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Abstract: This paper proposes a hybrid Particle Swarm 
Optimization (PSO) method, which is based on the fusion of the 
PSO, Clonal Selection Algorithm (CSA), and Mind 
Evolutionary Computation (MEC). The clone function 
borrowed from the CSA and MEC-characterized similartaxis 
and dissimilation operations are embedded in the original PSO 
algorithm. Simulations of nonlinear function optimization are 
made to compare this hybrid PSO with the regular PSO 
method. It has been demonstrated that our hybrid optimization 
algorithm can achieve a better convergence performance, and 
provide diverse solutions to the multi-model optimization 
problems. 

Keywords: Clonal Selection Algorithm (CSA), Mind Evolutionary 
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I. Introduction 
During the past decade, we have witnessed a significant 
growth of research interest in the nature inspired 
optimization methods, among which the Clonal Selection 
Algorithm (CSA), Mind Evolutionary Computation (MEC), 
and Particle Swarm Optimization (PSO) method are three 
representative examples. As an important constituent of the 
Artificial Immune System (AIS), the CSA is an emerging 
optimization approach based on the natural immune 
mechanism [1] [2]. The MEC is a novel kind of soft 
computing method oriented from the human mind thinking 
principles [3]. Inspired by the swarm intelligence from birds, 
fishes, and even human social behaviors, the PSO method is 
an evolutionary computation technique developed by 
Kennedy and Eberhart [4] [5]. Due to its simple principles 
and low computational complexity, it has been widely 
applied in such areas as electromagetics optimization [6], 
optimal circuit design [7], and data clustering [8]. However, 
the original PSO algorithm has certain drawbacks of slow 
convergence and premature in multi-model optimization [9]. 
As we know, fusion of the computational intelligence 
methods can often provide superior performances over 
employing them individually [10] [11]. Therefore, in this 
paper, we are going to study a hybrid PSO method based on 
merging the CSA, MEC, and PSO together.  

Our paper is organized as follows. The principles of the 
original PSO, CSA, and MEC are first introduced in Section 

II. Next, we discuss the hybrid PSO algorithm in more 
details. In Section III, the effectiveness of this new 
optimization method is demonstrated using multi-model 
functions. Performance comparison between the original and 
our hybrid PSO method is also made. Finally, we conclude 
the paper with some remarks and conclusions in Section IV. 

II. Hybrid Particle Swarm Optimization 
Algorithm 
A. Particle Swarm Optimization 

It is well known the movement of bird flocks and fish 
schools is an outcome of the individual efforts to maintain an 
optimal distance from their neighbors [12]. The implicit rule 
that they are able to move synchronized without colliding has 
been studied and simulated by scientists. The phenomena 
suggest information sharing in the colony can provide an 
evolutionary advantage. Inspired by these social behaviors of 
the particles, Kennedy and Eberhart proposed the PSO 
method to deal with multi-model optimization problems [4]. 
In the original PSO, the position of each particle in the 
swarm represents a possible solution. The position and 
velocity of particle i  at iteration n  are denoted as n

idx  and 
n
idv , respectively. The new velocity at the next iteration, 1+n

idv , 
is calculated using its current velocity n

idv , the distance 
between the particle’s best previous position n

idp  and n
idx , as 

well as the distance between the position of the best particle 
in the swarm n

gdp  and n
idx : 
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id
n
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n
id

n
id

n
id

n
id xprcxprcwvv −+−+=+ ,       (1) 

where w  is the inertia weight, 1c  and 2c  are two positive 
constants, namely cognitive and social parameters, 
respectively, and 1r  and 2r  are two random values in the 
range of [ ]1,0 . The above deterministic and probabilistic 
parameters reflect the effects on the particle positions from 
both the individual memory and swarm influence. The 
position of particle i , n

idx , is iteratively updated as follows: 

11 ++ += n
id

n
id

n
id vxx .                              (2) 
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The optimal solutions can, thus, be acquired by choosing the 
best particles in the swarm. From (1) and (2), we observe that 
during the evolution, each particle learns from not only its 
own past experiences but also the swarm social behaviors. In 
other words, taking advantage of collective intelligence is the 
distinguishing property of the PSO method, which has been 
proved to be efficient in handling numerous challenging 
optimization tasks [9]. However, empirical experiments also 
show that the convergence speed of the PSO often slows 
down with the growth of iteration steps, because the stagnant 
particles gradually prevail the whole swarm [6]. 
Therefore, some improved PSO methods have emerged to 
overcome such a drawback. For example, a fuzzy logic-
based turbulence operator is used to control the velocity of 
particles [13]. In this paper, we embed the advantageous 
features borrowed from the CSA and MEC into the original 
PSO. This hybrid PSO method demonstrates an improved 
performance in nonlinear function optimization in our 
simulations.  

