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Abstract 
SQL is a declarative language that is dependent on the underlying schema of a database.  This means that a causal 
user must know the underlying schema in order to retrieve relevant data from a database.  However, dependency on 
the schema is undesirable for several reasons.  It places a burden on the user to understand the schema, and it 
requires that the input queries must be updated whenever the schema changes.  In this paper, we provide a more 
relaxed form of formal SQL syntax, No-Schema SQL (NS-SQL).  NS-SQL frees user from knowing the underlying 
schema but retains the expressive power of a structured query language.  The user need only know the basic syntax 
of SQL.  Since we are relaxing formal SQL away from schema-specific content, certain kinds of ambiguity become 
possible, specifically column name and join path ambiguity.  Providing an intuitive interface allows this new system 
to be effectively used by the casual user without knowledge of the target database’s underlying schema. 

1. Introduction 

Motivation 
One of Codd's main stated goals of proposing the Relational Model as a new paradigm was to decouple data access 
from physical representation.  This allows a declarative language like SQL to be independent of ordering, indexing, 
or access path dependencies.  Unfortunately, SQL is still dependent on the underlying database schema.  SQL 
currently places the burden of navigating the database schema on the user, and many casual database users find SQL 
onerous for this reason alone.  There is a need for a less restrictive and more intuitive syntax for specifying a query.  
Specifically, this relaxed language should involve two things: 

 Automatically resolve column and table names.  The entire FROM block may be omitted. Further, oftentimes 
column names are unique in a database, so explicitly specifying their table is unnecessary. If the database uses 
intention-revealing column names, the user need never be aware of which columns belong to which tables; they 
need only know what type of data the database holds.  

 Automatically infer foreign-to-primary key mappings.  The application should be able to deduce when two 
tables involved in a query should adhere to a key mapping without the user explicitly saying so. If a relationship 
exists between two tables, then this is nearly always what the user intends. 

The proposed query language looks very much like SQL, but its lack of formal rigor makes its use more pleasant to 
the casual user.  The challenge of our project is to discover a target database's schema for use in query inferences 
and to disambiguate and translate between the NS-SQL input query and a formal SQL statement.  Because the 
proposed query language allows implied table names and join paths, it may be impossible for a given query to be 
entirely disambiguated.  In such a case, the application should identify the problem and suggest valid alternatives to 
the user. 

Example 
A brief note on our color convention: throughout this paper we use font color and typeface in order to help highlight 
the purpose for or relationship among various entities.  Of particularly importance is the use of the color blue to 
indicate NS-SQL input or referenced column names and the color green to indicate formal SQL output or physical 
columns.  A referenced column is simply a partially-qualified column name which is referenced somewhere in an 
input NS-SQL query.  A physical column is an entity representing a fully-qualified column extracted from the 
database schema.  One of the main challenges of our system is in determining the proper mapping between 
referenced columns and physical columns. 
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Consider a database with the tables Employee, Job, and Facility.  
Assume the user is looking for the name, city, and state of all employees 
whose salary is greater than $70,000 and whose job title is “Database 
Designer.”  In order to specify this query using formal SQL syntax, the 
following statement would be required: 

SELECT Empoyee.name, Facility.city, Facility.state  
FROM Employee JOIN Job ON (Employee.job_id = Job.id)  

JOIN Facility ON (Employee.facility_id = Facility.id)  
WHERE (Employee.salary > 70000) AND (Job.title = “Database Designer”); 

Much of this statement is concerned with the proper reassembly of the relational database’s normalized tables.  We 
believe the syntax could be much more intuitive and pleasant to use.  Consider the same query using NS-SQL: 

SELECT name, city, state WHERE (salary > 70000) AND (title = “Database Designer”); 

Related Work 
Related research has focused largely on the removal of structure from the input query, either in the form of a natural 
language query language or a keyword search.  NS-SQL shares the motivation of a desire to provide a more intuitive 
interface to the structured data in a relational database. However, NS-SQL differs in that it does not attempt to 
achieve this by removing the structure of the query language itself, but rather it removes the necessity of knowledge 
about the structure of the underlying database.  This is useful in that it retains the expressive powers of a structured 
query language without the burden associated with understanding the database’s schema.  For a more thorough 
survey of related research papers see Appendix A: Survey of Related Work. 

Organization 
This paper is organized as follows.  In Section 2: System Architecture, we provide a high-level overview of 
our project.  In Section 3: Subsystems, we describe the project subsystems in detail.  In Section 4: Future 
Work, we discuss direction for expansion of NS-SQL and our supporting application.  In Section 5: Summary, 
we analyze the contribution of our project and conclude the paper. 

