal

conditions, ensures system is operational as well.

Recovery Various failure modes are created and the system’s ability to return to an

operational mode is determined.

Interface Examination of all interface conditions associated with the system’s
reception of inputs and sending of outputs.

Stress Testing Above-normal loads are placed on the system to ensure that the system

can handle them; these above-normal loads are increased to determine

the system’s breaking point; these tests proceed for a long period of time
in an environment as close to real as possible.

3.4.2. Tool Support

There is no process framework tool offered by Vitech Corporation or third party provider

that supports the Vitech MBSE methodology. Vitech does offer an MBSE tool set via its

CORE® product suite.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 37 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

3.4.3. Offering/Availability

In the past, a half-day tutorial on the Vitech MBSE methodology was offered at various

INCOSE International Workshops and Symposia [47]. This tutorial was entitled “H0D:

Model Based Systems Engineering for Project Success: The Complete Process (PM)” and was

taught by James (“Jim”) E. Long. More detailed, multi-day courses are offered through the

Vitech training services (see http://vitechcorp.com/services/).

3.5 JPL State Analysis (SA)

3.5.1. Overview

State Analysis (SA) is a JPL-developed MBSE methodology that leverages a model- and

state-based control architecture (see Figure 3-18), where state is defined to be “a

representation of the momentary condition of an evolving system,” and models describe

how state evolves [40].

Figure 3-18. Model- and State-Based Control Architecture ("Control Diamond").

SA provides a process for capturing system and software requirements in the form of

explicit models, thereby helping reduce the gap between the requirements on software

specified by systems engineers and the implementation of these requirements by software

engineers. Traditionally, software engineers must perform the translation of requirements

into system behavior, hoping to accurately capture the system engineer’s understanding of

the system behavior, which is not always explicitly specified. In SA, model-based

requirements map directly to software.

In SA, it is important to distinguish between the “state” of a system and the “knowledge” of

that state. The real state may be arbitrarily complex, but ones knowledge of it is generally

captured in simpler abstractions that one finds useful and sufficient to characterize the

system state. These abstractions are called state variables. The known state of the system

is the value of its state variables at the time of interest. Together, state and models supply

what is needed to operate a system, predict future state, control toward a desired state,

and assess performance.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 38 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Note: State defined in the context of SA extends the classical control theory definition of

state (e.g., spacecraft position and attitude and corresponding rates) to include all aspects

of the system that the system engineer is interested in for the purpose of control, and that

might need to be estimated. This could include, for example, device operating modes and

health, temperatures and pressures, resource levels (e.g., propellant; volatile and non-

volatile memory) and any other “care abouts” for purposes of control [53].

Given the above definitions of state and state variables, it is useful to articulate the key

features of the “Control Diamond” illustrated in Figure 3-18:

� State is explicit. The full knowledge of the state of the system under control is

represented in a collection of state variables.

� State estimation is separate from state control. Estimation and control are

coupled only through state variables. Keeping these two tasks separate promotes

objective assessment of system state, ensures consistent use of state across the

system, simplifies the design, promotes modularity, and facilitates implementation in

software.

� Hardware adapters provide the sole interface between the system under

control and the control system. They form the boundary of the state

architecture, provide all the measurement and command abstractions used for

control and estimation, and are responsible for translating and managing raw

hardware input and output.

� Models are ubiquitous throughout the architecture. Models are used both for

the execution (estimating and controlling state) and higher-level planning (e.g.,

resource management). SA requires that the models be documented explicitly, in

whatever form is most convenient for the given application.

� The architecture emphasizes goal-directed closed-loop operation. Instead of

specifying desired behavior in terms of low-level open-loop commands, SA uses

goals, which are constraints on state variables over a time interval.

� The architecture provides a straightforward mapping into software. The

control diamond elements can be mapped directly into components in a modular

software architecture, such as Mission Data System (MDS).13

In addition to these features of the model- and state-based control architecture on which SA

is based, there are a set of three core tenets that serve as guiding principles behind the SA

methodology:

� Control subsumes all aspects of the system operation. It can be understood and

exercised intelligently only through models of the system under control. Therefore, a

clear distinction must be made between the control system and the system under

control.14

13 MDS is an embedded software architecture intended to provide multi-mission information and

control architecture for robotic exploration spacecraft [54]. The regular structure of SA is replicated in

the MDS architecture, with every SA product having a direct counterpart in the software

implementation.
14 A control system has cognizance over the system under control. This means that the control

system is aware of the state of the system under control, and it has a model of how the system under

control behaves. The premise of SA is that this knowledge of state and its behavior is complete, i.e.,

no other information is required to control a system [53].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 39 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

� Models of the system under control must be explicitly identified and used in a way

that assures consensus among systems engineers. Understanding state if

fundamental to successful modeling. Everything we need to know and everything we

want to do can be expressed in terms of the state of the system under control.

� The manner in which models inform software design and operation should be direct,

requiring minimal translation.

The SA methodology defines an iterative process for state discovery and modeling, which

allows the models to evolve as appropriate across the project lifecycle. (A tool known as

the State Database compiles information that is traditionally documented in a variety of

systems engineering artifacts [55].) In addition, mechanisms are specified by which the

models are used to design software and operations artifacts. In summary then, SA provides

a methodical and rigorous approach for the following three primary activities:

1. State-based behavioral modeling. Modeling behavior in terms of system state

variables and the relationships between them.

2. State-based software design. Describing the methods by which objectives will be

achieved.

3. Goal-directed operations engineering. Capturing mission objectives in detailed

scenarios motivated by operator intent.

It should be noted that state-based behavior modeling directly influences/contributes to

state-based software design and goal-directed operations engineering. This makes the SA

approach to systems engineering ideally suited for application to complex embedded

systems, autonomy, and closed-loop commanding. In fact, for JPL managed space missions

with such characteristics, this author recommends that the SA methodology be fully

exploited.

A detailed description of the methods (“HOWs”) for each of the three aspects of SA

identified above will not be described here as there are a myriad of published resources and

training materials available to the JPL community (see [56] and [57] for example).

At first blush, SA appears to be a significant paradigm shift from document- and model-

driven system design approaches that utilize the traditional functional analysis &

decomposition approach to systems engineering. In actuality, SA is highly complementary

to functional analysis; both approaches add value and reduce risk in the development of

complex systems.

Relation to Functional Analysis & Decomposition

In support of a JPL internal research and development (R&D) activity entitled Model-Based

Engineering Design (MBED) with the intent of demonstrating infusion of model-based

concepts to engineering design applied to the formulation phase of a space system project

lifecycle, Ingham [58] showed that SA could be synthesized with a functional analysis

model-driven process as a more comprehensive and rigorous approach to system behavior

modeling.

Figure 3-19 illustrates the result of the iterative decomposition process that is part of

traditional functional analysis & decomposition that ultimately results in a hierarchy of

functions, physical components (product breakdown structure) and requirements and the

linkages between the functional, physical, and requirements hierarchies [58].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 40 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

What Ingham and his colleagues showed as part of the MBED FY06 effort was that it was

possible to augment the functional analysis schema used by the Vitech CORE® MBSE tool

(which is patterned after the linkages and elements shown in Figure 3-19, consistent with

traditional functional analysis) with the SA elements of state variables, commands, and

measurements (see Figure 3-20).

Figure 3-19. Conceptual Layout of Requirements, Functions, and Physical

Components. (Operational Scenarios are also Shown.)