B. Clonal Selection Algorithm 

The CSA is one of the most widely employed AIS 
approaches [14]. It is based on the Clonal Selection Principle 
(CSP), which explains how an immune response is mounted, 
when a non-self antigenic pattern is recognized by the B 
cells. In the natural immune systems, only the antibodies that 
can recognize intruding antigens are selected to proliferate 
by cloning [15]. Hence, the fundamental of the CSA is those 
cells (antibodies) capable of recognizing the non-self cells 
(antigens) will proliferate. A basic CSA involves the 
following iteration steps, as shown in Fig. 1. 

1. Initialize the antibody pool including the subset of memory 
cells (M). 
2. Evaluate the fitness of all the individuals (affinity with the 
antigen) in population P. 
3. Select the best candidates (Pr) from population P, 
according to their fitness. 
4. Clone Pr into a temporary pool (C).  
5. Generate a mutated antibody pool (C1). The mutation rate 
of each individual is inversely proportional to its fitness. 
6. Evaluate all the antibodies in C1. 
7. Eliminate those antibodies similar to the ones in C, and 
update C1. 
8. Re-select the individuals with better fitness from C1 to 
construct memory set M. Other improved individuals of C1 
can replace certain antibodies with poor fitness in P to 
maintain the antibody diversity. 
9. Return back to Step 2. 

 
A unique mutation operator is used in Step 5, through 

which the mutated values of individuals are inversely 
proportional to their fitness by means of choosing different 
mutation variations. That is to say, the better fitness the 
antibody has, the less it may change. The similarity among 
candidates can also affect the convergence speed of the CSA. 
The idea of antibody suppression inspired by the immune 
network theory is introduced to eliminate the newly 
generated antibodies, who are similar to those already 
existing in the candidate pool (Step 7). With such a diverse 

antibody pool, the CSA can effectively avoid being trapped 
into local minima, and provide optimal solutions to multi-
model problems. In summary, the antibody clone and fitness-
based mutation are the two remarkable characteristics of the 
CSA. To build a hybrid PSO method with enhanced 
optimization capability, we incorporate these two useful 
features into the original PSO algorithm.  
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Figure. 1. Diagram of clonal selection algorithm. 

C. Mind Evolutionary Computation 

The MEC is an evolutionary optimization approach firstly 
proposed by Sun in 1998 [3]. In the MEC, the whole 
population of chromosomes is divided into groups. Two 
billboards, local and global billboards, are used to store the 
evolution history. The global billboard can record winners in 
the global competition among groups, while the local 
billboard is for the local winners among individuals of each 
group in the local competition. Especially, similartaxis and 
dissimilation are the two unique operations of the MEC. In 
the similartaxis, starting from their initial centers, individuals 
of every group compete against each other in the local areas 
to be the winners, i.e., local optima. A group is matured, if 
no new winners appear there. The similartaxis actually serves 
as ‘exploitation’ in the MEC. On the other hand, the 
dissimilation is an ‘exploration’ process, in which 
individuals or groups compete to be the global winners in the 
whole solution space. The function of this operation is two-
fold: 1) some best individuals are chosen as the initial 
scattering centers of new groups; 2) the current global optima 
are selected from the local optima of all the groups obtained 
by the similartaxis. Different from the Genetic Algorithms 
(GA), there is no separate selection operation in the MEC. In 
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fact, the selection is implicitly employed in the processes of 
both the similartaxis and dissimilation.  

 The iteration procedure of the basic MEC is described as 
follows. Let S  denote the population size, GS  the group size, 
and GN  the number of groups in the MEC, and there is 

GG NSS = .  
Step 1. Generate S  random chromosomes in the solution 

space, and select GN  individuals from them as the initial 
scatter centers of the GN  groups. 