2. System Architecture 

Our project is an ambitious one, as it involved the invention and vetting of a modified query language along with all 
of the implementation involved in constructing a reference system.  The system architecture is depicted in Figure 1. 
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Our choice of programming language was Java, and we decomposed the project into three major subsections which 
each addresses a logically separate concern of running the source-to-source translation task: 

 Hub – Manages input and output, establishes a DBMS connection, and infers the database’s schema via JDBC 
calls on its metadata.  The Hub is also concerned with the tasks determining which statements need to be 
schemafied (and which may be passed straight through to the DBMS), as well as ensuring that any DDL 
statements processed during a session are reflected in the in-memory schema representation for subsequent 
DML statements. 

 Parser – Parses the input NS-SQL query into an Abstract Syntax Tree (AST) by encapsulating tokens in 
separate node.  The AST provides an interface to the important schema-sensitive clauses of interest to the 
Schemafier.  The AST is designed to be mutable so that it may be augmented with column name qualification 
and join path information. 

 Schemafier – Imposes the schema constructed in the Hub onto the NS-SQL statement parsed by the Parser.  
We use the invented verb schemafy to denote this process.  The Schemafier must interpret the physical meaning 
of the column references from the input statement, and it must specify a join path to achieve a relationship 
amongst these physical columns.  If no single unambiguous solution exists, the Schemafier must identify all 
feasible alternatives and advise the user of the possible solutions.  

These three subsystems represent the majority of the effort we invested in this project.  The algorithms and design 
decisions related to each are described in detail in the next section. 

3. Subsystems 

Hub 
The purpose of the Hub is simply to tie the other subsystems together and provide them with input and register their 
output.  The Hub is responsible for getting DBMS connection information from the user, specifically the DBMS 
type (so that the proper JDBC driver may be selected), server IP and port, connection username and password, and 
database name.  Once the Hub has the DBMS connection information, it establishes a connection and polls the 
specified database for its underlying schema by way of standard JDBC calls.  This schema information is encoded 
into an in-memory hierarchy including the physical tables and physical columns which will be used later by the 
Schemafier.  A maximally-qualified column name is of the form database.schema.table.column.  Note that the 
term schema here is used differently from the rest of this paper.  Here schema refers to a specific element of a 
qualified table or column name.  The actual implementation and effect of the schema element differs among DBMSs 
and we treat it as simply a containing namespace. 

The Hub is also responsible for getting NS-SQL input queries from the user in order to parse and subsequently 
schemafy them.  Once this process is complete, the Hub is responsible for registering the output to the user.  This 
usually involves displaying the converted SQL statement or ambiguity error messages; however, the Hub may also 
apply the formal SQL statement to the DBMS across the existing connection and display the result set to the user. 

The Hub accomplishes its input and output tasks through a pluggable user interface.  We have provided two such 
interfaces: a Command-Line Interface and a Graphical User Interface.  For more details on the use of these 
interfaces see Appendix B: Application Interfaces.  

Parser 
It is the Parser’s responsibility to isolate and extract column and table references to the Schemafier.  The parsing 
engine must hide variations amongst DBMS such as SQL dialect from the rest of the system, so that the Schemafier 
may be implemented in a general fashion.  Also, the Parser must support an AST which can be easily modified by 
the changes dictated by the Schemafier as it imposes the schema on the input query. 

Unfortunately, existing Java-implemented SQL parsers either supported only a limited SQL grammar or their 
internal representation did not satisfy our needs.  We instead decided to build our own SQL parser, and in this way 
we have fine control over the grammar we support and can tailor the internal representation to the needs of the 
Schemafier. 
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Grammar Design 
While there is specialty among dialects, most SQL grammars share many common features based on the published 
ANSI standard, and we base our grammar on SQL92.  We then compared SQL92 with our expected NS-SQL inputs 
in order to “relax” the standard grammar such that it schema-specific element become optional.  For example, in an 
NS-SQL SELECT query, if user does not know which table has the desired columns, he may omit the table name 
from each column reference and omit the FROM clause.  The relaxed SELECT form may look like this: 

SELECT [list of column references without table names] 
WHERE [search conditions] 

Since only Data Manipulation Language (DML) queries may have their schema-specific content reasonably 
removed, we can focus on SELECT, UPDATE, INSERT, and DELETE statements, reducing the grammar size. 

The primary concern when modifying the standard grammar is the potential to introduce conflicts.  Fortunately, for 
the DML statements we are interested in, every clause has a predefined “token” at the beginning (such as FROM, 
WHERE, etc), which makes it easy to change one clause from fixed to optional. 

Parser Generation 
We used JavaCC [4] to generate the actual parsing program.  JavaCC is a popular parser generator for Java which 
reads a grammar specification and converts it into a Java program that recognizes the grammar.  While parsing and 
pattern matching, the Parser is at the same time setting up the AST, so that when it finishes the AST has been built. 

