
Throughput optimization for multimedia
applications over high speed networks

S. Zeadally G. Gheorghiu A.F.J. Levi
Department of Electrical Engineering
University of Southern California
University Park, Los Angeles, California 90089, USA
Phone: (213)740-1450
Fax: (213)740-9280
E-mail: zeadally@marco.usc.edu

Abstract

Digital video services, scientific visualization and other multimedia applications require delivery of high network
throughput to end user applications. In this paper we identify some of the bottlenecks in the data path between high-
speed networks and applications which are responsible for poor application performance. We then present solutions
to overcome these bottlenecks at various levels namely: network, operating system, and user. Finally, we show the
effectiveness of these solutions on the performance of our multimedia applications.

Keywords

Multimedia, networking, operating systems, performance, TCP/IP

1. INTRODUCTION

The past few years have seen development of applications with high bandwidth requirements such as medical image
transfer, video conferencing, scientific process simulation, and visualization. Popular local area networks such as
Ethernet and Token Ring (4 Mbits/s and 16 Mbits/s) are incapable of providing the bandwidth needed by these
multimedia applications. New network technologies such as Fiber Distributed Data Interface (FDDI), Fast Ethernet
(100BASE-T), and Asynchronous Transfer Mode (ATM) have emerged and are capable of providing high bandwidth
to users’ desktops. However, the challenge remains for operating system designers and application developers to
deliver the bandwidth of these networks to end user applications. In order for applications to reap the benefits of
high-speed networks, the entire path from network to application must be optimized. This involves removing
bottlenecks introduced both at the operating system and application levels as depicted in Figure 1.

Network Operating
System

User
Application

Kernel space User space

Bottleneck region

Figure 1 Illustration of bottlenecks in typical multimedia network-application data path for conventional end-
systems considered in this study.

 This paper describes our experiences delivering multimedia services over high-speed networks and our attempts to
optimize network-application throughput. We deal with real-life multimedia applications as opposed to using raw
data. The use of raw data in performance tests provides an upper bound on achievable performance that can be
delivered by the underlying software and hardware. However, raw data does not identify other bottlenecks that are
normally associated with actual applications such as the presentation of information (e.g. video display in a window)
or the effect of running multiple applications concurrently. Some of the work done by other researchers in similar
areas includes (Keller, 1993) (Patel, 1993) (Rowe, 1993). They have focused principally on optimizing only one area
in the network-application data path (e.g. at application level). Our work differs from these efforts in that we apply
optimizations wherever possible to the entire data path between network and applications as opposed to focusing on
just one stage in the transfer whereby later stages introduce other overheads which degrade the overall application
throughput. For instance, no matter how fast the network delivers data to the host, if the operating system itself
cannot transfer the data to the application at a high enough sustained rate, then there will be a bottleneck introduced
in the network-application data path.

 The structure of this paper is organized as follows. In section 2, we discuss techniques that we applied to increase
application-application throughput. Section 3 describes the experimental setup we have used for our multimedia
applications. Section 4 presents an analysis of in-host data movement for our scientific graphics visualization
application and digital video playback. Section 5 discusses the results obtained by implementing the various
optimization techniques given in section 2. In section 6, we analyze the overall performance when multiple
applications are running. Finally, section 7 makes some concluding remarks and presents future work.

2. IMPROVING APPLICATION-APPLICATION THROUGHPUT

To achieve high application-application throughput in a network environment, it is essential that high sustained
throughput be delivered by the network, operating system, and application.

 Recent advances in the performance of network physical layers have essentially solved the network bandwidth
problem. As a result, it is now feasible to deliver large volumes of data at high rates with minimal loss. In this work,
we have used a conventional Ethernet network, a higher speed FDDI network, and an experimental network called
Jetstream (Watson, 94) (section 3) in order to study their impact on application performance. The basic physical
layer characteristics of these networks include: Manchester code Ethernet signalling at 20 Mbits/s giving a maximum
data rate of 10 Mbits/s, 4b/5b coding on FDDI signalling at 125 Mbits/s delivering a maximum data rate of 100
Mbits/s, and 16b/20b coding for Jetstream signalling at 1 Gbit/s giving a maximum data rate of 800 Mbits/s. These
maximum data rates are reduced by media access control, network subsystem, application, and of course, limitations
imposed by the host architecture.