 (a) (b)

Figure 3-20. (a) Functional Analysis Elements and Relationships, (b) Elements

and Relationships of State Analysis Synthesized with Functional Analysis.15

This ability to synthesize functional and state analysis as demonstrated under the MBED

R&D task for the FY06 year highlighted the complementary nature of these two MBSE

methodologies and promises to yield significant benefits, including:

� Better understanding and documentation of designed behavior

� Earlier identification of unexpected design challenges

� Improved traceability to developed software

� More robust fault protection in the design system

15 Although the SA element of goals, is shown as part of the integrated schema in Figure 3-20b, the

goal-based operations engineering aspect of SA was not demonstrated.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 41 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Relation to Hazard Analysis

At the heart of the discipline of system safety is a practice known as Hazard Analysis, where

hazard is defined as “a state or set of conditions that, together, with other conditions in the

environment, may lead to an accident (loss event)” [59].16 Hazard Analysis is used for

developing safety-related requirements and design constraints, validating those

requirements and constraints, preparing operational procedures and instructions, test

planning, and management planning. Hazard analysis serves as a framework for design for

safety and as a checklist to ensure management and technical responsibilities for safety are

accomplished. All hazard analysis techniques rest on an underlying model of how accidents

are assumed to be caused. Most traditional hazard analysis techniques are based on

causal-chain accident models [60]. Fault Tree Analysis (FTA) and Failure Modes and Effects

Criticality Analysis (FMECA) are examples of traditional, event-based hazard analysis

techniques.

A new hazard analysis technique that is being pursued by Leveson and her colleagues is

known as the STAMP-Based Hazard Analysis, or STPA for short [61]. STAMP stands for

Systems Theoretic Accident Modeling and Process, and it is an accident model in which

accidents are conceived as resulting not from component failures, but from inadequate

control of safety-related constraints on the design, development, and operation of the

system. The most basic concept in STAMP is not an event, but a constraint. In STAMP,

safety is viewed as a control problem, i.e., accidents occur when component failures,

external disturbances, and/or dysfunctional interactions among system components are not

adequately handled. The control processes that enforce these constraints must limit system

behavior to the safe adaptations implied by the constraints. It is this “controls”-based

aspect of STAMP and the derived STPA methodology—together with the new technical

standards being levied by NASA on software safety [62]—that have initiated a new task at

JPL aimed at the possible harmonization of the controls-based STPA hazard analysis

methodology with the controls-based SA MBSE methodology.

It is important to note that STPA does not supplant a traditional or model-based systems

engineering process but rather augments it with a system safety process (see Figure 3-21)

[59]. It is also important to acknowledge that hazard analysis is only one part of a

comprehensive system safety process. Other important elements such as Intent

Specifications [63] and component-based systems engineering [64]] used in concert with

hazard analysis techniques such as STPA provide an integrated approach to system,

software, and safety engineering for complex, safety-critical systems [59].

16 An accident, as defined by Leveson [60], is “an undesired and unplanned (but not necessarily

unexpected) [loss] event that results in (at least) a specified level of loss.” Safety, in this context, is

defined as “freedom from accidents or losses.” System safety can be measured on a continuum where

a system is considered to be either safe (no loss) or at some increasing level of loss.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 42 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Figure 3-21. Integrated Approach to Design for Safety.

3.5.2. Tool Support

Tool support for State Analysis (SA) is provided by the State Database [55], which utilizes a

Structured Query Language (SQL)-compliant relational database management system

(RDBMS) such as Oracle® with a front end user interface. This tool supports developing,

managing, inspecting, and validating system and software requirements capture as part of

the SA process.

To support system safety engineering techniques such as Hazard Analysis and Intent

Specifications, commercial tools such as Specifications Tool and Requirements Methodology

(SpecTRM) and the formal requirements language used in that tool, SpecTRM-RL, as well as

SpecTRM-GSC (Generic Spacecraft Component) are available from Safeware Engineering

(see http://safeware-eng.com/).

3.5.3. Offering/Availability

State Analysis (SA) is a JPL-developed MBSE methodology and the offering is available by

means of a series of courseware and tutorials offered by SA experts. These courses are

offered through JPL Professional Development on a periodic, as-needed basis, or through

reimbursable contract agreements with industry partners. As part of the hands-on

exercises, access to the State Database tool and supporting training in use of the tool is

provided. In March 2008, a full-day tutorial as well as a distilled evening session entitled

“State Analysis for Systems Engineers” was offered to members of the Los Angeles Chapter

of INCOSE in collaboration with JPL and the California Institute of Technology [65].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 43 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

3.6 Dori Object-Process Methodology (OPM)

3.6.1. Overview

Dori defines the Object-Process Methodology (OPM) as a formal paradigm to systems

development, lifecycle support, and evolution [66]. It combines formal yet simple visual

models known as Object-Process Diagrams (OPDs) with constrained natural language

sentences known as Object-Process Language (OPL) to express the function (what the

system does or designed to do), structure (how the system is constructed), and behavior

(how the system changes over time) of systems in an integrated, single model. Every OPD

construct is expressed by a semantically equivalent OPL sentence or part of a sentence and

vice versa. OPL is a dual-purpose language, oriented towards humans as well as machines

[66].

The premise of OPM is that everything in the universe is ultimately either an object or a

process. At the modeling level, OPM is built on top of three types of entities: objects,

processes, and states, with objects and processes being the higher-level building blocks,

collectively called things. OPM formally defines these entities as follows:

� An object is a thing that exists or has the potential of existence, physically or

mentally.

� A process is a pattern of transformation that an object undergoes.

� A state is a situation an object can be at.

Objects exist, and processes transform the objects by generating, consuming, or affecting

them. States are used to describe (stateful) objects, and are not standalone things. At any

point in time, each stateful object is at some state. The symbol for objects and processes

are rectangles and ellipses, respectively. The first letter of object and process names is

always capitalized and process names are preferably expressed as gerunds (end in -ing)

indicating they are active, dynamic things. The symbol for state is a “roundtangle”

(rounded corner rectangle) [credited to D. Harel]. State names start with a lower-case

letter. An elementary example that illustrates a simple OPD and OPL sentences, adapted

from the OPM textbook [66], is illustrated in Figure 3-22 below.

OPD

OPL

Person can be single or married.

Marrying changes Person from single to

married.

Man and Woman are Persons.

Marrying yields Couple.

Couple consists of Man and Woman.

Figure 3-22. Simple OPD and OPL Modeling the Process of Marrying, which Yields

Couple, which Consists of Man and Woman (in the Traditional Sense), Each Being a

Specialization of Person.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 44 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

In this simple visual OPD model, the open triangle that links Person to Man and Woman

represents specialization, whereas the filled-in triangle that links Couple to Man and

Woman represents aggregation. Lines with closed arrowheads represent an input-output

link pair, a consumption link, or a result link depending on its context. In this example, the

link from the state single to the process Marrying is an input link, the link from Marrying

to married is an output link, and the link from Marrying to Couple is a result link. The

same link with an inverse direction (from an object to a process) would be a consumption

link. Tables A-1 through A-4 in the Appendix contain the OPM symbols as well as the core

syntax and semantics of Object-Process Diagrams (OPDs)—the graphical part of OPM.

As Tables A-2 through A-4 show, links are further classified in OPM to be either structural

links, which express persistent, long-term relations among objects or among processes in

the system, or procedural links, which express the behavior of the system. In Figure 3-22,

the input, output, and result links represent procedural links while the links exhibiting

specialization and aggregation represent structural links. Since the structural and

procedural links are expressed in the same diagram, they provide a complete picture of the

system in a single graphical model, which is complemented by a textual one [66].

OPM supports a very rich set of modeling semantics, far beyond the simple example

described above. For a complete description of the semantics of the graphical elements that

make up OPDs as well as constructs for OPL sentences, the reader is referred to the OPM

textbook [66]. Our interest for purposes of the MBSE methodology survey is not to focus

on the semantics of the modeling constructs that describe OPDs and OPL sentences but

rather the processes and methods to support lifecycle systems engineering; specifically,

model-based systems engineering (MBSE).

Dori has shown that OPM can be used to model systems, natural systems as well as artificial

systems [66].17 In this respect, OPM is a holistic systems paradigm. It can be used to

document functions of a system architecture, which of course is a key deliverable in a

systems engineering process. (Recall that architecture prescribes the combination of the

system’s structure and behavior that attains its required functions under given constraints.)

A major contribution of OPM to systems science and engineering is the precise semantics

and syntax it ascribes to graphic symbols (used in OPDs) and the unambiguous association

of graphic symbols with natural language constructs (i.e., OPL sentences).

