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Bibliographic Notes for Chapter 5
Mining Frequent Patterns, Associations, and Correlations

Association rule mining was first proposed by Agrawal, Imielinski, and Swami [AIS93]. The Apriori algorithm
discussed in Section 5.2.1 for frequent itemset mining was presented in Agrawal and Srikant [AS94b]. A variation
of the algorithm using a similar pruning heuristic was developed independently by Mannila, Tiovonen, and Verkamo
[MTV94]. A joint publication combining these works later appeared in Agrawal, Mannila, Srikant, Toivonen, and
Verkamo [AMS+96]. A method for generating association rules from frequent itemsets is described in Agrawal and
Srikant [AS94a].

References for the variations of Apriori described in Section 5.2.3 include the following. The use of hash tables
to improve association mining efficiency was studied by Park, Chen, and Yu [PCY95a]. Transaction reduction
techniques are described in Agrawal and Srikant [AS94b], Han and Fu [HF95], and Park, Chen, and Yu [PCY95a].
The partitioning technique was proposed by Savasere, Omiecinski, and Navathe [SON95]. The sampling approach
is discussed in Toivonen [Toi96]. A dynamic itemset counting approach is given in Brin, Motwani, Ullman, and
Tsur [BMUT97]. An efficient incremental updating of mined association rules was proposed by Cheung, Han,
Ng, and Wong [CHNW96]. Parallel and distributed association data mining under the Apriori framework was
studied by Park, Chen, and Yu [PCY95b], Agrawal and Shafer [AS96], and Cheung, Han, Ng, et al. [CHN+96].
Another parallel association mining method, which explores itemset clustering using a vertical database layout,
was proposed in Zaki, Parthasarathy, Ogihara, and Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alternatives to the Apriori-based ap-
proach. FP-growth, a pattern-growth approach for mining frequent itemsets without candidate generation, was
proposed by Han, Pei, and Yin [HPY00] (Section 5.2.4). An exploration of hyper-structure mining of frequent
patterns, called H-Mine, was proposed by Pei, Han, Lu, Nishio, Tang, and Yang [PHMA+01]. OP, a method that
integrates top-down and bottom-up traversal of FP-trees in pattern-growth mining, was proposed by Liu, Pan,
Wang, and Han [LPWH02]. An array-based implementation of prefix-tree-structure for efficient pattern growth
mining was proposed by Grahne and Zhu [GZ03b]. ECLAT, an approach for mining frequent itemsets by exploring
the vertical data format, was proposed by Zaki [Zak00]. A depth-first generation of frequent itemsets was proposed
by Agarwal, Aggarwal, and Prasad [AAP01].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide, Taouil, and Lakhal [PBTL99], where
an Apriori-based algorithm called A-Close for such mining was presented. CLOSET, an efficient closed itemset
mining algorithm based on the frequent-pattern growth method, was proposed by Pei, Han, and Mao [PHM00],
and further refined as CLOSET+ in Wang, Han, and Pei [WHP03]. FPClose, a prefix-tree-based algorithm for
mining closed itemsets using a pattern-growth approach, was proposed by Grahne and Zhu [GZ03b]. An extension
for mining closed frequent itemsets with the vertical data format, called CHARM, was proposed by Zaki and
Hsiao [ZH02]. Mining max-patterns was first studied by Bayardo [Bay98]. Another efficient method for mining
maximal frequent itemsets using vertical data format, called MAFIA, was proposed by Burdick, Calimlim, and
Gehrke [BCG01]. AFOPT, a method that explores a right push operation on FP-trees during the mining process,
was proposed by Liu, Lu, Lou, and Yu [LLLY03]. Pan, Cong, Tung, et al. [PCT+03] proposed CARPENTER,
a method for finding closed patterns in long biological datasets, which integrates the advantages of vertical data
formats and pattern-growth methods. A FIMI (Frequent Itemset Mining Implementation) workshop dedicated to
the implementation methods of frequent itemset mining was reported by Goethals and Zaki [GZ03a].