Step 2. Perform the similartaxis on these groups, i.e., for 
every group, 1−GS  chromosomes are scattered based on a 
preset probability density function around the group center. 
The resulting GS  individuals are next evaluated, and 
compared with each other. A local winner is chosen as the 
new group center of the next generation. Update the local 
billboard by recording the local winners on it. The above 
process is repeated until all the groups are matured. 

Step 3. Select the best solutions from all the local optima, 
which are obtained in Step 2. Store them on the global 
billboard, and expunge certain poor chromosomes from it. 

Step 4. If the optimization criterion is satisfied, terminate. 
Otherwise, return back to Step 2. 

Actually, Step 1 initializes the appropriate scattering group 
centers. Step 2 implements the similartaxis operation, and 
serves as the local competition, in which a local optimal 
solution can be found with chromosomes starting from the 
initial center of each group. Step 3 evaluates these local 
optima obtained by the similartaxis. Steps 1 and 3 indeed act 
together as the aforementioned dissimilation operation. More 
details and variants of the MEC can be found in [3]. Due to 
the contributions from the distinguishing similartaxis and 
dissimilation, the MEC has been shown to outperform the GA 
in the nonlinear multi-dimension function optimization [16]. 
Therefore, our hybrid PSO method can deploy these two 
MEC operations to accelerate its convergence.  

D. Hybrid Particle Swarm Optimization Method 

In this section, we develop a hybrid PSO method based on 
the fusion of the above PSO, CSA, and MEC. The flow chart 
of this new optimization algorithm is given in Fig. 2, which 
can be explained as follows. 
1. Initialize the swarm consisting of n  particle groups. 
2. For each group, generate j  particles around the scattering 
group centers.   
3. Clone these particles using affinity-related mutation. 
4. Update the velocities of the cloned particles according to 
(1). 
5. Update the positions of the cloned particles according to 
(2). 
6. Evaluate the fitness of each particle in the group, and the 
best one is considered as the group winner to compete with 
other groups.  
7. If the preset convergence criterion is met, terminate.  
8. Select the groups with the best fitness, and randomly 
generate the supplementary groups to replace the matured 
ones. Return back to Step 2.   

   
Figure. 2. Hybrid particle swarm optimization algorithm.  

Obviously, based on the regular PSO method, our hybrid 
PSO algorithm utilizes the unique operations from both the 
MEC and CSA. Like in the MEC, the particles here are 
divided into competing groups. The similartaxis and 
dissimilation operations are employed for the local and 
global search, respectively. This approach brings the features 
of exploitation in the local space and exploration in the 
global space to our hybrid optimization method, which can 
efficiently deal with the well-known premature problem 
existing in the regular PSO method. The individual particles 
in this hybrid PSO algorithm are also subjected to the clone 
operation borrowed from the CSA. The clone size in Step 3 
is defined as a monotonic function of the particle affinity 
[17]. Note, similarly with the CSA, the particle affinity 
includes the measures between the particles and objective 
function as well as among the particles. Those particles, 
whose affinities are lower than a preset threshold, are 
excluded, and fresh particles can be added thereafter. In other 
words, self-eliminating the particles with high similarity for 
introducing affinity-related randomness maintains the 
diversity of the candidate pool.  

In summary, the original PSO method takes advantage of 
information sharing inside the swarm. The particles learn not 
only from their own experiences but also the social 
interaction. However, they often become clustered and 
trapped in the local search. Embedded with the MEC and 
CSA, our hybrid PSO algorithm can overcome this 
drawback, and achieve a better optimization performance. 
The similartaxis and dissimilation operations from the MEC 
provide balanced exploitation and exploration in searching 
for the global optimum. The CSA-based clone operation 
yields a dynamical particle pool to help finding the optimal 
as well as diverse solutions. In the next section, we are going 
to demonstrate the efficiency of our hybrid PSO algorithm in 
nonlinear function optimization.   
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III. Simulations 