JavaCC does have its limitations.  It can only support LL(1) grammars, which means if a grammar has left recursion 
(such as Expr Expr+Term), it is necessary to translate the left recursion to corresponding right recursion. 
Eliminating left recursion is not trivial, so translating the SQL92 standard BNF would be difficult.  Fortunately, we 
were able to take advantage of a pre-translated SQL grammar from the Mckoi SQL database project [7]. 

Parsing Engine Structure 
The parsing engine is structured to run through several stages in the course of processing an NS-SQL input query as 
indicated in Figure 2. 

 

Figure 2 
 Preprocessing – A given input query is checked to see if it is supported and whether it can change the schema 

of the database.  Both of these checks can be performed before actual parsing by examining the first word of the 
query. The first word of an SQL query identifies the statement, and it properties can thusly be determined.  An 
unsupported query is simply passed through to the DBMS.  If the query can change the database’s schema –
such as a Data Definition Language (DDL) statement – then the in-memory representation of the schema must 
be refreshed, or future calls to the Schemafier may operate on stale schema knowledge. 
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 Parsing – The NS-SQL query is translated into a statement AST for manipulation within our system.  The AST 
represents the interesting syntactical elements of the query as nodes in a tree.  Specifically, column and table 
nodes are most interesting to us.  The AST acts as an interface between the Parser and the Schemafier, allowing 
modification to certain nodes. 

 Extraction – A list is built of all referenced columns and specified tables in the statement.  This information is 
later extracted by the Schemafier as it does its job of imposing the schema onto the query. 

 Update – As the Schemafier disambiguates the columns and tables with their fully qualified names, the AST 
allows directly modification of the appropriate mutable AST nodes.  Also in this stage, the Schemafier provides 
a list of key mappings among tables which the AST uses to generate the necessary joins in the FROM clause. 

 Output – The final resulting formal SQL statement is available by simply calling the toString() method on the 
AST root.  The statement now generates the fully qualified query string representing itself and passes it back to 
the Hub to be run on the DBMS. 

Abstract Syntax Tree 
The AST is the internal representation of a query in our system.  As mentioned earlier, one reason we decided to 
build our own parsing engine is that existing parsers do not provide an AST that meets our needs.  Most existing 
parsers focus on full representation of an SQL query, while we are only concerned with very specific elements.  It is 
inefficient and error-prone to maintain these unnecessary AST nodes, so our version of an AST is tailored to the 
needs of the Schemafier.  Figure 3 depicts the fully-qualified structure of an example AST. 

 

Figure 3 
Oval nodes represent classes with significant content and accessor methods. For example, the content of a FROM 
node is a list of table name nodes, joined table nodes, or nested table nodes.  Methods are provided to insert new 
nodes into the list.  Rectangular nodes represent classes that are inconsequential to the Schemafier, so the content is 
only maintained to be output again later with the toString() method.  All nodes are listed in the order of appearance 
in the input, which is different from the way most parsers operate. 

Schemafier 
The purpose of the Schemafier subsystem is to impose a database schema onto an input query in order to convert it 
into a fully-specified formal SQL query.  There are two major stages in this process.  First, we must determine a 
unique set of physical columns which correspond to the columns referenced in the input statement.  Second, we 
must determine a unique join path by which to relate these columns.  However, the flexibility afforded by the 
relaxation away from schema-specific information in the user’s query carries with it the possibility of several types 
of ambiguity in resolving this query.  In order to restrict the search space we consider – and thereby the range of 
possible ambiguities – we make two reasonable assumptions.  First, all referenced columns must be relatable; that is, 
the user is never interested in a query that will produce a Cartesian product.  Second, we will never consider join 
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paths that can only produce a restricted result set; that is, the inclusion of joins with unreferenced tables which do 
not add to the relationships amongst the referenced tables, but only limit them.  These assumptions become 
important as we discuss the algorithms by which we achieve the selection of column names and join paths. 

Column Name Selection 
The first major task in imposing a schema onto an NS-SQL statement is to associate column references from the 
query with physical columns from the schema.  The full qualification of the physical column is known, of course, 
but the column reference in the input query will likely be only partially qualified.  Specifically, it is expected that the 
user will commonly reference only the column names.  Interpreting the physical column becomes non-trivial in 
cases when the column reference is not sufficiently qualified and there are multiple physical columns that share a 
partially-qualified name.  For example, if the user only makes reference to a column name of something very 
common such as id or name chances are high that there is more than one physical column with this column name.  
It is therefore necessary to identify all possible interpretations of the set of column references.  The challenge is in 
selecting a physical column consistent with the user’s intent.  One of the fundamental assumptions we make in this 
project is that column references always refer to a set of columns that are relatable to each other; that is, there is 
some set of join paths amongst the tables in the schema which establish a relationship amongst the columns 
(otherwise, the query would result in some form of Cartesian product).  If a given interpretation of a column 
reference is not relatable, we do not consider it as a legitimate option.  We evaluate this notion of “relatability” by 
way of a graph tagging algorithm. 