 The last few years have witnessed significant hardware improvements that have led to the development of powerful
computers. Some of these improvements include: increased CPU performance, high bus bandwidth, large memories,
and fast disk systems. However, there has been little change in the structure of conventional operating systems such
as UNIX, consequently the availability of new hardware technologies has not been exploited to the fullest. This has
made existing operating systems become a bottleneck in end systems. Well-known overheads include data copying,

network protocol processing, context switches, and interrupts (Kanakia, 1988) (Pasquale, 1992) (Ousterhout, 1990).
Several techniques have been proposed and implemented to avoid these overheads (Druschel, 1993) (Dittia, 1995)
(Jacobson, 1990) (Pasquale, 1994). In this work, we minimized data copying by using a UNIX kernel which supports
‘single-copy’ TCP/IP, a modified version of TCP/IP. Throughout this paper, we refer to ‘two-copy’ TCP/IP as the
standard version that normally comes with UNIX operating systems. In this case, data transfer between network and
application normally involves two copies: the first copy is between a network buffer and kernel buffer followed by a
copy from the kernel buffer to a user application (for an incoming packet). The reverse takes place for an outgoing
packet. However, in the case of a single-copy TCP/IP implementation we use for our experiments in this paper, there
is only one data copy between network and application thereby eliminating the copy to kernel buffer. Moreover, the
single-copy implementation of TCP also supports RFC 1323 window scaling (Jacobson, 1992), and is capable of
calculating checksum during data movement.

 It is not easy to come up with general techniques to increase throughput at the application level. The main reason is
that different applications have different requirements and each is implemented in its own way. However, it is true
that multimedia applications have a common element: they all present information (e.g. video display) to the end
user. Most desktop applications running on UNIX platforms are built on standard X window systems to increase their
ease of use, and offer a common look and feel to users. The X window system has become the de facto standard
graphical user interface for UNIX systems. We argue that there is scope for improving application performance in
the X environment in the area of data presentation. In this context, we note that without careful tuning, data display
by the X server can degrade performance in the final delivery of information to the user. Our choice was to use the X
shared memory extensions (Corbet, 1991) in order to speed up image display.

 The usual way to display an image is to use the X11 library call XPutImage() on an application's data. The call to
XPutImage() moves data from the application's buffer via Inter-Process Communication (IPC) to a private buffer of
the X server (using UNIX domain sockets when the X client and the X server are on the same machine). The data is
then moved by the X server to the frame buffer. With X shared memory extensions support, there is no data
movement involved between the application and the X server. Instead the image data is placed into a memory
segment that is shared between the application and the X server. In this case, a call to XShmPutImage() allows the X
server to move data directly from the shared memory segment containing the application image data to the frame
buffer.

3. EXPERIMENTAL ARRANGEMENT FOR MULTIMEDIA APPLICATIONS

The experiments described in this section have been carried out between two HP 9000 Series 700 workstations (99
MHz PA-RISC) which reside on the Jetstream network. Jetstream is a Gbit/s token-ring network which uses copper
coaxial or fibre optic cable for the physical link. The network adapter for the HP 9000 Series 700 workstations is
made up of two cards - one is called Afterburner which is equipped with 1 MByte of video random access memory
used in a dual ported configuration. Afterburner is the host interface; the other card, Jetstream, is the link adapter.
The shared memory present on the Afterburner board enables the support of single-copy implementations of network
protocols such as TCP/IP and UDP/IP. Further details of Afterburner and Jetstream are given in (Watson, 1994) and
(Dalton, 1993).

 The hardware architecture of the host is illustrated in Figure 3. The Standard Graphics Connector (SGC) (DeBaets,
1992) is the system bus used on the HP 9000 Series 700 workstation and has a maximum data transfer rate of a
Gbit/s. However, it is only possible to achieve a maximum of 400 Mbits/s transfer rate by the CPU between memory
and input/output (I/O) space (e.g. graphics devices or network interface) (Frink, 1992). A principal feature of the
hardware architecture is the memory and system bus controller chip which connects the CPU to memory and the I/O
system components. The system bus controller chip communicates to the SGC bus via two system bus interface
chips. The workstations used in our experiments have 128 MByte of main memory and two GByte of hard disk. The
operating system used was HP-UX 9.01 with single-copy TCP/IP support.