In addition, OPM manages system complexity through three refinement/abstraction

mechanisms: Unfolding/folding, which is used for refining/abstracting the structural

hierarchy of a thing; In-zooming/out-zooming, which exposes/hides the inner details of a

thing within its frame; and state expressing/suppressing, which exposes/hides the states of

an object [66],[67]. Using these mechanisms, OPM enables specifying a system to any

desired level of detail without losing legibility and comprehension of the resulting

specification.

Dori notes that software developers often refer to the orderly development of software as

software engineering, the software process, or shortly, process [66]. In OPM, the term

“process” is a reserved word and has a very specific semantics of a thing that transforms

and object; hence, OPM refers to the entire lifecycle of systems as system evolution rather

than process. It has a name, however, that retains the word process—“OPM system

17 Dori defines system as “an object that carries out or supports a significant function (as opposed to a

non-significant function).”

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 45 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

process,” which prescribes the development and lifecycle support of not just software

systems, but systems in general, where software may be a component or a subsystem.

Chapter 11 of the OPM textbook describes an OPM model of system lifecycle phases, which

sets the stage and provides a base metamodel on which certain aspects are further

elaborated in an additional reference by Dori and Reinhartz-Berger [67]. Here, OPM is used

to specify a generic OPM-based system development process. Dori and Reinhartz-Berger

refer to the process of creating this type of methodology metamodel, described in the

paper, as reflective metamodeling and to the methodology itself as a reflective

methodology [67],[68]. The former models a methodology by the means and tools that

the methodology itself provides; the latter is a self-contained approach that does not

require auxiliary means or external tools to model itself. The distinction between these

powerful techniques is subtle but important. The remainder of this section captures the

essential threads of discussion directly adapted from the paper of Dori and Reinhartz-Berger

paper [67]. They are included here for completeness to assist the reader and to complete

our discussion of Dori OPM as a candidate MBSE methodology.

Author’s Note: The following supplemental material is adapted essentially verbatim from

Dori and Reinhartz-Berger [67] and used by permission.18 Only the figure and reference

numbers have been altered to be consistent with the numbering scheme used by this survey

report. Annotations captured as footnotes are added where deemed necessary to clarify

certain concepts.

The System Diagram, which is labeled SD and shown in Figure 3-23, is the top-level

specification of the OPM metamodel. It specifies Ontology, Notation, and the System

Developing process as the major OPM features (characterizations). Ontology includes the

basic elements in OPM, their attributes, and the relations among them. For example,

objects, processes, states, and aggregations are all OPM elements. The Notation

represents the Ontology graphically (by OPDs) or textually (by OPL sentences). For

example, a process is represented graphically in an OPD by an ellipse, while an object is

symbolized by a rectangle.

The System Developing process, also shown in SD, is handled by the User, who is the

physical and external (environmental) object that controls (is the agent of) the process.

This process also requires Ontology and Notation as instruments (inputs) in order to

create a System.

18 Dov Dori, Technion, Israel Institute of Technology (private communication), May 21, 2008.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 46 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

SD

OPM exhibits Ontology and Notation, as

well as System Developing.

 Notation represents Ontology

 System Developing requires

 Notation and Ontology.

 System Developing yields

 System.

User is environmental and physical.

User handles System Developing.

Figure 3-23. The Top Level Specification of the OPM Metamodel.

SD1

Figure 3-24. Zooming into System Developing.

Note: The thick ellipses used to model key processes (i.e., System Developing and its sub-

processes Requirement Specifying, Analyzing & Designing, and Implementing) denote in-

zoomed processes or processes which are in-zoomed in a lower level OPD.19

The OPL paragraph, which is equivalent to SD, is also shown in Figure 3-23. Since OPL is a

subset of English, users who are not familiar with the graphic notation of OPM can validate

their specifications by inspecting the OPL sentences. These sentences are automatically

generated on the fly in response to the user's graphic input which creates the OPDs [69].

19 Ibid.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 47 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Due to space limitations and the equivalence of OPM graphical and textual notations, we use

only the OPD notation in the rest of the paper.

Zooming into System Developing, SD1 (Figure 3-24) shows the common sequential20

stages of system developing processes: Requirement Specifying, Analyzing &

Designing, Implementing, and Using & Maintaining. All of these processes use the

same OPM Ontology, a fact that helps narrowing the gaps between the different stages of

the development process. SD1 shows that the Client and the System Architect, which,

along with the Implementer, specialize User, handle the Requirement Specifying sub-

process. Requirement Specifying takes OPM Ontology as input and creates a new

System, which, at this point, consists only of a Requirement Document. The termination

of Requirement Specifying starts Analyzing & Designing, the next sub-process of

System Developing.

The Requirements Specifying Stage

In SD1.1 (Figure 3-25), Requirement Specifying is zoomed into, showing its four

subprocesses. First, the System Architect and the Client define the problem to be solved

by the system (or project). This Problem Defining step creates the Problem Definition

part of the current system Requirement Document. Next, through the Requirement

Reusing sub-process, the System Architect may reuse requirements that fit the problem

at hand and are adapted from any existing System (developed by the organization). Reuse

helps achieve high quality systems and reduce their development and debugging time.

Hence, when developing large systems, such as Web applications or real-time systems, it is

important to try first to reuse existing artifacts adapted from previous generations,

analogous systems, or commercial off-the-shelf (COTS) products that fit the current system

development project. Existing, well-phrased requirements are often not trivial to obtain, so

existing relevant requirements should be treated as a potential resource no less than code.

Indeed, as the OPD shows, reusable artifacts include not only software or hardware

components (which traditionally have been the primary target for reuse), but also

requirements.

After optional reuse of requirements from existing systems (or projects), the System

Architect and the Client, working as a team, add new Requirements or update existing

ones. This step uses OPM Ontology in order to make the Requirement Document

amenable to be processed by other potential OPM tools, and in particular to an OPL

compiler. The bi-modal property of OPM, and especially the use of OPL, a subset of English

(and potentially any natural language), enables the Client to be actively involved in the

critical Requirement Specifying stage. Moreover, since the System Architect and the

Client use OPM Ontology in defining the new requirements, the resulting Requirement

Document is indeed expressed, at least partially, in OPL in addition to explanations in free

natural English. Such structured OPM-oriented specification enables automatic translation

of the Requirement Document to an OPM analysis and design skeleton (i.e., a skeleton of

an OPD-set and its corresponding OPL script). Naturally, at this stage the use of free

natural language beside OPM seems mandatory to document motivation, alternatives,

considerations, etc.

20 The time line in an OPD flows from the top of the diagram downwards, so the vertical axis within an

in-zoomed process defines the execution order. The sub-processes of a sequential process are

depicted in the in-zoomed frame of the process stacked on top of each other with the earlier process

on top of a later one. Analogously, subprocesses of a parallel process appear in the OPD side by side,

at the same height.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 48 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Finally, the Requirement Adding process results in the Boolean object “Is Backtracking

Required?”, which determines whether System Developing should be restarted. If so,

Development Process Backtracking invokes the entire System Developing. Otherwise,

Requirement Specifying terminates, enabling the Analyzing & Designing process to

begin.

SD1.1

Figure 3-25. Zooming into Requirement Specifying.

The Analyzing and Designing Stage

During the Analyzing & Designing stage, shown in SD1.2 (Figure 3-26), a skeleton of an

OPL Script is created from the Requirement Document for the current system. As

noted, in order to make this stage as effective and as automatic as possible, the

Requirement Document should be written using OPM, such that the resulting OPL script

can be compiled. The System Architect can then optionally reuse analysis and design

artifacts from previous systems (projects), creating a basis for the current system analysis

and design. Finally, in an iterative process of Analysis & Design Improving (which is in-

zoomed in SD1.2.1), the System Architect can engage in OPL Updating, OPD

Updating, System Animating, General Information Updating, or Analysis & Design

Terminating.

Any change a user makes to one of the modalities representing the model triggers an

automatic response of the development environment software to reflect the change in the

complementary modality. Thus, as SD1.2.1 (Figure 3-27) shows, OPD Updating (by the

System Architect) affects the OPD-set and immediately invokes OPL Generating, which

changes OPL Script according to the new OPD-set. Conversely, OPL Updating (also by

the System Architect) affects the OPL Script, which invokes OPD Generating, reflecting

the OPL changes in the OPD-set.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 49 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

SD1.2

Figure 3-26. Zooming into Analyzing & Designing.