Multi-model function optimization is deployed to verify the 
proposed hybrid PSO method in this section. As we know, 
inertia weight w  controls the impact of history velocities on 
the current ones. In the simulations, it is defined as a 
monotonically decreasing function with regard to the 
generations: 

P
iwi −=1 ,                                (3) 

where Pi ,,2,1 L= , and P  is the given number of 
generations. Other PSO parameters, e.g., self confidence 1c  
and swarm confidence 2c , are shown in Table 1. A preset 
threshold discriminates those particles with high similarities, 
which is chosen to be 0.05. Note, the original and our hybrid 
PSO algorithms are initialized with the same populations. 
The former starts from a pool of 30 random particles, and the 
latter is initialized with five particle groups, in each of which 
five extra candidates are cloned from the initial group center.  

Table 1. Parameters in original and hybrid PSO methods. 

Parameters Values 
Swarm Size 30 

Self Confidence 1c  0.5 

Swarm Confidence 2c  0.5 

Group Size 5 
Affinity Threshold 0.05 

Clone Size 5 

Example 1 

The first example is a nonlinear function with single input 
variable [18]: 

)5sin()f(
2)

8.0
1.0)(2(ln2

xex
x

π
−

−
= ,                  (4) 

where [ ]1,1−∈x . Actually, this simple function has several 
local maxima. However, there is only one global maximum, 
as shown in Fig. 3 (a). The convergence procedures of the 
original and hybrid PSO methods, represented by dotted and 
solid lines, respectively, are illustrated in Fig. 3 (b). It is 
clearly visible our hybrid PSO method has a moderately 
faster convergence speed than that of the original PSO 
method. All the ten optimal solutions obtained by the hybrid 
PSO method are given in Fig. 3 (a) (denoted by ‘o’) and 
Table 2, which reveal that this hybrid optimization algorithm 
can successfully find a group of diverse solutions including 
the unique global and all the nine local optimal solutions. 

Example 2 

The following two-dimension function, as shown in Fig. 4 
(a), is used here [9]: 

( ) 22 )sin(cos),f( yxyx += ,                     (5) 

where [ ]5,5−∈x , and [ ]5,5−∈y . This function has infinite 
global maxima in 2R  at points ( ) L2,1, ,,2 ±±=nmnm ππ . 

The iteration behaviors of the two optimization methods are 
illustrated in Fig. 4 (b). Apparently, both of them can 
converge in finding the global maxima. However, the hybrid 
PSO algorithm converges much faster than its counterpart. 
Furthermore, we examine their multi-model optimization 
performances. Figure 4 (c) shows the global optima search 
procedures of these two methods. After about 70 generations, 
the hybrid PSO method is capable of locating all the 12 
global optima, as denoted by ‘*’ in Fig. 4 (d), while the 
original PSO method can achieve only one, and the others 
found are only local optima (denoted by ‘o’). This simulation 
example demonstrates that the hybrid PSO algorithm not 
only converges faster than the original PSO method, but also 
has a better multi-model optimization capability. 
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Figure. 3. Optimization of )f(x  using original and hybrid 
PSO methods.  

(a) )f(x  with optimal solutions (‘o’) obtained by hybrid PSO 
method.  

(b) convergence procedures of two optimization methods,  
dotted line: original PSO method, solid line: hybrid PSO 

method. 
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(d) 

Figure. 4. Optimization of function (5) using original and 
hybrid PSO methods.  

(a) function (5).  
(b) convergence procedures of two optimization methods,  
dotted line: original PSO method, solid line: hybrid PSO 

method.  
(c) global optima search procedures of optimization methods,  

dotted line: original PSO method, solid line: hybrid PSO 
method.  

(d) optima obtained by optimization methods, 
‘o’: original PSO method, ‘*’: hybrid PSO method. 

Table 2. Optimization results of )f(x  achieved by hybrid PSO 
method. 

x )f(x x  )f(x

0.1000 1.0000 -0.4897 0.4647 

-0.0966 0.9184 0.6897 0.4647 

0.2966 0.9184 0.8864 0.2560 

-0.2931 0.7113 -0.6864 0.2560 

0.4932 0.7113 -0.8831 0.1189 

Example 3 

In this example, a more complex function, Scaffer’s function, 
is employed [19]: 

( )
( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

−+
+−= 222

222

001.01
5.0sin

5.0),f(
yx

yx
yx ,                (6) 

where [ ]5,5−∈x , and [ ]5,5−∈y . Finding the global 
optimum of Scaffer’s function is a challenging task for all 
optimization methods, because it has only one global 
optimum at 0)0,0f( =  with numerous neighboring local 
optima within the distance of about 210− , as shown in Fig. 5  
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Figure. 5. Optimization of function (6) using original and 
hybrid PSO methods.  