Figure 2 Visualization application.

 We have used two different applications in our experiments: one is a scientific visualization application and the
other is digital video playback.

 The visualization application uses a series of gray scale images (8 bit/pixel) of a volume rendered CAT-scan
medical image of a child head as shown in Figure 2. The head can be rotated and viewed at different angles. In our
experiment, the images are stored on a remote server and sent over the network to the client machine which displays
the images. The image set consists of 20 image frames each of size 512x512 pixels (almost 2.1 Mbits per frame) and
stored in pixmap format. This makes direct display by the X server possible without requiring any further
manipulation. The user interface to the visualization application supports simple operations such as play, stop, and
rewind.

 The video application uses the PowerVideo700 hardware video codec (compression / decompression) from
Parallax (Parallax, 1994) which supports motion-JPEG. Motion-JPEG applies JPEG (Joint Photographic Experts
Group, a standardized image compression technique for still images) to individual frames of a video sequence. The
video board is capable of handling high quality video at 30 frames per second in real-time during either recording or
playback sessions. The PowerVideo700 is an overlay card which resides in one of the EISA slots of the EISA
interface attached to the SGC bus as shown in Figure 2. We have used the MovieTool software from Parallax for
recording and playing digital video stored as motion JPEG files.

 For our experiments, the files used during video playback were stored on the hard disk of a remote machine. This
disk was mounted on the host machine using NFS via the Jetstream interface (details are given in section 4). In a
typical video playback session, the use of NFS enables the host machine to receive compressed video clips over the
Jetstream network. The video board decompresses the incoming compressed video stream. The analog signals
originating from the graphics card are digitized and the result is overlaid with the uncompressed video image. After
the overlay is completed, the entire frame is converted back to analog and sent to the monitor (Figure 3).

 In all measurement tests for both the video and scientific visualization applications, we use average playback frame
rate as our quantitative metric to characterize application performance. Moreover, in all experiments, these
applications were run as normal user processes, along with the usual system processes and daemons in the
background.

CPU

Memory and
System Bus
Controller

System Bus
Interface

System Bus
Interface

Core I/O Parallax

Video Board

Graphics

Board

DRAM

DRAM

Address

Data

Control

1 MB
VRAM

FIFO
Control

MAC

Monitor

PBus

EISA

SGC SGC

Afterburner Jetstream

Jetstream

Gigabit/s

Network

SGC

SGC

Main Memory

(compressed video)

Application−X server

Main memory−Parallax video board

Network−Application (main memory)

X server−Frame buffer

 Figure 3 HP 9000 Series 700 architecture data paths for applications displaying network data and video playback.
A network adapter connects the workstation to the Jetstream network. A Parallax video board performs video
decompression and drives the monitor. Graphics data is passed from main memory to the graphics board and
overlayed on the monitor by the Parallax video board.

4. ANALYSIS OF IN-HOST DATA MOVEMENT

In this section, we identify the data paths used when running the video and visualization applications based on the
architecture presented in Figure 3.

 To understand the impact of the underlying architecture on application performance, we measured the throughput
at different stages when moving data from the network to the X window display for the visualization application. The
major aim of performing such analysis is to identify areas where performance can be improved, and at the same time
assess the suitability of the HP 9000 Series 700 workstation architecture in supporting high-speed network
applications. Our observations are applicable to other similar networked multimedia applications (e.g. medical
imaging, video conferencing).

 Equation 1 summarizes the inverse of total throughput R for typical applications that read data from the network
and use the X window system for display:

1 1 1 1

R Z Z ZNetwork Application Application Xserver Xserver Framebuffer

= + +
− − −

 (Equation 1),

where Z represents the throughput at different key stages of the data path from network to frame buffer as depicted in
Figure 3. Furthermore, Equation 1 applies to conventional bus-based systems of the type used in our experiments.