SD1.2.1

Figure 3-27. Zooming into Analysis & Design Improving.

Since OPM enables modeling system dynamics and control structures, such as events,

conditions, branching, and loops, System Animating simulates an OPD-set, enabling

System Architects to dynamically examine the system at any stage of its development.

Presenting live animated demonstrations of system behavior reduces the number of design

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 50 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

errors percolated to the implementation phase. Both static and dynamic testing help detect

discrepancies, inconsistencies, and deviations from the intended goal of the system. As part

of the dynamic testing, the simulation enables designers to track each of the system

scenarios before writing a single line of code. Any detected mistake or omission is corrected

at the model level, saving costly time and efforts required within the implementation level.

Avoiding and eliminating design errors as early as possible in the system development

process and keeping the documentation up-to-date contribute to shortening the system's

delivery time (“time-to-market”).

Upon termination of the Analysis & Design Improving stage, if needed, the entire

System Developing process can restart or the Implementing stage begins.

The Implementing Stage

The Implementing stage, in-zoomed in SD1.3 (Figure 3-28), begins by defining the

Implementation Profile, which includes the target Language (e.g., Java, C++, or SQL)

and a default Directory for the artifacts. Then, the Implementation Skeleton

Generating process uses the OPL Script of the current system and inner Generation

Rules in order to create a skeleton of the Implementation. A Generation Rule saves

pairs of OPL sentence types (templates) and their associated code templates in various

target Languages.

The initial skeleton of the Implementation, which includes both the structural and

behavioral aspects of the system, is then modified by the Implementer during the

Implementation Reusing and Implementation Improving steps. In the Testing &

Debugging stage, the resulting Implementation is checked against the Requirement

Document in order to verify that it meets the system requirements defined jointly by the

Client and the System Architect. If any discrepancy or error is detected, the System

Developing process is restarted, else the system is finally delivered, assimilated and used.

These sub-processes are embedded in the Using & Maintaining process at the bottom of

SD1 (Figure 3-24). While Using & Maintaining takes place, the Client collects new

requirements that are eventually used when the next generation of the system is initiated.

A built-in mechanism for recording new requirements in OPM format while using the system

would greatly facilitate the evolution of the next system generation [66].

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 51 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

SD1.3

Figure 3-28. Zooming into Implementing.

3.6.2. Tool Support

The latest revision of the commercial version at the time of this writing is OPCAT v3.0. This

product supports the concepts described in this section related to the OPM metamodel for

the system development process, including modeling support of the System Diagram (SD).

In addition the commercial OPCAT has a configurable template for all kinds of document

artifacts, including but not limited to System Overview, The Current State, Future Goals,

Business or Program Constraints, and Hardware and Software Requirements. OPCAT has

facilities for animated simulation, requirements management, and many other advanced

features.

A restricted version of OPCAT 3 for evaluation and academic use only can be downloaded

from the official OPCAT website at:

http://www.opcat.com/downloads/restricted/

Information about the commercial version of OPCAT as well as product documentation and

support and contact information can be found under the official OPCAT website at:

http://www.opcat.com/

3.6.3. Offering/Availability

Commercial OPCAT software for OPM systems modeling, systems engineering and lifecycle

support, as well as professional services, and education & training can be obtained via:

http://www.opcat.com/

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 52 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

4. Role of OMG™ UML®/SysML™

The Unified Modeling Language™ (UML®) and Systems Modeling Language™ (OMG SysML™)

are visual modeling language standards managed under the auspices of the Object

Management Group™ (OMG™); an open membership, not-for-profit consortium that

produces and maintains computer industry specifications for interoperable enterprise

applications [71],[72].

UML and OMG SysML are intended to be complementary. SysML was developed in

partnership between the OMG and INCOSE and is based on the UML, specifically, UML 2.0

(see Figure 4-1) [38],[72]. SysML provides an additional set of modeling diagrams to

model complex systems that include hardware, software, data, procedures and other

system components. Together, UML and SysML go a long way to help unify what has

historically been a communication chasm between the systems and software engineering

communities.

Figure 4-1. UML 2 and OMG SysML.

It is important to note that the UML and SysML are not software or systems methodologies

but rather visual modeling languages that are agnostic to any one specific methodology.

Several commercially-offered model-based systems and software engineering

methodologies, including most of the MBSE methodologies surveyed in this study,

incorporate the UML and/or SysML into specific methods and artifacts produced as part of

the methodology.

Use of industry-standard visual modeling languages allows members of a systems and

software lifecycle development activity to communicate in an unambiguous fashion.

Further, such industry standards facilitate the ability to leverage commercial visual modeling

tools as well as education and training provided by industry and academia. It is expected

that more-and-more junior engineers in the discipline of systems and software engineering

will be versed in one or both of these visual modeling standards in the coming years.

Additional information about UML and OMG SysML can be found at the following web sites:

� http://www.uml.org/

� http://www.omgsysml.org/

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 53 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Relevance to State Analysis

With respect to State Analysis (SA), the UML component diagram is a modeling artifact that

is currently used to describe the static structure of software components, although in

somewhat a non-normative fashion. The term “non-normative” means that the visual

models are not fully compliant with the standard; this is not a problem provided the models

are clearly labeled as non-normative. It is recommended that SA component diagrams

utilize the UML 2 standard and clearly delineate non-normative models.

UML and OMG SysML are extensible by means of profiles and the use of stereotypes, which

allows these visual modeling standards to be tailored to specific domain areas or areas of

application. Because of this extension/tailoring mechanism, it is recommended that, in

addition to UML component diagrams, other UML/SysML structure and behavior diagrams be

explored for adoption in the SA MBSE methodology, for example, state effects diagrams and

state timelines.

Relevance to EFFBDs (or other “de-facto” MBSE visual modeling standards)

A recommendation for the MBSE tool vendors that currently do not support UML and/or

OMG SysML is to add this capability to the product roadmap as soon as possible;

particularly, SysML. The advantage of using industry standard visual modeling languages

over vendor-specific modeling languages is clear and does not warrant debate. Some MBSE

tools, for example, only support the Enhanced Function Flow Block Diagram (EFFBD) visual

modeling capability, which in some cases (e.g., Vitech CORE/COREsim) support executable

modeling constructs that allows the systems engineer to run discrete-event simulations

based on EFFBD models. This is a very powerful capability and there is no technical reason

that such an executable capability could not be added to OMG SysML diagrams such as

activity diagrams and state diagrams. Bock [73],[74] has documented how both UML (UML

2 specifically) and SysML can be used for activity modeling and how these standards can

extended to fully support EFFBDs.

5. Role of OMG™ MDA® and Executable UML Foundation

5.1 Model-Driven Architecture

An area of active research in the software architecture modeling community is the OMG’s

Model-Driven Architecture® (MDA®) initiative. MDA reflects OMG’s approach to using

models in software development to help achieve the vision of integrated systems and

applications that can be deployed, maintained and integrated with far less cost and

overhead than traditional approaches [75],[76],[77].

The primary goals of MDA are portability, interoperability, and reusability through

architectural separation of concerns. Separation of concerns represents an established best

practice of separating the specification of operation of a system from the details of the way

that system uses the capabilities of its platform.

As an architectural framework, MDA prescribes certain kinds of models to be used, how

those models may be prepared and the relationships of different kinds of models. To be

more precise, these models are actually viewpoint models or views that represent a system

from the perspective of a chosen viewpoint. The MDA framework specifies three viewpoints

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 54 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

on a system, a computation independent viewpoint, a platform21 independent viewpoint, and

a platform specific viewpoint [75]. The three viewpoint models (views) that are associated

with these viewpoints are briefly described below:

� Computation Independent Model (CIM) – A view of a system from the computation

independent viewpoint. A CIM does not show details of the structure of systems. A

CIM is sometimes called a domain model and a vocabulary that is familiar to the

practitioners of the domain in question is used in its specification.