The tagging algorithm associates a tag or unique identifier with all nodes which can be reached from each other.  
This is done by interpreting the database schema as a graph where each table is represented by a node and each key 
mapping is represented by a directed edge (in the direction from foreign to primary key).  Conceptually, the tagging 
algorithm creates a new tag for each root (node without parents) and cycle.  The tag is then expanded to encompass 
all descendants of the root or cycle.  The intuition is that any set of columns contained entirely within a tag are fully 
relatable to each other and represent a valid solution. 

Because we do not initially know which nodes are roots and because cycles are difficult to determine except through 
complete graph navigation, we chose to build up the tag set in arbitrary order and proceed until all nodes are tagged.  
The algorithm we use to establish the tag set for a given schema graph recursively queries each node for its parent’s 
tags, and then returns this combined set of tags to its children.  The following pseudocode demonstrates this concept: 

build-tag-set() { 
 for each node { 
  if not already tagged { 
   build-tags(node, {}) //no history 
  } 
 } 
} 
 
build-tags(node, call-history) { 
 if node is a root { 
  create a new tag and apply to all nodes in call-history 
 } else { 
  for each parent of this node { 
   if parent is already tagged { 
    apply the parent’s tag to all nodes in call-history 
   } else if parent is already in call-history { 
    create a new tag for the cycle and include all nodes in call-history in the cycle 
   } else { 
    build-tags(parent, {call-history + node}) 
   } 
  } 
 } 
} 
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For example, consider Figure 4.  This schema is 
composed of four tables: Student, Course, 
Enrollment, and Survey.  The foreign-to-primary key 
mappings are indicated and each table’s columns are 
shown beside the table-node.  Notice that there are two 
tables that contain a column named credit_hours.  
Course.credit_hours represents the possible credits 
available for a given course (as it might offer varying 
amounts of credit depending on coursework).  
Enrollment.credit_hours represents the specific 
amount of credit a given student has enrolled for in the 
course.  Depending on the other columns referenced in the 
query, this may or may not result in an ambiguity. 

Example 1: If the input NS-SQL query were SELECT 
rating, credit_hours; then there is no ambiguity.  This 
is because we know that the only interpretation of rating is Survey.rating and the only tag that contains 
Survey.rating is tag 2.  Course.credit_hours shares tag 2, but Enrollment.credit_hours does not.  We can 
therefore eliminate Enrollment.credit_hours as a possible interpretation, leaving only the solution where 
credit_hours refers to Course.credit_hours.  The ultimate resulting SQL query for this example would be 
SELECT Survey.rating, Course.credit_hours FROM Survey JOIN Course ON Survey.course_id = 
Course.id; 

Example 2: If the input NS-SQL query were SELECT name, credit_hours; then there is ambiguity.  This is 
because we know that the only interpretation of name is Student.name which shares tag 1 with both 
Course.credit_hours and Enrollment.credit_hours.  We cannot therefore eliminate either interpretation of 
credit_hours, leaving two valid solutions and an ambiguity which we must rely on the user to resolve. 

Example 3: If the input NS-SQL query were SELECT grade, rating; then there is no possible relation.  This is 
because we know that the only interpretation of grade is Enrollment.grade in tag 1 and the only interpretation 
of rating is Survey.rating in tag 2.  We cannot therefore relate Enrollment.grade to Survey.rating, leaving 
no valid solutions. 

Join Path Selection 
The second essential part of the Schemafier takes care of the join path selection.  If the column name selection was 
able to match the referenced columns from the NS-SQL statement to a unique set of physical columns in the 
database, these physical columns serve as input here.  Given the foreign-to-primary key mapping (fk-pk) from the 
underlying database, this part of the Schemafier tries to relate the tables containing the referenced columns in an 
unambiguous way.  If one single join possibility is found, the input statement is updated to formal SQL and 
presented to the user who can execute it on the database.  If multiple possibilities to relate the referenced tables 
exist, an ambiguity is reported. 

As mentioned earlier, one of our fundamental assumptions is that the user does not want to relate tables using a 
Cartesian product.  Allowing this would enable arbitrary joins in the database and would no longer allow us to 
determine a unique join path amongst the referenced tables.  The join path selection algorithm will add two 
additional assumptions about the user’s intention which help us reduce the number of ambiguous alternatives.  We 
believe these assumptions are very reasonable because they ensure the result set is not unnecessarily restricted, and 
the assumptions need only be applied for very complicated schema. 