 To verify the correctness of the above equation, we ran the graphics visualization application via Jetstream and
obtained a frame rate of 33 frames/second. This corresponds to a throughput of 69.3 Mbits/s (33 frames per second

multiplied by 2.1 Mbits per frame). We then measured the throughput values corresponding to the three stages of the
data path of Equation 1 as follows:

• The application reads data from a socket into its buffer. The fact that we are using a single-copy TCP/IP stack
allows direct data transfer from a network interface buffer to the application’s buffer (avoiding the additional
copy to a kernel buffer). The throughput obtained was 200 Mbits/s (Z Network Application−).

• The application acting as an X client sends the data to the X server using inter-process communication. The rate
of data movement is 240 Mbits/s (Z Application Xserver−).

• The X server then moves the data to the frame buffer. The transfer rate obtained along this path is 230 Mbits/s
(Z Xserver Framebuffer−).

 Using the measured throughput values, we calculated the total throughput R from Equation 1 and obtained 74
Mbits/s. This value is slightly higher than the observed Jetstream throughput of 69.3 Mbits/s. The difference of 4.7
Mbits/s is due to the fact that we did not take into account various overheads such as system calls, context switches,
interrupts and memory allocation by the X server during data copying.

 To understand the impact of running multiple network applications on the performance of the end system, we have
chosen to simultaneously run both the video and the visualization applications over Jetstream. For this to be possible
in the case of the video application, we used NFS over the Jetstream network interface as shown in Figure 4. This
enables playback of digital video clips stored on a remote disk which has been mounted on the host machine (used as
an NFS client). Our UNIX kernel supports NFS 2.0 which uses UDP.

TCP (one−copy) UDP (two−copy)

NFS

IP

Afterburner

Visualization

Application

Video

User space

Kernel space

TCP − Transmission Control Protocol
UDP − User Datagram Protocol
IP − Internet Protocol

Modified IP interface

Jetstream

UDP (one−copy)

Application

Jetstream Network

Application

NFS − Networked File System

Figure 4 Protocol stacks with one-copy and two-copy support. IP layer has been modified to allow NFS support
(which uses two-copy UDP/IP) to co-exist with applications using single-copy UDP/IP.

 Although the UNIX kernel we have used does support both single-copy TCP/IP and single-copy UDP/IP stacks, it
was not possible for NFS to use the single-copy UDP/IP stack. This is because NFS does not understand the buffer
structures used in the single-copy implementation of UDP/IP. We did not consider it worth modifying NFS to allow
it to support our single-copy protocol stacks. The justification was that we do not see significant throughput
improvement with a version of NFS that allows single-copy protocols since the disk (at the NFS server) will still be

the bottleneck (although latency would be slightly better). For our experiments, it would have been sufficient to use a
single-copy TCP/IP stack (for the visualization application) and a two-copy UDP/IP stack (for video application over
NFS) by simply disabling single-copy support for UDP/IP in the UNIX kernel. However, the disadvantage of this
approach is that it prevents other applications from using single-copy UDP/IP. Our solution was to modify the IP
layer in order to distinguish packets destined for NFS which will use two-copy UDP/IP from all other incoming
network packets which will use single-copy UDP/IP or single-copy TCP/IP (Figure 4).

5. NETWORK MEASUREMENTS AND RESULTS

Initial experiments were conducted using raw data to investigate how much of the available network bandwidth can
actually be delivered to the application. Figure 5 presents the observed throughput using a two-copy TCP/IP stack
over Ethernet, FDDI and Jetstream. The laboratory Ethernet has been used for Ethernet tests. In the case of FDDI, an
EISA FDDI adapter designed for HP 9000/700 EISA systems was used to attach to an FDDI network. Performance
measurements were made with a tool called netperf (Jones, 1993) which measures the transfer of data from a
producer process (generating the data) to a consumer (receiving data) running on a remote machine. A socket buffer
size of 32 KBytes (KB) has been used at both workstations. We have chosen this socket buffer size because it is
close to the limit possible on standard UNIX systems (usually 48 KB) and we wanted to demonstrate the throughput
achievable with an unmodified kernel. The maximum network data bandwidths for Ethernet, FDDI, and Jetstream
are 10 Mbits/s, 100 Mbits/s, and 800 Mbits/s respectively. However, the maximum raw data throughput values
obtained using two-copy TCP/IP in our experiments were around 9.6 Mbits/s, 74 Mbits/s and 90 Mbits/s for Ethernet,
FDDI, and Jetstream respectively. These results confirm our initial assumption that the end system has become the
bottleneck in a high-speed network environment.