� Platform Independent Model (PIM) – A view of a system from the platform

independent viewpoint. A PIM exhibits a specified degree of platform independence

so as to be suitable for use with a number of different platforms of similar type.

� Platform Specific Model (PSM) – A view of a system from the platform specific

viewpoint. A PSM combines the specifications in the PIM with the details that specify

how that system uses a particular type of platform.

A graphic depiction of a typical software lifecycle process in applying MDA and how these

models relate is depicted in Figure 5-1 [78].

Figure 5-1. Applying MDA: Typical (Software) Process.

As an architectural approach, MDA provides for, and enables tools to be provided for:

� Specifying a system independently of the platform that supports it

� Specifying platforms

� Choosing a particular platform for the system

� Transforming the system specification into one for a particular platform

21 OMG MDA defines a platform as a set of subsystems and technologies that provide a coherent set of

functionality through interfaces and specified usage patterns, which any application supported by that

platform can use without concern for the details of how the functionality provided by the platform is

implemented.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 55 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

There is a great deal more to OMG MDA including metamodeling, model transformation, and

pervasive services. The interested reader is also encouraged to review plethora of white

papers, presentations, online materials, and textbooks on the subject.

A link to the official OMG MDA website can be found at:

� http://www.omg.org/mda/

More recently, there has been an effort led by Cloutier [78],[79] to investigate the

applicability of OMG MDA to the discipline of systems engineering; specifically, model-based

systems engineering (MBSE). Cloutier hypothesizes that MDA may provide the types of

productivity gains in systems engineering efforts on par with the kinds of productivity gains

that have been demonstrated in the software engineering community. It is suggested that

perhaps as much as 10-20% efficiency improvement may be realized on existing systems

engineering projects once the methodology is understood and adapted for systems

engineering [79].

A graphical depiction of applying OMG MDA to a typical systems engineering lifecycle

process is shown in Figure 5-2 along with the various artifacts and deliverables associated

with each MDA view, and the applicability of a common model repository and configuration

and release tools that would comprise a MBSE tool suite [78].

Figure 5-2. Applying MDA: Systems Engineering Process.

In the MDA MBSE approach, the CIM view plays a critical role in the lifecycle process. It is

used to capture and model the concept of operations (CONOPS) for the system, taking a

black-box view, and detailing how the system will interact with other systems and external

actors. This CIM view is analogous to an operational architecture [79].

Also to be considered as part of the CIM view are the system goals, system requirements

(in context), system stakeholder needs, and business rules that impact the system. This is

not an exhaustive list of models that comprise the MBSE CIM view, but some of the more

notable ones. It is expected that an OMG SysML-compliant MBSE tool would be used

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 56 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

capture use case diagrams, and sequence diagrams or activity diagrams that model the

mission use cases and mission scenarios.

These diagrams would then be “transformed” (in an MDA context) to the next lower level of

detail with greater specificity into the system PIM view. Where the CIM view defines WHAT

the system would do as it interacts with other systems and external actors, the PIM view

defines HOW it performs those capabilities or functions at the system level [79]. It is

expected that in the near term, this would be a manual transformation process. As future

tooling becomes more mature that provides full support of MDA in an MBSE context, then

greater automation of the transformation process could be introduced.

The PIM level of the system model will represent the system architecture, and the allocation

of customer requirements to the system requirements. Unlike the PIM view for software

systems that represents the computing platform, the PIM view for MBSE represents the

complete deployment platform (e.g., tank, aircraft, ship, etc.). For MDA applied to MBSE, it

may be necessary to create a multi-level PIM view to capture the necessary levels of detail

to represent the complexity of the entire system while not providing too much detail in any

single model [79]. In the PIM view, the MBSE process decomposes the business rules and

system requirements and they are transformed into a more specific detailed model of the

system. Here, the major parts of the system begin to take form as the capabilities of the

system are more thoroughly defined and derived. Common capability groups (allocated

from the system specifications) and logical subsystems begin to emerge from these

groupings.

Cloutier and his colleagues are also investigating emerging patterns for systems and

systems architecture that will enable the application of a high level of system pattern to the

CIM view, and the decomposition of that pattern applied at the PIM view. References to

that body of work are cited in the Cloutier paper [79].

5.2 Executable UML Foundation

Another area of active research is Executable UML; technically, Executable UML Foundation

[80],[81]. At the time of this writing, this work is managed under the auspices of the

OMG’s Analysis and Design (A&D) Platform Task Force, an OMG Platform Technology

Committee (TC) Work in Progress. This particular TC Work in Progress is chaired by

Stephen J. Mellor and focused on managing a single, joint submission to the Executable UML

Foundation RFP. The original RFP was issued on April 15, 2005 and formally entitled

“Semantics of a Foundation Subset for Executable UML Models” RFP [80]. It is expected

that the work of this TC will yield a public release of a second submission to the OMG for

review at the end of June 2008 and a third submission to be formally voted on at the end of

September 2008.22

Quoting directly from the Executable UML Foundation RFP, “The objective of this RFP is to

enable a chain of tools that support the construction, verification, translation, and execution

of computationally complete executable models.” The RFP objective statement goes on to

state that proposals are solicited for the definition of a computationally complete and

compact subset of UML 2.0 to be known as an “Executable UML Foundation,” along with a

full specification of the execution semantics of this subset. Here, “computationally

complete” means that the subset shall be sufficiently expressive to allow definition of

models that can be executed on a computer either through interpretation or as equivalent

22 Nicolas Rouquette, Jet Propulsion Laboratory, California Institute of Technology (private

communication), Apr. 18, 2008.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 57 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

computer programs generated from models through some kind of transformations. And

“compact subset” means that the selected metamodel should include as small a subset of

the UML concepts as is practicable to achieve computational completeness.

Given the scope of the objectives for an Executable UML Foundation stated in the RFP, it not

hard to see how Executable UML models could provide not only a solid foundation for the

OMG MDA paradigm described earlier (see Section 5.1) but also a unified paradigm for

precisely specifying structural and behavioral properties for requirements, verification,

compliance, acceptance and simulation purposes, to name but a few.

Why does this body of work have relevance to the MBSE community? Because should a

formal standard for Executable UML models emerge that is based on UML 2.0 semantics, it

would be natural to extend this capability to OMG SysML, which, of course, builds on UML

2.0. This could result in a standards-based Executable SysML models as opposed to today’s

environment in which [UML and OMG SysML] executable models are tightly coupled to a

particular vendor solution offering. A combined Executable UML/SysML specification could,

for example, enable users to specify the minimum structural and behavioral requirements

that an analysis model must fulfill in order to support a range of simulation techniques for

domain-specific engineering analysis.

Progress on this emerging OMG specification and eventual standard for Executable UML

Foundation will be monitored and reported in a future revision of this MBSE methodology

survey report.

6. References

Additional information regarding the content of this report, including resources that describe

the various candidate MBSE methodologies described herein, can be found in this section.

[1] Friedenthal, Sanford, Greigo, Regina, and Mark Sampson, INCOSE MBSE Roadmap,

in “INCOSE Model Based Systems Engineering (MBSE) Workshop Outbrief”

(Presentation Slides), presented at INCOSE International Workshop 2008,

Albuquerque, NM, pg. 6, Jan. 26, 2008.

[2] Martin, James N., Systems Engineering Guidebook: A Process for Developing

Systems and Products, CRC Press, Inc.: Boca Raton, FL, 1996.

[3] Jonah Z. Lavi and Joseph Kudish, “Systems Modeling & Requirements Specification

Using ECSAM: An Analysis Method for Embedded & Computer-Based Systems,”

Innovations in Systems and Software Engineering, Vol. 1, No. 2, Springer: London,

England, pp. 100-115, Sept. 2005.

[4] Jonah Z. Lavi and Joseph Kudish, Systems Modeling and Requirements Specification

Using ECSAM: An Analysis Method for Embedded and Computer-Based Systems,

Dorset House Publishing Company, Inc.:New York, NY, 2004.