The first additional assumption is that the user does not intend to include fk-pk mappings in a join that are not 
needed to relate the referenced tables.  An example for such a case will be given in the outline of the algorithm 
below. The second assumption refers to cycles. While it is possible for a database to have tables that are connected 
by fk-pk relationships in a circular manner, we assume that the user even when referencing all tables in a cycle does 
not want to relate them using all mappings of the cycle at the same time.  As there may be multiple mappings 
between tables this means that in a valid join at least two neighboring tables in each cycle are not connected by a 
direct fk-pk mapping between them. 
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We will now briefly outline the main steps of the join path selection algorithm.  Figure 5 shows the structure of a 
database slightly modified from the previous example.  The tables of which columns were referenced in the NS-SQL 
statement are marked with the letter R.  

1. In order to relate the tables College and Professor, determine their 
common predecessors: the set of nodes from which the referenced 
tables can each be reached by way of a series of fk-pk mappings. In 
this case, Enrollment, Course, and Professor itself fulfill this 
property, making each of them possible join roots.   

2. For each join root determine the available paths to all referenced 
tables.  For example starting with Course, College can be reached 
either via Student (path C1: Course Student College), or by 
way of Professor (path C2: Course Professor College).  
Professor is reachable from Course only directly (path P1: 
Course  Professor).  

3. All possible combinations of the available paths are generated, each 
potentially forming a way to join the referenced tables.  Every 
alternative contains exactly one path from the join root to each 
referenced table.  The alternatives here are (C1, P1) and (C2, P1). 

4. Path combinations that do not fulfill our assumptions about the user's intent are removed.  Note that in (C2, P1) 
both paths share the mapping Course Professor.  The information necessary to relate the two referenced 
tables is sufficiently contained in the sub-path of Professor College, and the additional join involving 
Course only restricts the result set of the query.  While the edge Professor College essentially returns the 
requested college values for all professors, the edge Course Professor unnecessarily restricts the result set 
to those professors who are assigned to a course. 

5. If processing all of the potential join roots in the manner described above yields only one possible way to relate 
the referenced tables, the fk-pk mappings are extracted and inserted into the AST provided by the Parser.  This 
completes the transformation from the user’s NS-SQL input into a fully-qualified formal SQL statement. 

Two additional issues deserve treatment, as the example above was simplified to illustrate the basic concept of join 
path selection: 

1. Whenever paths between a join root and a referenced table are retrieved, cyclic structures among the mappings 
may cause unexpected results.  To avoid this, paths are constructed from the referenced table towards the join 
root, keeping track of a history of visited table-nodes and mapping-edges on this path.  Whenever a node is 
encountered that is already contained in the call-history or the end of a branch is reached, the search is 
abandoned.  Whenever the join root is found, a new path is created using the call-history of visited edges, and 
the search for more paths to connect the referenced table to the root continues. 

2. Joins that are “unneeded” are pruned.  To determine such joins, we retrieve the set of nodes from the join root 
(exclusive) to the first referenced table (inclusive) from each path in the current set of candidate paths.   The 
resulting sets of nodes are then intersected with each other.  If the result of this intersection is not empty, this 
indicates that all paths cross at some node between the root and the first referenced table.  Since the joins below 
this point of intersection are already sufficient to relate the referenced table, the current combination of paths 
can be discarded.  Because the point of intersection must have been a common predecessor as well, the 
necessary information about the join from this point on is not lost, but processed separately. 

The following examples further demonstrate the join path selection algorithm: 

Example 1: For the query SELECT title, grade; the result is unambiguous as Course and Enrollment can only 
be related using the direct mapping (Enrollment Course).  

Example 2: For the query SELECT college_id, phone; the result is ambiguous, as there are three valid ways to 
join Professor and College including: 

 (Professor College) 
 (Course Professor, Course Student College) 
 (Enrollment Course Professor, Enrollment Student College) 
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The three discarded path combinations are: 

 (Course Professor, Course Professor College) 
 (Enrollment Course Professor, Enrollment Course Professor College) 
 (Enrollment Course Professor, Enrollment Course Student College) 

Example 3: The query SELECT Course.id, Student.name; resolves two name ambiguities by qualifying the 
column references for id and name with a table name.  The result of the join path selection is ambiguous however, 
as there are two valid ways to join Course and Student: 

 (Course Student) 
 (Enrollment Course, Enrollment Student) 

The one discarded path combination is: 

 (Enrollment Course, Enrollment Course Student) 

4. Future Work 

We believe our project was an ambitious one.  While we feel we fulfilled the main research goal, there are still many 
areas of our work with may be extended to further improve the usefulness of the product.  These areas of interest are 
focused on the two most challenging and extendable subsystems of the project. 