0

20

40

60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Packet size (Kbytes)

JetStream
FDDI

Ethernet

Figure 5: Measured raw data throughput over Ethernet, FDDI and Jetstream using two-copy TCP/IP and 32 KB
socket buffer size.

 Figure 6 shows raw data application throughput using single-copy TCP/IP over the Jetstream network. The use of a
single-copy kernel increases throughput by almost 56% using 32 KB socket buffer size. Increasing the socket buffer
size, if the kernel allows it, results in higher throughput values. For instance, the single-copy kernel enabled us to
specify a socket buffer size of 256 KB. In this case the maximum throughput achieved was around 200 Mbits/s.

0

20

40

60

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Packet size (Kbytes)

Using socket buffer size 256 Kbytes
Using socket buffer size 32 Kbytes

Figure 6 Measured raw data throughput over Jetstream using single-copy TCP/IP and socket buffer sizes of 32 KB
and 256 KB.

 Having established the achievable throughput possible using raw data, we then used the visualization application to
measure the maximum throughput for a real application running over various networks. In contrast to raw data
throughput results, we obtained frame rates and corresponding throughput values given in Table 1. Two important
observations can be made: first, performance based on raw data is not enough to characterize application throughput;
second, in the case of slow networks like Ethernet, software (e.g. operating system) on end systems is able to deliver
most of the available network bandwidth to the application. However, as network speed increases, the discrepancy
between network bandwidth and actual application throughput is increasing.

Table 1 Measured graphics visualization application frame rate and the equivalent throughput using two-copy
TCP/IP and 32 KB socket buffer size over Ethernet, FDDI and Jetstream

Network type Frame rate (frames/s) Throughput (Mbits/s)

Ethernet 4 8.4

FDDI 11 23.1

Jetstream 22 46.2

 We now discuss how the various optimizations mentioned in previous sections can be applied to the data path
described by the three terms of Equation 1.

• Network: We use the Jetstream Gbit/s network capable of supporting high bandwidth applications.

• Operating system: A UNIX kernel that supports single-copy TCP/IP has been used. This allows direct data
copy from the network to the application. As a result, data movement, considered to be the major bottleneck in
current operating systems, is minimized. Moreover, network protocol overheads such as checksum calculations have
also been significantly reduced. We have therefore optimized the first term of Equation 1 with Z Network Application−

being 200 Mbits/s. This value is the maximum throughput obtained when using raw data as illustrated in Figure 6.

• Application: We have used the X shared memory extensions to eliminate data movement from the
application to the X server. This optimizes the overall throughput by eliminating the second term Z Application Xserver−

of Equation 1. It is also worth noting that applications should exploit the capability of using large socket buffer size

whenever the kernel allows it. Although this is done at application level, it influences the throughput between
network and application at the operating system level.

 Figure 7 summarizes the effects of the various optimization approaches on the performance of the visualization
application. It is interesting to note from the graph that for socket buffer sizes up to 48 KB (the maximum allowable
by standard UNIX kernels), the application performs better using two-copy TCP/IP and X shared memory extensions
than using single-copy TCP/IP without X shared memory extensions.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120 140 160 180 200 220 240 260

F
ra

m
e

ra
te

 (
fr

am
es

/s
)

Socket buffer size (KByte)

Single-copy TCP/IP, X shared memory
Single-copy TCP/IP, no X shared memory

Two-copy TCP/IP, X shared memory
Two-copy TCP/IP, no X shared memory

Figure 7 Measured effect of single-copy TCP/IP, X shared memory extensions, and socket buffer size on final
throughput for the graphics visualization application.

 The underlying architecture did not allow further optimization of the last term of Equation 1. This is because the
system and memory bus controller shown in Figure 3 becomes the bottleneck when subjected to intensive data traffic
to and from main memory and system bus. This is not a problem for one way traffic between main memory and a
peripheral device or vice-versa. However, it becomes a limitation in the case of networked multimedia applications
where data flows in continuously from network to main memory and back out from main memory to graphics
display. A possible solution is to transfer data directly from a network device to the frame buffer over the system bus,
a mechanism commonly referred as kernel-level streaming (Murphy, 1996) (Fall, 1993). Unfortunately, the SGC bus
implementation in the machines used for our experiments does not allow the needed slave-slave bus transactions.