[5] Boehm, Barry and Dan Port, “When Models Collide: Lessons from Software Systems

Analysis,” IT Professional, IEEE Computer Society, Institute of Electrical and

Electronics Engineers, Vol. 1, Issue 1, Jan/Feb 1999.

[6] MBASE home page, Center for Systems and Software Engineering, University of

Southern California, Los Angeles, CA, Aug. 13, 2003.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 58 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

http://sunset.usc.edu/research/MBASE/index.html

[7] Bloomberg, Jason and Ronald Schmelzer, Service Orient or Be Doomed!, John Wiley

& Sons: Hoboken, New Jersey, 2006.

[8] Royce, Winston W., “Managing the Development of Large Software Systems,”

Proceedings of IEEE WESCON 26, pp. 1-9, Aug. 1970.

[9] Boehm, Barry W., “A Spiral Model of Software Development and Enhancement,”

Computer, pp. 61-72, May 1988.

[10] Forsberg, Kevin and Harold Mooz, “The Relationship of Systems Engineering to the Project

Cycle,” Engineering Management Journal, 4, No. 3, pp. 36-43, 1992.

[11] Forsberg, Kevin and Harold Mooz, “Application of the “Vee” to Incremental and

Evolutionary Development,” Proceedings of the Fifth Annual International Symposium

of the National Council on Systems Engineering, St. Louis, MO, July 1995.

[12] Department of Defense Directive (DoDD) Number 5000.1, “The Defense Acquisition

System,” Undersecretary of Defense for Acquisition and Technology, U.S.

Department of Defense, May 12, 2003.

[13] Department of Defense Instruction (DoDI) Number 5000.2, “Operation of the

Defense Acquisition System,” U.S. Department of Defense, May 12, 2003.

[14] NASA Policy Directive (NPD) 7120.4C, “Program/Project Management,” National

Aeronautics and Space Administration, Washington, D.C., Dec. 6, 1999.

[15] NASA Procedural Requirement (NPR) 7120.5D, “NASA Space Flight Program and

Project Management Requirements,” National Aeronautics and Space Administration,

Washington, D.C., Mar. 6, 2007.

[16] Balmelli, L., Brown, D., Cantor, M. and M. Mott, “Model-Driven Systems

Development,” IBM Systems Journal, 45, No. 3, pp. 569-585, 2006.

[17] Roedler, Garry, “What is ISO/IEC 15288 and Why Should I Care?” (presentation

slides), ISO/IEC JTC1/SC7/WG7, Geneva: International Organization for

Standardization, Sept. 23, 2002.

[18] ANSI/EIA 632, Processes for Engineering a System, American National Standards

Institute/Electronic Industries Alliance, 1999.

[19] IEEE Std 1220-1998, IEEE Standard for Application and Management of the Systems

Engineering Process, Institute for Electrical and Electronic Engineers, Dec. 8, 1998.

[20] ISO/IEC 15288:2002, Systems Engineering – System Life Cycle Processes,

International Organization for Standardization/International Electrotechnical

Commission, Nov. 15, 2003.

[21] IEEE Std 15288™-2004, Systems Engineering – System Life Cycle Processes,

Institute for Electrical and Electronic Engineers, June 8, 2005.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 59 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

[22] Haskins, Cecilia (ed.), INCOSE Systems Engineering Handbook: A Guide for System

Life Cycle Processes and Activities, v. 3, INCOSE-TP-2003-002-03, International

Council on Systems Engineering, June 2006.

[23] NASA Procedural Requirement (NPR) 7123.1A, “NASA Systems Engineering

Processes and Requirements,” National Aeronautics and Space Administration,

Washington, D.C., Mar. 26, 2007.

[24] Baker, Loyd, Clemente, Paul, Cohen, Bob, Permenter, Larry, Purves, Byron and Pete

Salmon, “Foundational Concepts for Model Driven System Design,” white paper,

INCOSE Model Driven System Design Interest Group, International Council on

Systems Engineering, Jul. 15, 2000.

[25] Wymore, A. Wayne, A Mathematical Theory of Systems Engineering: The Elements,

John Wiley & Sons: New York, NY, 1967.

[26] Wymore, A. Wayne, Model-Based Systems Engineering, CRC Press, Inc.: Boca Raton,

FL, 1993.

[27] Wymore, A. Wayne, “Contributions to the Mathematical Foundations of Systems

Science and Systems Engineering,” Systems Movement: Autobiographical

Retrospectives, The University of Arizona, Tucson, AZ, 2004.

[28] Chapman, William L., Bayhill, A. Terry, and A. Wayne Wymore, Engineering Modeling

and Design, CRC Press, Inc.: Boca Raton, FL, 1992.

[29] Wymore, A. Wayne, “Model-Based Systems Engineering: A Quick Overview”

(Presentation Slides), tutorial presented at INCOSE International Workshop 2007,

Albuquerque, NM, Jan. 25, 2007.

[30] Klir, George, “Review of Model-Based Systems Engineering,” International Journal of

General Systems, George Klir (Ed.), Vol 25, No. 2, Gordon and Breach: Amsterdam,

Holland, pp 179-180, 1996.

[31] Bahill, A. Terry, Alford, Mark, Bharathan, K., Clymer, John R., Dean, Douglas L.,

Duke, Jeremy, Hill, Greg, LaBudde, Edward V., Taipale, Eric J., and A. Wayne

Wymore, “The Design-Methods Comparison Project,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, Vol. 28, No. 1, pp. 80-103,

Feb. 1998.

[32] Douglass, Bruce P., “The Harmony Process,” I-Logix white paper, I-Logix, Inc., Mar.

25, 2005.

[33] Hoffmann, Hans-Peter, “SysML-Based Systems Engineering Using a Model-Driven

Development Approach,” Proceedings of INCOSE 2006 International Symposium,

Orlando, FL, Jul. 12, 2006.

[34] Hoffmann, Hans-Peter, “Harmony-SE/SysML Deskbook: Model-Based Systems

Engineering with Rhapsody,” Rev. 1.51, Telelogic/I-Logix white paper, Telelogic AB,

May 24, 2006.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 60 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

[35] Lykins, Howard, Friedenthal, Sanford and Abraham Meilich, “Adapting UML for an

Object-Oriented Systems Engineering Method (OOSEM),” Proceedings of the INCOSE

2000 International Symposium, Minneapolis, MN, Jul. 2000.

[36] Friedenthal, Sanford, “Object Oriented Systems Engineering,” Process Integration for

2000 and Beyond: Systems Engineering and Software Symposium. New Orleans, LA,

Lockheed Martin Corporation, 1998.

[37] “Object Oriented System Engineering Method”, OOSEM Descriptive Outline for

INCOSE SE Handbook Version 3, Annotated Update, Sect. 6.4.2, pp. 6-1 to 6-6, Mar.

14, 2006.

[38] Friedenthal, Sanford, Moore, Alan, and Rick Steiner, Practical Guide to SysML:

Systems Modeling Language, Morgan Kaufmann Publishers, Inc.: San Francisco, CA,

2008 (in press).

[39] “Object-Oriented Systems Engineering Method (OOSEM) Tutorial,” Ver. 02.42.00,

Lockheed Martin Corporation and INCOSE OOSEM Working Group, Apr. 2006.

[40] Kruchten, Philippe, The Rational Unified Process: An Introduction, Third Edition,

Addison-Wesley Professional: Reading, MA, 2003.

[41] Cantor, Murray, “RUP SE: The Rational Unified Process for Systems Engineering,”

The Rational Edge, Rational Software, Nov. 2001.

[42] Cantor, Murray, “Rational Unified Process® for Systems Engineering, RUP SE®

Version 2.0,” IBM Rational Software white paper, IBM Corporation, May 8, 2003.

[43] Viljoen, Jaco, “RUP SE: The Rational Unified Process for Systems Engineering,”

INCOSE SA [South Africa] Newsletter, Issue 01: Q4, 2003.

[44] ISO/IEC 10746-1:1998(E), Information technology – Open Distributed Processing –

Reference model: Overview, International Organization for

Standardization/International Electrotechnical Commission, Nov. 15, 2003.