Parser 
It would be desirable to support a majority of the most popular dialects so that users of our system can leverage the 
simplicity of NS-SQL while retaining the full power of the target DBMS’s extensions.  To this end, the Parser may 
be extended to support dialects without affecting standard queries.  The Parser was purposefully designed to be 
highly extensible (see Appendix C: Parser Extension).  Example extensions include the following: 

 Arguments 
o SELECT TOP 10 … (SQL Server) 
o SELECT … LIMIT 0, 10 (MySQL) 
o SELECT … SAMPLE 10 (Oracle) 

 Functions 
o CUBE and ROLLUP (SQL Server and Oracle) 

 Statements 
o RENAME (MySQL) 
o PARTITION (Oracle) 

Schemafier 
The Schemafier currently accepts input of the simple style we expect to be vastly more common amongst the target 
user population.  However, for purposes of completeness, it is desirable that the system also support more advanced 
and complicated input statements.  Such options include support for nested queries and column or table aliasing. 

Another major area of expansion is support for non-SELECT statements.  We believe that INSERT, UPDATE, and 
DELETE are excellent candidates for inclusion.  However, we have identified some special considerations when it 
comes to statements that can manipulate data.  In NS-SQL, a data manipulation statement might reference multiple 
tables since the user does not know the schema; whereas, standard SQL simply prohibits this.  A simple solution 
would be to simply advise the user that manipulating multiple tables is not allowed.  This solution is not very 
satisfying, however.  Unfortunately, supporting multiple tables means a single NS-SQL statement may produce 
multiple formal SQL statements, and we suspect that maintaining data integrity in the face of uniqueness and fk-pk 
constraints will be very challenging.  For example, if a referenced column is related by a key mapping (that is, in a 
normalized table), then is it appropriate to change the foreign key reference or to change the column data in the 
separate table?  

We believe that one reasonable way to assist in column name selection is to consider column data types.  If two 
columns with the same name have different data types, then they may be distinguishable.  The challenge comes with 
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extracting data type information from input NS-SQL query.  This may be possible if the column is referenced in the 
WHERE clause as part of a condition with a literal value. 

Supporting column name synonyms so that the user need not know a column’s exact name would be a very useful 
feature.  Also, an improvement to the user interface is automatic ambiguity resolution so that a user need only 
choose among a set of alternative solutions to resolve an ambiguous NS-SQL statement.  Finally, the system may 
learn from past cases when the user has manually disambiguated queries to learn which column names or join paths 
are preferred and automatically make assumptions when faced with such an ambiguity problem in the future. 

5. Summary 

NS-SQL is a unique approach to improving the user experience of querying of relational DBMSs by providing a 
schema-transparent perspective on the database.  As opposed to natural language or keyword interfaces which 
remove structure from the input query, NS-SQL retains the expressiveness of a structured query while omitting the 
tedium of direct schema knowledge.  In addition to being more intuitive to use, NS-SQL also provides the important 
additional advantage of schema independence for the input query.  This means that as a database’s schema changes, 
the input query need not. 

The NS-SQL project accomplishes the main intent to provide a modified SQL syntax which omits schema-specific 
information, and proves the viability of this concept by providing a reference implementation that handles the major 
algorithmic challenges of flexible input parsing, column name selection, and join path selection.  In effect, a user 
may make use of our system to query a database without specific knowledge of its exact schema.  The system is also 
able to accurately report any type of unavoidable ambiguity encountered and assist the user in manually resolving it. 

We have extensively tested the system to ensure its proper functioning (see Appendix D: Testing).  Finally, our 
implementation is highly extensible to allow future work to continue to expand the functionality and applicability of 
the system. 
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Appendix A: Survey of Related Work 

Since database query languages like SQL can be intimidating to casual users, there have been some efforts towards 
natural language and keyword-based search in databases.  Natural language interfaces are an attractive notion since 
the user will be much more comfortable expressing his query intentions by way of natural language instead of an 
unfamiliar structured language.  To this end, NaLIX [5] is a generative interactive natural language query interface 
to an XML database. It reformulates the input query to XQuery expression and translates it by means of mapping 
grammatical proximity of natural language parsed tokens to proximity of corresponding elements in the result XML.  

CQL/NL [8] allows users to formulate database queries in natural language.  CQL/NL queries are filtered for search 
predicates derived from conceptual schema constructs.  Based on the identified search predicates, CQL/NL uses a 
set of predefined natural language templates to compose a natural language explanation of the query.  The 
explanatory statement is returned to the user for validation.  It uses the association semantics of semantic data 
models to construct query solution paths.  

In BANKS [1] and Proximity-Search [2], a database is viewed as a graph with objects or tuples as nodes and 
relationships as edges.  Relationships are defined based on the properties of each application.  For example, an edge 
may denote a primary to foreign key mapping.  In BANKS, the user query specifies two sets of objects, the Find and 
the Near objects. These objects may be generated from two corresponding sets of keywords. The system ranks the 
objects in Find according to their distance from the objects in Near. An algorithm is presented that efficiently 
calculates these distances by building hub indices.  In Proximity-Search, answers to keyword queries are provided 
by searching for Steiner trees [9] that contain all keywords.  Heuristics are used to approximate the Steiner tree 
problem.  These two systems rely on a similar architecture.  A drawback of these approaches is that a graph of the 
tuples must be created and maintained for the database.  Further, the important structural information provided by 
the database schema is ignored. 