 After applying all the above optimizations, Equation 1 becomes:

1 1 1

R Z ZNetwork Application Xserver Framebuffer

= +
− −

 (Equation 2).

 Calculating the value of R from Equation 2, using 200 Mbits/s for Z Network Application− and 230 Mbits/s for

Z Xserver Framebuffer− , we obtain an overall expected throughput of 107 Mbits/s. To verify the correctness of Equation 2,

we measured the average frame rate for the visualization application after we implemented all the above
optimizations. The value obtained was 50 frames/second which translates to a throughput of 105 Mbits/s. The

difference between the measured and the expected values is smaller (2 Mbits/s) than that obtained in section 4 (i.e.
4.7 Mbits/s). This is because the elimination of the second term of Equation 1 has also reduced overheads such as
memory allocation by the X server.

6. OVERALL PERFORMANCE FOR MULTIPLE APPLICATIONS

To quantify the impact of running both video and visualization applications on overall performance, we used the
following metrics: CPU usage, frame rate (visualization application), and percentage of frames dropped (video
application). CPU usage was measured using Glance (Hewlett-Packard, 1992), a performance monitor tool that
comes with standard HP-UX operating system. For the video application, the number of frames dropped was
obtained from the diagnostics information generated by the device driver of the Parallax video board (Parallax,
1994). Table 2 summarizes the results obtained using the Jetstream network. All tests have been performed on a
kernel that supports single-copy TCP/IP. For the visualization application, we used a socket buffer size of 256 KB.
Digital video playback was via NFS at 30 frames/second, the size of each frame being 512x380 pixels and 24 bit
color per pixel.

 To better understand the degradation in performance when both applications are running concurrently, we first
make some observations on their performance when executed on their own. When the video application is running by
itself, there are no video frames dropped. For the visualization application, the frame rate without using X shared
memory is 33 frames/second. However, when running both applications, there was a 39% drop of frames displayed
with video and the frame rate observed for visualization decreased to 26 frames/second as shown in the Table 2. The
degradation of video performance is due to the high percentage of CPU time (56%) spent in system mode. This is
because the visualization application uses IPC to move data to the X server which involves multiple kernel-user
interactions. The 34% of CPU cycles left for user mode are not sufficient for the demands of video, which requires
42% user-mode CPU time. On the other hand, 56% of CPU time spent in system mode is not sufficient for the needs
of the visualization application which requires the CPU to spend 66% of its time in system mode. Thus, it is evident
that the conflicting requirements of the two applications affect their overall performance.

Table 2 Measurement of impact of CPU utilization on video and graphics visualization applications performance.

%CPU in %CPU in Frame rate % frames dropped

user mode system mode (frames/s)

VIDEO 42 48 -- 0

GRAPHICS 27 66 33 --

VIDEO & GRAPHICS 34 56 26 39

GRAPHICS-SHMEM 40 54 50 --

VIDEO &

GRAPHICS-SHMEM 41 50 35 10

VIDEO video playback application
GRAPHICS visualization application without X shared memory extensions
GRAPHICS-SHMEM visualization application with X shared memory extensions

 From Table 2, we note that with X shared memory extension support, not only the visualization application has a
higher frame rate on its own, but there is also an improvement in overall performance when both applications run.
That is, only 10% of frames are dropped by the video application and the frame rate increased from 26 to 35 frames
per second for the visualization application. The use of shared memory significantly reduces kernel-user interactions
by eliminating data movement by IPC. As a result, less time is spent in system mode (50%) thereby increasing the
availability of CPU for user mode (41%). This obviously benefits the video application. Also, the frame rate increase
for the visualization application can be explained by the fact that with shared memory it requires 54% of CPU in
system mode as opposed to 66% when not using X shared memory.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that to achieve high application-application throughput in a high-speed network
environment, we need to solve bottlenecks at all levels: network, operating system, and application. We have shown
how using various optimization techniques, it is possible to increase network-application performance. These
techniques include the use of a Gbit/s network, single-copy schemes (including improved protocol processing), and X
shared memory extensions. Figure 8 summarizes the throughput optimizations for the visualization application. At
each level of the data path between network and application, we apply the optimizations from the previous level.
Thus, the final throughput of 105 Mbits/s for Jetstream is the result obtained after applying optimizations at all
levels. Compare this to the results shown in Table I, where without any optimization, the throughput was 8.4 Mbits/s
for Ethernet, 23.1 Mbits/s for FDDI, and 46.2 Mbits/s for Jetstream.