[45] ANSI/IEEE Std 1471-2000, IEEE Recommended Practice for Architectural Description

of Software-Intensive Systems, American National Standards Institute/Institute for

Electrical and Electronic Engineers, Sep. 21, 2000.

[46] Long, James E., “Systems Engineering (SE) 101,” CORE®: Product & Process

Engineering Solutions, Vitech training materials, Vitech Corporation, Vienna, VA,

2000.

[47] “Vitech Announces Participation in INCOSE’s 17th Annual International Symposium,

Delivering Five Key Systems Engineering Presentations, Papers and Panels,” Vitech

News Release, Vitech Corporation, Vienna, VA, Feb. 23, 2007.

[48] Long, James E., “MBSE in Practice: Developing Systems with CORE,” Vitech briefing

slides, Vitech Corporation, Vienna, VA, Mar. 2007.

[49] Baker, Loyd Jr. and James E. Long, “Role of System Engineering Across The System

Life Cycle,” Vitech white paper, Vitech Corporation, Vienna, VA, Jul. 15, 2000.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 61 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

[50] Childers, Susan Rose and James E. Long, “A Concurrent Methodology for the System

Engineering Design Process,” Vitech white paper, Vitech Corporation, Vienna, VA,

May 20, 2004.

[51] Long, Jim, “Relationships between Common Graphical Representations in Systems

Engineering,” Vitech white paper, Vitech Corporation, Vienna, VA, Aug. 6, 2002.

[52] Skipper, J. F., “A Systems Engineer’s Position on the Unified Modeling Language,”

Vitech white paper, Vitech Corporation, Vienna, VA, Jul. 15, 2003.

[53] Ingham, Michel D., Rasmussen, Robert D., Bennett, Matthew B. and Alex C.

Moncada, “Generating Requirements for Complex Embedded Systems Using State

Analysis,” Acta Astronautica, 58, Iss. 12, pp. 648-661, Jun. 2006.

[54] Dvorak, Dan, Rasmussen, Robert, Reeves, Glenn and Allan Sacks, “Software

Architecture Themes in JPL’s Mission Data System,” Proceedings of the AIAA

Guidance, Navigation, and Control Conference, paper AIAA-99-4553, 1999.

[55] Bennett, Matthew B., Rasmussen, Robert D. And Michel D. Ingham, “A Model-Based

Requirements Database Tool for Complex Embedded Systems,” Proceedings of the

INCOSE 2005 International Symposium, Rochester, NY, Jul. 2005.

[56] Rasmussen, Bob, “Session 1: Overview of State Analysis,” (internal document),

State Analysis Lite Course, Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, 2005.

[57] Ingham, Mitch, “State Analysis Overview: What PSEs ought to know,” Briefing Slides

(internal document), Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, CA, Nov. 2, 2006.

[58] Kordon, Mark, Wall, Steve, Stone, Henry, Blume, William, Skipper, Joseph, Ingham,

Mitch, Neelon, Joe, Chase, James, Baalke, Ron, Hanks, David, Salcedo, Jose, Solish,

Benjamin, Postma, Mona, and Richard Machuzak, “Model-Based Engineering Design

Pilots at JPL,” 2007 IEEE Aerospace Conference Proceedings, 1-4244-0524-4/07,

IEEEAC paper #1678, Institute of Electrical and Electronic Engineers, 2005.

[59] Weiss, Kathryn A., “Engineering Spacecraft Mission Software using a Model-Based

and Safety-Driven Design Methodology,” Journal of Aerospace Computing,

Information, and Communication, 3, pp. 562-586, Nov. 2006.

[60] Leveson, Nancy G., Safeware: System Safety and Computers, Addison-Wesley:

Reading, MA, pp. 171-184 and 313-358, 1995.

[61] Leveson, Nancy G., “A New Approach to Hazard Analysis for Complex Systems,”

International Conference of the System Safety Society, Ottawa, Canada, Aug. 2003.

[62] NASA Software Safety Standard, NASA Technical Standard, NASA-STD-8719.13B

w/Change 1, National Aeronautics and Space Administration, Washington, D.D., Jul.

8, 2004.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 62 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

[63] Leveson, Nancy G., “Intent Specifications: An Approach to Building Human-Centered

Specifications,” IEEE Transactions on Software Engineering, 26, No. 1, Jan. 2000.

[64] Weiss, Kathryn A., Ong, Elwin C. and Nancy G. Leveson, “Reusable Specification

Components for Model-Driven Development,” Proceedings of the INCOSE 2003

International Symposium, Crystal City, VA, Jul. 2003.

[65] Piccorillo, Sallie (Ed.), INCOSE Los Angeles Chapter Newsletter, Vol. 6, Issue No. 2,

March 2008.

[66] Dori, Dov, Object-Process Methodology: A Holistic Systems Paradigm, Springer-

Verlag: Berlin Heidelberg, Germany, 2002.

[67] Dori, Dov and Iris Reinhartz-Berger, “An OPM-Based System Development Process,”

I.-Y. Song et al. (Eds.): ER 2003, LNCS 2813, Springer-Verlag: Berlin Heidelberg,

Germany, pp. 105-117, 2003.

[68] Reinhartz-Berger, Iris and Dov Dori, “A Reflective Metamodel of Object-Process

Methodology: The System Modeling Building Blocks,” Business Systems Analysis with

Ontologies, P. Green and M. Rosemann (Eds.), Idea Group: Hershey, PA, USA, pp.

130-173, 2005.

[69] Dori, Dov, Reinhartz-Berger, Iris, and Arnon Sturm, “OPCAT – A Bimodal Case Tool

for Object-Process Based System Development,” 5th International Conference on

Enterprise Information Systems (ICEIS 2003), pp. 286-291, 2003.

[70] Dori, Dov and Mordechai Choder, “Conceptual Modeling in Systems Biology Fosters

Empirical Findings: The mNRA Lifecycle,” Proceedings of the Library of Science ONE

(PLoS ONE), Sep. 12, 2007.

[71] Object Management Group, Unified Modeling Language: Superstructure, Ver. 2.1.1,

OMG Adopted Specification, OMG document formal/2007-02-05, Needham, MA, Feb.

2007.

[72] Object Management Group, OMG SysML Specification, OMG Adopted Specification,

OMG document ptc/06-05-04, Needham, MA, May 2006.

[73] Bock, Conrad, “UML 2 for Systems Engineering,” Briefing Slides, National Institute of

Standards and Technology, Mar. 27, 2003.

[74] Bock, Conrad, “SysML and UML 2 Support for Activity Modeling,” Systems

Engineering, 9, No. 2, pp. 160-186, 2006.

[75] Object Management Group, MDA Guide Version 1.0.1, OMG document omg/2003-06-

01, Needham, MA, Jun. 12, 2003.

[76] Kleppe, Anneke, Warmer, Jos, and Wim Bast, MDA Explained: The Model-Driven

Architecture: Practice and Promise, The Addison-Wesley Object Technology Series,

Addison-Wesley Professional: Boston, MA, 2003.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 63 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

[77] Mellor, Stephen J., Scott, Kendall, Uhl, Axel, and Dirk Weise, MDA Distilled, The

Addison-Wesley Object Technology Series, Addison-Wesley Professional: Boston, MA,

2004.

[78] Cloutier, Robert, “Model Driven Architecture for Systems Engineering” (Presentation

Slides), Stevens Institute of Technology, presented at INCOSE International

Workshop 2008, Albuquerque, NM, Jan. 25, 2008.

[79] Cloutier, Robert, “Model Driven Architecture for Systems Engineering,” Paper #220,

Proceedings of the Conference on Systems Engineering Research (CSER), CSER

2008, University of Southern California, Los Angeles, CA, Apr 4-5, 2008.

[80] Object Management Group, Semantics of a Foundational Subset for Executable UML

Models, Initial Submission, OMG document ad/06-05-02, Needham, MA, May 27,

2006.

[81] Mellor, Stephen J. and Marc J. Balcer, Executable UML: A Foundation for Model-

Driven Architecture, The Addison-Wesley Object Technology Series, Addison-Wesley

Professional: Boston, MA, 2002.