Frequent itemset mining has various extensions, including sequential pattern mining (Agrawal and Srikant
[AS95]), episodes mining (Mannila, Toivonen, and Verkamo [MTV97]), spatial association rule mining (Koperski
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and Han [KH95]), cyclic association rule mining (Özden, Ramaswamy, and Silberschatz [ORS98]), negative asso-
ciation rule mining (Savasere, Omiecinski, and Navathe [SON98]), intertransaction association rule mining (Lu,
Han, and Feng [LHF98]), and calendric market basket analysis (Ramaswamy, Mahajan, and Silberschatz [RMS98]).
Multilevel association mining was studied in Han and Fu [HF95], and Srikant and Agrawal [SA95]. In Srikant and
Agrawal [SA95], such mining was studied in the context of generalized association rules, and an R-interest measure
was proposed for removing redundant rules. A non-grid-based technique for mining quantitative association rules,
which uses a measure of partial completeness, was proposed by Srikant and Agrawal [SA96]. The ARCS system for
mining quantitative association rules based on rule clustering was proposed by Lent, Swami, and Widom [LSW97].
Techniques for mining quantitative rules based on x-monotone and rectilinear regions were presented by Fukuda,
Morimoto, Morishita, and Tokuyama [FMMT96], and Yoda, Fukuda, Morimoto, et al. [YFM+97]. Mining multi-
dimensional association rules using static discretization of quantitative attributes and data cubes was studied by
Kamber, Han, and Chiang [KHC97]. Mining (distance-based) association rules over interval data was proposed by
Miller and Yang [MY97]. Mining quantitative association rules based on a statistical theory to present only those
that deviate substantially from normal data was studied by Aumann and Lindell [AL99].

The problem of mining interesting rules has been studied by many researchers. The statistical independence of
rules in data mining was studied by Piatetski-Shapiro [PS91]. The interestingness problem of strong association
rules is discussed in Chen, Han, and Yu [CHY96], Brin, Motwani, and Silverstein [BMS97], and Aggarwal and Yu
[AY99], which cover several interestingness measures including lift. An efficient method for generalizing associations
to correlations is given in Brin, Motwani, and Silverstein [BMS97]. Other alternatives to the support-confidence
framework for assessing the interestingness of association rules are proposed in Brin, Motwani, Ullman, and Tsur
[BMUT97] and Ahmed, El-Makky, and Taha [AEMT00]. A method for mining strong gradient relationships
among itemsets was proposed by Imielinski, Khachiyan, and Abdulghani [IKA02]. Silverstein, Brin, Motwani, and
Ullman [SBMU98] studied the problem of mining causal structures over transaction databases. Some comparative
studies of different interestingness measures were done by Hilderman and Hamilton [HH01] and by Tan, Kumar
and Srivastava [TKS02]. The use of all confidence as a correlation measure for generating interesting association
rules was studied by Omiecinski [Omi03] and by Lee, Kim, Cai and Han [LKCH03].

To reduce the huge set of frequent patterns generated in data mining, recent studies have been working on
mining compressed sets of frequent patterns. Mining closed patterns can be viewed as lossless compression of
frequent patterns. Lossy compression of patterns include maximal patterns by Bayardo [Bay98]), top-k patterns
by Wang, Han, Lu, and Tsvetkov [WHLT05], and error-tolerant patterns by Yang, Fayyad, and Bradley [YFB01].
Afrati, Gionis, and Mannila [AGM04] proposed to use K itemsets to cover a collection of frequent itemsets. Yan,
Cheng, Xin, and Han proposed a profile-based approach [YCXH05], and Xin, Han, Yan, and Cheng proposed a
clustering-based approach [XHYC05] for frequent itemset compression.

The use of metarules as syntactic or semantic filters defining the form of interesting single-dimensional associ-
ation rules was proposed in Klemettinen, Mannila, Ronkainen, et al. [KMR+94]. Metarule-guided mining, where
the metarule consequent specifies an action (such as Bayesian clustering or plotting) to be applied to the data
satisfying the metarule antecedent, was proposed in Shen, Ong, Mitbander, and Zaniolo [SOMZ96]. A relation-
based approach to metarule-guided mining of association rules was studied in Fu and Han [FH95]. Methods for
constraint-based association rule mining discussed in this chapter were studied by Ng, Lakshmanan, Han, and Pang
[NLHP98], Lakshmanan, Ng, Han, and Pang [LNHP99], and Pei, Han, and Lakshmanan [PHL01]. An efficient
method for mining constrained correlated sets was given in Grahne, Lakshmanan, and Wang [GLW00]. A dual
mining approach was proposed by Bucila, Gehrke, Kifer, and White [BGKW03]. Other ideas involving the use of
templates or predicate constraints in mining have been discussed in [AK93], [DT93], [HK91], [LHC97], [ST96], and
[SVA97].

The association mining language presented in this chapter was based on an extension of the data mining query
language, DMQL, proposed in Han, Fu, Wang, et al. [HFW+96], by incorporation of the spirit of the SQL-like
operator for mining single-dimensional association rules proposed by Meo, Psaila, and Ceri [MPC96]. MSQL, a
query language for mining flexible association rules, was proposed by Imielinski and Virmani [IV99]. OLE DB
for Data Mining (DM), a data mining query language that includes association mining modules, was proposed by
Microsoft Corporation [Cor00].
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