Network level Application levelOperating system level

1000 90

200

Throughput

Optimization

Ethernet/FDDI

Jetstream

 10/100

Two−copy

Single−copy Without shared memory

With shared memory

69.3

105
(Mbit/s)

Figure 8 Summary of all applied optimizations. Each level includes the optimizations from the previous level.

 As pointed out in section 4, the hardware architecture prevents the set up of a direct data path between network
adapter and display for those network applications that require minimal or no data processing. Furthermore, as
depicted in Figure 9, the system and memory bus controller interconnects CPU, memory, and the I/O subsystem,
thereby typically becoming the bottleneck during concurrent access or transfer of data between these components.
This can limit the performance of network multimedia applications which involve simultaneous data transfer from
network to main memory, and from memory to display device.

CPU Memory

Network
Card

Graphics
Card

System bus

Controller

Memory and
System bus

Figure 9 Simplified HP 9000 Series 700 architecture.

 We are investigating new architectures which will better cope with the demands of multimedia applications in the
context of high-speed networks. We anticipate that new switch-based bus architectures will allow greater flexibility
in setting up different data paths between components of the system. Historically, switching logic and interconnect

components were expensive thereby limiting their use in systems. However, progress in silicon and packaging
technology has changed the relative cost of interconnections and now it is possible to build general purpose computer
systems based on switched bus architectures (Boxer, 1995). In this context, the data path used to derive Equation 1
no longer holds since in the case of these architectures, many paths can be used simultaneously to improve
performance.

 We believe that the next generation of networked multimedia applications will require more than just network
displays: in addition, it should be possible to manipulate the multimedia data before storing, displaying or
transmitting over the network. In this context, we are exploring a design space that will provide the user with the
capability of setting up data paths between devices and also the flexibility of selecting portions of multimedia data in
transit (e.g. from network card to display) and performing any manipulation required.

ACKNOWLEDGMENTS

The authors wish to thank the many employees of Hewlett Packard laboratories, Bristol, UK for their support and
encouragement during the course of this project, in particular we are grateful to Aled Edwards for his valuable
discussions on many aspects of this work. We thank Dr. Ulrich Neumann for his help in developing the visualization
application. We also thank Kaleb Keithley of The X Consortium for his explanations on the X shared memory
extensions. We are grateful to the anonymous reviewers for their comments on the paper. This research has been
funded in part by the Integrated Media System Center, a National Science Foundation Engineering Research Center
with additional support from the Annenberg Center for Communication at the University of Southern California, the
California Trade and Commerce Agency, and the DARPA POLO consortium agreement MDA972-94-3-0038.

REFERENCES

Boxer, A. (1995) Where buses cannot go. IEEE Spectrum, 41-45.

Corbet, J. and Packard, K. (1991) The MIT Shared Memory Extension. MIT Consortium.

Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A. and Lumley, J. (1993) Afterburner. IEEE Network,
Vol. 7 No. 4, 36-43.

DeBaets, A. and Wheeler, K. (1992) Midrange PA-RISC Workstations with Price/Performance Leadership. Hewlett-
Packard Journal, 6-11.

Dittia, Z., Cox Jr., J. and Parulkar, G. (1995) Design of the APIC: A High Performance ATM Host-Network
Interface Chip, in Proceedings of IEEE INFOCOM.

Druschel, P. and Peterson, L. (1993) Fbufs: A High-Bandwidth Cross-Domain Transfer Facility, in Proceedings of
Fourteenth Symposium on Operating System Principles.

Fall, K. and Pasquale, J. (1993) Exploiting In-Kernel Data Paths to Improve I/O Throughput and CPU Availability,
in Proceedings of Usenix Winter Technical Conference.

Frink C., Hammond, R., Dykstal, J. and Soltis D. (1992) High-Performance Designs for the Low-Cost PA-RISC
Desktop, Hewlett-Packard Journal, 55-63.