7. Acronyms and Abbreviations

ANSI American National Standards Institute

CAE Computer Aided Engineering

CMMI Capability Maturity Model Integrated

COTS Commercial Off-The-Shelf

DoD Department of Defense

DoDD Department of Defense Directive

DoDI Department of Defense Instruction

EFFBD Extended Function Flow Block Diagram

EIA Electronic Industries Alliance

FDD Functional Design Description

FDIS Final Draft International Standard

FMECA Failure Modes and Effects Criticality Analysis

FOC Full Operational Capability

FTA Fault Tree Analysis

IEC International Electrotechnical Commission

IEEE Institute for Electrical and Electronic Engineers

INCOSE International Council on Systems Engineering

IOC Initial Operational Capability

IPD Integrated Product Development

IPPD Integrated Product and Process Development

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 64 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

ISO International Organization for Standardization

ITU International Telecommunication Union

JPL Jet Propulsion Laboratory

KSA Knowledge, Skills, and Abilities

MBED Model-Based Engineering Design

MBSE Model-Based Systems Engineering

MDS Mission Data System

MDSD Model-Driven Systems Development

NASA National Aeronautics and Space Administration

NPD NASA Policy Directive

NPR NASA Procedural Requirement

OMG Object Management Group

OOSEM Object-Oriented Systems Engineering Method

OPM Object-Process Methodology

PMTE Process, Methods, Tools, and Environment

RMC Rational Method Composer

RUP Rational Unified Process

RUP SE Rational Unified Process for Systems Engineering

SA State Analysis

SE Systems Engineering

SEMP Systems Engineering Management Plan

STAMP Systems Theoretic Accident Modeling and Process

STPA STAMP-based Hazard Analysis

SysML Systems Modeling Language

UML Unified Modeling Language

V&V Verification and Validation

WBS Work Breakdown Structure

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 65 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Appendix

Main Object-Process Methodology (OPM) concepts, their symbols, and their meaning

(adapted from [70]).

Table A-1. ENTITIES

Name Symbol OPL Definition

T
h
in
g
s

Object

Process

B is physical.
(shaded rectangle)

C is physical and

environmental.
(shaded dashed

rectangle)

E is physical.
(shaded ellipse)

F is physical and

environmental.
(shaded dashed ellipse)

An object is a thing that

exists.

A process is a thing that

transforms at least one

object.

Transformation is object

generation or consumption,

or effect—a change in the

state of an object.

State

A is s1.

B can be s1 or s2.

C can be s1, s2,

or s3.

s1 is initial.

s3 is final.

A state is situation an object

can be at or a value it can

assume.

States are always within an

object.

States can be initial or final.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 66 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Table A-2. STRUCTURAL LINKS AND

COMPLEXITY MANAGEMENT

Name Symbol OPL Semantics

A consists of

B and C.

Aggregation-

Participation

A consists of

B and C.

A is the whole, B and C are

parts.

A exhibits B,

as well as C.
Exhibition-

Characterizati

on

A exhibits B,

as well as C.

Object B is an attribute of A

and process C is its operation

(method).

A can be an object or a

process.

B is an A.

C is an A.

Generalization

-

Specialization

B is A.

C is A.

A specializes into B and C.

A, B, and C can be either all

objects or all processes.

F
u
n
d
a
m
e
n
ta
l S

tru
c
tu
ra
l R

e
la
tio

n
s

Classification-

Instantiation

B is an

instance of A.

C is an

instance of A.

Object A is the class, for which

B and C are instances.

Applicable to processes too.

Unidirectional &

bidirectional

tagged structural

links

A relates to

B.
(for

unidirectional)

A and C are

related.
(for

bidirectional)

A user-defined textual tag

describes any structural

relation between two objects or

between two processes.

In-zooming
A exhibits C.

A consists of

B.

A zooms into

B, as well as

Zooming into process A, B is its

part and C is its attribute.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 67 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

C.

A exhibits C.

A consists of

B.

A zooms into

B, as well as

C.

Zooming into object A, B is its

part and C is its operation.

Table A-3. ENABLING AND TRANSFORMING

PROCEDURAL LINKS

Name Symbol OPL Semantics

Agent Link

A handles

B.

Denotes that the object is a

human operator.

Instrumen

t Link

B requires

A.

"Wait until" semantics:

Process B cannot happen if

object A does not exist.

E
n
a
b
lin
g
 lin

k
s
 State-

Specified

Instrumen

t Link

B requires

s1 A.

"Wait until" semantics:

Process B cannot happen if

object A is not at state s1.

Consumpti

on Link

B consumes

A.

Process B consumes Object

A.

State-

Specified

Consumpti

on Link

B consumes

s1 A.

Process B consumes Object

A when it is at State s1.

Result Link

B yields A. Process B creates Object A.

State-

Specified

Result Link

B yields s1

A.

Process B creates Object A

at State s1.

T
ra
n
s
fo
rm

in
g
 lin

k
s

Input-

Output

Link Pair

B changes

A from s1

to s2.

Process B changes the state

of Object A from State s1 to

State s2.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 68 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Effect Link

B affects A.

Process B changes the state

of Object A; the details of

the effect may be added at

a lower level.

Table A-4. EVENT, CONDITION, AND

INVOCATION PROCEDURAL LINKS

Name Symbol OPL Semantics

Instrument

Event Link

A triggers B.

B triggers A.

Existence or generation of object

A will attempt to trigger process

B once. Execution will proceed if

the triggering failed.

State-

Specified

Instrument

Event Link

A triggers B.

when it

enters s1.

B requires s1

A.

Entering state s1 will attempt to

trigger the process once.

Execution will proceed if the

triggering failed.

Consumpti

on

Event Link

A triggers B.

B consumes

A.

Existence or generation of object

A will attempt to trigger process

B once. If B is triggered, it will

consume A. Execution will

proceed if the triggering failed.

State-

Specified

Consumpti

on Event

Link

A triggers B

when it

enters s2.

B consumes

s2 A.

Entering state s2 will attempt to

trigger the process once. If B is

triggered, it will consume A.

Execution will proceed if the

triggering failed.

Condition

Link

B occurs if A

exists.

Existence of object A is a

condition to the execution of B.

If object A does not exist, then

process B is skipped and regular

system flow continues.

State-

Specified

Condition

Link

B occurs if A

is s1.

Existence of object A at state s2

is a condition to the execution of

B.

If object A does not exist, then

process B is skipped and regular

system flow continues.

Invocation

Link

B invokes C.

Execution will proceed if the

triggering failed (due to failure

to fulfill one or more of the

conditions in the precondition

set).

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 69 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Acknowledgments

The author would like to thank Joseph Skipper, Mark Kordon, Ross Jones, Kenny Meyer,

Michel Ingham, Kathryn Weiss, and Nicolas Rouquette all of JPL for their valuable feedback

and review of this survey report. In addition, the author would like thank Hans-Peter

Hoffmann of IBM Telelogic, Sanford (“Sandy”) Friedenthal of Lockheed Martin Corporation,

Murray Cantor of IBM Rational, James (“Jim”) Long of Vitech Corporation, and Prof. Dov

Dori of Technion, Israel Institute of Technology for their valuable feedback of the Harmony-

SE, OOSEM, RUP-SE, Vitech MBSE, and OPM methodologies, respectively.

The work carried out in this report was carried out at the Jet Propulsion Laboratory,

California Institute of Technology under a contract with the National Aeronautics and Space

Administration.

INCOSE MBSE Initiative

Survey of Candidate Model-Based Engineering (MBSE) Methodologies Page 70 of 70

Rev. B May 23, 2008

INCOSE MBSE Initiative

Document Change Record

Date Revision Description Author(s)

May 23, 2007 A Initial revision. Jeff A. Estefan

May 23, 2008 B 1. Updated scope section.

2. Added references to ECSAM

and MBASE methodologies to

scope section.

3. Added new section dedicated to

Wymore work.

4. Added new section describing

Dori OPM methodology.

5. Added new section on role of

OMG MDA and Executable UML

Foundation.

6. Minor editorial updates.

Jeff A. Estefan