Keyword search is a popular information discovery method because the user does not need to know either a query 
language or the underlying structure of the data.  DISCOVER [3] exploits the database schema, which leads to 
relatively efficient algorithms for answering keyword queries because the structural constraints expressed in the 
schema are helpful for query processing.  DISCOVER returns qualified joining networks of tuples; that is, sets of 
tuples that are associated because they join on their primary and foreign keys and collectively contain all the 
keywords of the query.  DISCOVER differs from NS-SQL in that it is a keyword-focused solution instead on a 
structured query solution. 

SISQL [6] is a language based on Reflexive Relational Algebra [11] for querying databases whose schema may be 
unknown.  It takes parameterized SQL queries as input and dynamically generates correct SQL statements. For 
example, a query in SISQL may be “SELECT [A] FROM [RI WHERE [Bl = ‘John’]]” such that [A] is a 
placeholder for attributes in the database in question, [RI] is one of the relations in that database having [A] as an 
attribute, and [Bl] is another attribute in [RI].  If the exact relation (or attribute) names are unknown, parameters can 
be used instead.  During query evaluation, those parameters are instantiated with the appropriate names taken from a 
database to which the respective query is directed.  One problem with this work is that it does not have 
disambiguation strategies for queries generated for databases containing attributes with the same name in distinct 
tables which is a consideration that NS-SQL does address.  Also, NS-SQL syntax may be seen as a more relaxed 
form of SISQL. 
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Appendix B: Application Interfaces 

Our project provides a flexible mechanism of specifying a user interface.  We have implemented two such user 
interfaces with which to interact with the system including a Command-Line Interface (CLI) and a Graphical User 
Interface (GUI).  The usage details of each are specified below: 

Command-Line Interface 
The CLI may be accessed by providing a non-empty set of arguments to the Main class.  The command line 
interface accepts a number of options in order to establish the DBMS connection as well as several methods of 
providing NS-SQL input.  These options are available in either short or long form.  The available options are these: 

Option Short Long Value Required 

DBMS Type -t --type Currently one of {“mysql”, “sqlserver”, “oracle”} yes 

Server -s --server Server IP (defaults to localhost) no 

Port -P --port Server port (defaults to DBMS-specific default) no 

Database -d --database Database name yes 

Username -u --username DBMS user (with appropriate permissions) yes 

Password -p --password Password for DBMS user yes 

In -i --in Input script file for NS-SQL source no 

Out -o --out Output log file for resulting formal SQL no 

Error -e --err Error log file for encountered exceptions no 

Result Set -r --result Output log file for DBMS result set no 

Error Tolerant -E --errortolerant Whether to ignore non-terminal errors no 
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Graphical User Interface 
The GUI may be accessed by providing no arguments to the Main class.  The Connection section collects 
information about the database connection.  If they were previously empty, the Server and Port are automatically 
set to DBMS defaults upon DBMS Type selection.  The Username and Password are automatically populated if 
corresponding NSSQL_USER and NSSQL_PASS environment variables are defined.  Otherwise, they may be 
provided manually. 

The File menu provides options to enable auto-apply and error tolerance or to exit the application.  Auto-apply 
automatically applies a successfully converted NS-SQL statement to the underlying database (enabled by default).  
Error Tolerant allows script processing to proceed despite any encountered ambiguities when in batch mode 
(disabled by default). 

The Input section allows the user to either specify a script file as input or provide individual NS-SQL statements.  
Individual NS-SQL statements may be specified in the Statement field and processed with the Submit button.  If a 
script file is specified, it may either be submitted in batch with the All button or one at a time with the Step button.  
As each statement from the script is processed, the NS-SQL value is displayed in the Statement field, the converted 
query is displayed in the SQL field, and the output is appropriately displayed in the Results area.  It may be useful 
to modify individual statements of a script file in the Statement field and resubmit, especially in case of ambiguity. 

The Output section displays all relevant output for every user action.  If an NS-SQL translation is successful, the 
resulting formal SQL statement is displayed in the SQL field.  If auto-apply is enabled, the result set of a successful 
translation is displayed in the DBMS Output tab.  If an ambiguity is encountered, the details of the problem are 
displayed in the Ambiguity tab.  The results of all past actions are logged in the History tab. 
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Appendix C: Parser Extension 

Dialect Compatibility 
Every widely used DBMS platform extends SQL by introducing its own operators, keywords, arguments, clauses, 
and statements in addition to the standard syntax.  Throughout the course of the project, we performed research into 
some of the dialects of SQL that exist – specifically those of MySQL, SQL Server, and Oracle – and evaluated them 
to determine the feasibility of making our system compatible with them.  It would be desirable to support a majority 
of the most popular dialects so that users of our system can leverage the simplicity of NS-SQL on which ever 
DBMS platform they choose while retaining the full power of the target DBMS’s extensions. 