Hewlett-Packard (1992) HP Visual User Environment 3.0 User’s Guide, Hewlett-Packard Company.

Jacobson V. (1990) Efficient Protocol Implementation, ACM SIGCOMM Tutorial.

Jacobson, V., Braden R. and Borman D. (1992) TCP Extensions for High Performance, RFC 1323.

Jones, R. (1993) Netperf: A Network Performance Benchmark, Revision 1.7, Information Networks Division,
Hewlett Packard.

Kanakia, H. and Cheriton, D. (1988) The VMP Network Adapter Board (NAB): High-Performance Network
Communications for Multiprocessors, in Proceedings ACM SIGCOMM, Symposium on Communication
Architectures and Protocols, 175-187.

Keller, R., Effelsberg, W. and Lamparter, B. (1993) Performance Bottlenecks in Digital Movie Systems, in
Proceedings of the 4th International Workshop on Network and Operating System Support for Digital Audio and

Video, Lancaster House, Lancaster, UK, 163-174.

Murphy, B. J., Zeadally, S. and Adams, C. J. (1996) An Analysis of Process and Memory Models to Support High-
Speed Networking in a UNIX Environment, in Proceedings of Usenix Winter Technical Conference.

Ousterhout, J. K. (1990) Why Aren’t Operating Systems Getting Faster as Fast as Hardware ?, in Proceedings of
Usenix Summer Conference , 247-256.

Parallax Hardware Guide (1994). XVideo700, MultiVideo700, and PowerVideo700, Parallax Graphics Inc, Santa
Clara, CA.

Pasquale, J., Anderson, E. and Muller, P.K. (1994) Container Shipping - Operating System Support for I/O Intensive
Applications, IEEE Computer, Vol. 27 No. 3, 84-93.

Pasquale, J., Polyzos, G., Anderson, E. and Kompella, V. (1992) A Digital Video-conferencing Experiment Using
DECstation 5000 Workstation and an FDDI Network, Internal Report, Department of Computer Science and
Engineering, University of California, San Diego, CA.

Patel, K., Smith, B. and Rowe, L. (1993) Performance of a Software MPEG Video Decoder, in Proceedings of First

ACM International Conference on Multimedia, Los Angeles, CA, 75-82.

Rowe, L. and Smith, B. (1993) A Continuous Media Player, in Proceedings of the 3rd International Workshop on

Network and Operating System Support for Digital Audio and Video, Lecture Notes in Computer Science, Springer

Verlag, Berlin, 376-386.

Watson, G., Banks, D., Calamvokis, C., Dalton, C., Edwards, A. and Lumley J. (1994) AAL5 at a Gigabit for a
Kilobuck, Journal of High Speed Networks, Vol. 3 No. 2, 127-145.

BIOGRAPHY

Sherali Zeadally is a researcher in the Electrical Engineering Department at the University of Southern California.
He received the B.A. degree in Computer Science from University of Cambridge, England, in 1991, and the Ph.D.
degree in Computer Science from University of Buckingham, England, in 1996. His current research interests
include operating systems internals, distributed systems, high speed networks and multimedia.

Grig Gheorghiu is a Ph.D. candidate in the Computer Science Department at the University of Southern California.
He received the B.S. degree in Computer Science from University of Bucharest, Romania, in 1993. His research
interests include distributed systems and multimedia applications over high speed networks.

Anthony F. J. Levi is a Professor of Electrical Engineering at the University of Southern California. He received the
B.S. degree from the University of Sussex, England in 1980 and the Ph.D. degree from University of Cambridge,
England, in 1982. He is a Fellow of the Optical Society of America and a member of the American Physical Society.
From January 1984 to mid-1993 Dr. Levi worked at AT&T Bell Laboratories, Murray Hill, New Jersey. In mid-1993
he left AT&T to take up a position as Professor of Electrical Engineering at the University of Southern California.
Professor Levi’s research interests include scaling of photonic devices to sub-micron dimensions, integration of
electronic and photonic devices for high-speed network applications, and optimization of networks for high-sustained
throughput applications. To date, he has published over 150 refereed journal papers and holds 9 U. S. patents in these
and related research subjects.