(a) function (6). 
(b) convergence procedures of two optimization methods,  
dotted line: original PSO method, solid line: hybrid PSO 

method.  
(c) statistics optimization results of optimization methods,  
dotted line: original PSO method, solid line: hybrid PSO 

method. 

(a). Therefore, conventional optimization approaches, such 
as the GA and PSO, can be easily trapped into these 
surrounding local optima. Figure 5 (b) illustrates the 
convergence procedures of the original and hybrid PSO 
methods, which depicts that the latter can successfully locate 
the single global optimum, while the former indeed becomes 
stuck at a certain local optimum. To make statistics 
comparisons, we run both two optimization algorithms for 
100 times, and their average optimal results vs. number of 
generations is given in Fig. 5 (c). This clearly reveals that our 
hybrid PSO method can always achieve the global optimum 
of Scaffer’s function, but the original PSO algorithm usually 
fluctuates around one of its local optima. 

Example 4 

To further examine our hybrid PSO algorithm, we deploy the 
following ten n-dimension functions in this example, which 
have been widely used as the optimization benchmarks [19].   

Sphere function: 

∑
=

=
n

i
ixx

1

2
1 )(f .                               (7) 

Rosenbrock function: 
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Rastrigin function: 
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Griewank function: 
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Dixon & Price function: 
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Zakharov function: 
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Sum Squares function: 
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Levy function: 
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Schwefel function: 
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Quadric function: 
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The details of these unconstrained functions are given in 
Table 3. A constriction factor χ  is introduced to weight the 
velocities in updating the particle positions [9]:  

11 ++ += n
id

n
id

n
id vxx χ .                           (17) 

We choose 5=χ  here based on trial and error. As a 
representative example, the minimization of a 20-dimension 
Rosenbrock function is first employed for verifying the 
original and hybrid PSO methods. Figure 6 illustrates their 
convergence procedures in 400 generations. Apparently, our 
hybrid PSO can converge significantly faster than the 
original PSO method in this high-dimension function 
optimization case.  

Table 3. Details of benchmark functions. 

References Search range Global optima 
Spherical [-100, 100]n 0)(f =x  

Rosenbrock [-50, 50]n 0)(f =x  
Rastrigin [-5.12, 5.12]n 0)(f =x  
Griewank [-600, 600]n 0)(f =x  

Dixon & Price [-10, 10]n 0)(f =x

Zakharov [-10, 10]n 0)(f =x

Sum Squares [-10, 10]n 0)(f =x
Levy [-10, 10]n 0)(f =x

Schwefel [-10, 10]n 0)(f =x

Quadric [-100, 100]n 0)(f =x

0 50 100 150 200 250 300 350 400
10-4

10-2

100

102

104

106

108

1010

Number of Generations

Fi
tn

es
s

 
Figure. 6. Convergence procedures of 20-dimension 

Rosenbrock function optimization using original and hybrid 
PSO methods,  

dotted line: original PSO method,  
solid line: hybrid PSO method. 

Moreover, we run the original and hybrid PSO methods for 
10 times for the optimization of all the above ten benchmark 
functions with the dimensions of 10, 30, and 50, respectively.  

Table 4. Average optima of benchmark functions with 
different dimensions obtained by original and hybrid PSO 

methods. 