Parser Extensibility 
We believe it is feasible to add dialect compatibility to our system in the future without breaking the existing 
mechanism because of the way we designed the Parser and its internal representation of an NS-SQL statement.  The 
nature of our system only requires that we be able to extract references to columns and tables in a query and 
generate joins amongst tables when necessary.  This leaves all other parts of the statement untouched.  For a given 
dialect, all the Parser needs to know is how to extract the referenced columns and tables from the new syntax.  In 
general this can be accomplished by modifying the SQL92 grammar definitions currently used.  Though we did not 
find any concrete examples in our research, there may be some cases where certain dialects break compatibility with 
the SQL92 standard.  This situation could require a change to the architecture of the Parser where it would need to 
use a slightly different grammar and AST representation depending on the platform being used. 

Extending the Parser involves the following steps: 

 Write additional AST node classes for the new statement. 

 Implement a method that does the column/table references extraction. 

 Implement a method that supports update given feedback from the Schemafier.  

 Modify the grammar file to incorporate the new grammar changes, and add tree build-up instructions. 

 Run JavaCC to generate the new Parser. 
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Appendix D: Testing 

Parser Testing 
Because the Parser is relatively independent from the rest of the system, we set up a separate test environment for it 
which feed test SQL queries into the Parser and let it build the AST.  The AST’s output SQL query was then 
compared with the input query by way of a Perl script.  Matching queries prove that the AST was built correctly.  
We used a set of 561 sample SQL SELECT queries garnered from the SQL4J project [10] to test the Parser, which 
we eventually were able to completely support. 

Unit Testing 
For unit testing, database-like structures were built in memory (not in a DBMS) to separately test different aspects of 
the system.  JUnit test cases generated instances of the internal graph representations of databases to check essential 
subsystems such as JDBC connection, Parser, Column Name Selection, and Join Path Selection. Those test suites 
covered the basic functionality as well as more complex test situations such as multiple partly interwoven cycles. 

Integration Testing 
For integration test we developed a number of MySQL test databases to verify the correct operation and integration 
of the system.  Their structure is briefly outlined here.  The following formatting is used for the indicated purpose. 

Database Structure TableName 
Data Type VARCHAR 

INT 
DOUBLE 

Key Mapping PrimaryKey 
ForeignKey 

Name Ambiguity RepeatedName 

DB01: A simple database with just one table and no name ambiguity in order to basic functionality. 

Employees
ID
FirstName
MiddleInitial
LastName
Salary  

DB02: A slightly more complex database with several tables, ambiguous column names, but no foreign to primary 
key (fk-pk) mappings is the next step in database complexity.  Supplier is intentionally left without a primary key to 
ensure correct operation for the unlikely case that no such key is defined on a table. 

Customer Employee Inventory Product Supplier
ClientNr ID ID ID EnterpriseName
Company EmployeeName Description Description Town
Town PhoneNr Location Category PhoneNr
PhoneNr email Brand Amount FaxNr
email Salary YearOfPurchase Price Branch  
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DB03: In the third phase fk-pk mappings is added to a database with a limited amount of name ambiguity. 

T1 T2 T3 T4 T5
C1 C3 C1 C7 C2
C2 C4 C3 C8 C5

C6
C10not connected  

DB04: Initial testing of composite keys is done with the following database. 

T6 T7
C11 C13
C2 C14
C12 C1  

DB05: A combination of DB03 and an extension of DB04 is used to test how to infer multiple composite key 
mappings from the JDBC connection.  In addition, name ambiguity between the separate sets of related tables in the 
database is present. 

T1 T2 T3 T4 T5 T6 T7
C1 C3 C1 C7 C2 C11 C1
C2 C4 C3 C8 C5 C2 C13

C6 C12 C30
C10 C20

C40
not connected

not connected  
DB06: A more complex database structure with a lot of name ambiguity as well as path ambiguity for in-depth 
testing.  Due to the more complex structure of the database, the structure itself and the column overview are shown 
separately. 

Building Caretaker College Country Course Student Professor
Name ID ID Name ID UniversityID Name
Caretaker Name Name Continent Title Name Department
College PhoneNr TA email Room

Professor StreetAddress PhoneNr
Department Enrollment Room Town Size Town email
ID EnrollmentID ID TownID Room HomeStreetAddress StreetAddress
College StudentID Building Name CourseNr HomeTown Town
Name CourseID RoomNr State Year PhoneNr
Phone Grade Description Country Semester Semester

ZipCode Department College  

 

Student 

Course 

Enroll. 

Town Country

Prof. 

Room 

Dept. 

Building Caretaker

College