Dimensions 10 30 50 
Sphere Function 

Original PSO 8.9×10-11 

(6.7×10-11) 
1.0×10-7 

(6.7×10-8) 
4.7×10-3

(9.8×10-4) 

Hybrid PSO 4.8×10-24 

(3.7×10-25) 
5.7×10-18 

(9.6×10-20) 
9.7×10-11

(3.5×10-11) 
Rosenbrock Function 

Original PSO 2.2
(0.2) 

2.9×102 

 (1.4×102) 
2.2×105

 (4.9×103) 

Hybrid PSO 2.9×10-11 

(3.7×10-12) 
1.9×10-2 

(1.0×10-3) 
4.1

(0.7) 
Rastrigin Function 

Original PSO 1.7×10-1 

(3.9×10-2) 
20.9 

(5.0) 
45.5
(10) 

Hybrid PSO 1.0×10-7 

(9.4×10-8) 
2.3×10-2 

(1.0×10-3) 
1.1

(0.4) 
Griewank Function 

Original PSO 3.7×10-8 

(2.2×10-8) 
7.1×10-2 

(6.8×10-3) 
1.4×10-1

(4.9×10-2) 

Hybrid PSO 2.5×10-24 

(1.8×10-25) 
2.5×10-17 

(1.9×10-18) 
2.5×10-6

(3.7×10-7) 
Dixon & Price Function 

Original PSO 1.3×10-4 

(6.6×10-5) 
2.8×10-1 

(1.5×10-1) 
1.9

(0.8) 

Hybrid PSO 2.8×10-14 

(2.0×10-15) 
6.7×10-8 

(5.5×10-10) 
6.7×10-4

(5.9×10-5) 
Zakharov Function 

Original PSO 4.0×10-7 

(3.7×10-8) 
4.9×10-2 

(1.5×10-2) 
3.8

(0.7) 

Hybrid PSO 4.8×10-18 

(3.8×10-18) 
1.0×10-6 

(3.6×10-7) 
1.7×10-4

(2.0×10-5) 
Sum Squares Function 

Original PSO 1.9×10-9 

(1.1×10-10) 
2.0×10-2 

(2.9×10-3) 
0.8

(1.9×10-1) 

Hybrid PSO 2.0×10-17 

(1.0×10-18) 
3.4×10-7 

(1.9×10-7) 
1.6×10-3

(4.9×10-4) 
Levy Function 

Original PSO 2.7×10-1 

(7.0×10-2) 
4.7 

(2.6) 
4.2

(0.6) 

Hybrid PSO 7.0×10-10 

(6.2×10-11) 
1.2×10-6 

(4.0×10-7) 
2.9×10-2

(9.0×10-3) 
Schwefel Function 

Original PSO 1.8×10-3 

(4.2×10-4) 
3.2 

(0.2) 
9.1

(1.3) 

Hybrid PSO 1.0×10-8 

(2.7×10-9) 
0.2×10-3 

(1.8×10-5) 
1.0×10-1

(0.3×10-3) 
Quadric Function 

Original PSO 2.0×10-5 

(3.7×10-6) 
2.1×10-3 

(1.4×10-4) 
7.2×10-1

(2.3×10-2) 

Hybrid PSO 4.3×10-15 

(2.7×10-15) 
1.1×10-7 

(2.6×10-8) 
3.0×10-5

(2.3×10-6) 
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The average optima and standard derivations (in brackets) 
obtained by the two PSO methods after 1,000 generations are 
given in Table 4. We can observe that with regard to low-
dimension and simple functions, such as 10-dimension 
Sphere function and 10-dimension Griewank function, they 
achieve similar optimization performances. However, our 
hybrid PSO method can obviously outperform the original 
PSO algorithm in case of high-dimension functions, e.g., 50-
dimension Griewank function. We also emphasize that due to 
its diversity of solutions, the proposed hybrid optimization 
method has the superior performances for the multi-optima 
function (such as Griewank function and Schwefel function) 
optimization over other modified PSO methods [13]. 
 
IV. Conclusions 

In this paper, a hybrid PSO method based on the fusion of 
the PSO, CSA, and MEC is first proposed, and further 
employed for nonlinear function optimization. The 
information sharing capability of the PSO algorithm, solution 
diversity feature of the CSA, as well as anti-premature 
function of the MEC are fully utilized and combined in the 
new algorithm. Simulation results have demonstrated that 
our hybrid PSO method achieves an enhanced optimization 
performance over the original PSO algorithm. It can also 
provide diverse and flexible solutions to multi-model 
problems. How to apply this novel optimization scheme for 
coping with more real-world engineering tasks is currently 
under exploration.  
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