
Dialogue Systems Require a Reactive Task
Architecture

Will Fitzgerald
R. James Firby

I/NET, Inc.
AAAI Spring Symposium 2000

July 2001 Printing

1



Abstract

Natural language dialogue is one type of planning and task execution. Task execution
typically requires that an agent be able to act reactively in its dynamic, unpredictable
world. This is all the more true in dialogue planning and execution, in which agents’
goals and beliefs are often changing or opaque. Dialogue planning and execution is
reactive in nature. Therefore, systems for dialogue interaction should have at their core
a reactive task execution architecture.

This paper was originally entitled “Dialog is task execution; task execution is best
done reactively; therefore, dialog systems call for a reactive task execution architec-
ture”

Dialogue is task execution

Throughout the history of natural language dialogue research, taking part in dialogue
has been seen as a planful activity; that is, engaging in dialogue has been viewed (from
various research perspectives) as an activity which involves agents’ goals, and plans to
achieve those goals. Engaging in a dialogue is engaging in a particular kind of task.

Dialogue execution shares many of the same requirements with other kinds of task
execution. For example:

• Agents can have multiple goals active simultaneously,

• Agents can be attempting to achieve these goals simultaneously,

• The world in which agents act is often unpredictable and often changing,

• Tasks and goals can be described hierarchically,

• Resources available for achieving goals vary,

• Goals can have differing priorities, which may vary dynamically,

• Tasks will sometimes fail to achieve their goals,

• Multiple agents will be attempting to achieve their goals simultaneously, perhaps
collaboratively,

and so on.
Although it is true that engaging in natural language dialogue has different qualities

from non-dialogue tasks (for example, natural language is rife with vague descriptions
whose meanings must be negotiated; dialogue almost immediately requires one to ad-
dress issues of other agents’ beliefs, goals and intentions), it is equally true that many
non-dialogue tasks share these same qualities. For example, we have argued that de-
scriptions have value for tasks beyond natural language dialogue (Fitzgerald and Firby
1996). In the end, dialogue planning and execution is task planning and execution.

2



Task execution is best done reactively

It is clear that task execution must be done reactively; that is, as an agent executes
tasks, the agent must be able to react to changes in the world, changes in the agent’s
goals, new information gained (perhaps as a result of achieving information-gathering
goals).

A computational architecture for task execution should have a clear model of the
reactive nature of task execution. The Reactive Action Plan (RAP) System (Firby,
1989) is one such system. The RAP System has been successfully used to control task
execution in a number of complex domains; the RAP System is used as part of the
3T (three-tier) architecture at use in NASA’s Johnson Space Center. The RAP System
provides the ”middle tier” in the 3T architecture; with the ”top tier” being a planning
system, and the ”bottom tier” being the skill system controlling and receiving input
from the real world.

Dialogue systems call for a reactive task execution archi-
tecture

Dialogue systems, as instances of task execution systems call for a reactive task ex-
ecution architecture. The multi-agent nature of dialogue makes this imperative, as an
agent’s interlocutor is not under the agent’s control, and the interlocutor’s beliefs, goals,
and actions are especially opaque, and the agents are attempting to achieve their goals
simultaneously, with only loose synchrony.

In addition, an agent engages in dialogue to help achieve other goals, not just to
engage in dialogue. Hence, dialogue tasks must take place in the context of other,
non-dialogue, tasks, sharing state, and ”cognitive” and physical resources.

The Dynamic Predictive Memory Architecture

We have built a computational architecture, called the Dynamic Predictive Memory
Architecture, or DPMA (Fitzgerald and Firby, 1998). DPMA is comprised of:

1. The RAP system, which controls all task execution, including dialogue.

2. The Conceptual Memory system, a descriptive logic system in the KL-ONE tra-
dition (Fitzgerald, 1997),

3. The Conceptual Memory Parser, a semantically oriented parser in the DMAP
tradition (Fitzgerald, 1997; Martin 1993).

and, of course, the interactions among these subsystems, skill systems, and planning
systems.

One interesting aspect of the DPMA Conceptual Memory Parser is that it essen-
tially acts as a skill-subsystem whose job is to take natural language input and pass, to
the RAP task execution system, descriptions of utterances. It is the responsibility of

3



plans written in the RAP System language to use these descriptions for disambigua-
tion, task action, etc. Descriptions resulting from parsing are handled like other forms
of input.

The DPMA AERCam Testbed

AERCam is a free-flying robotic space camera developed at NASA’s Johnson Space
Center. We developed the DPMA AERCam Testbed as an environment to test and
enhance DPMA. In the DPMA AERCam Testbed, a human operator can interact with
a DPMA-enabled control station to fly the (simulated) camera around a space shuttle.
It also allows the operator to control the camera via joystick operations. DPMA proved
to be a robust architecture for building a flexibly autonomous system that can engage
in dialogue with a human. The DPMA AERCam controller can understand commands
for translation and rotation, commands to move to various locations around the space
shuttle, query the camera’s internal state and the state of the world around it, control
the camera’s other devices (lights), monitor and warn for important states, provide for
shared control, do object disambiguation, and so on. Here is a typical dialogue:

Astronaut: Go to the inboard elevon.
AERCam CS: There are two inboard elevons. Which one?

Astronaut: The port one.
AERCam CS: [Commands the camera to go to the port, inboard elevon.]

Astronaut: Look at the outboard elevon.
AERCam CS: [Commands the camera to rotate,

so its camera points at the port, outboard elevon.]
Although ”outboard elevon” is, strictly, ambiguous, the AERCam control station’s
plans for disambiguation take physical proximity into account. Note, too, the smooth
interleaving of dialogue tasks and movement tasks.

Conclusions

It is an important insight to realize that dialogue planning and execution are not essen-
tially different from other planning and task execution domains. It is true that building
dialogue systems immediately bring to the fore such issues as other agents’ beliefs,
desires and intentions and ambiguity/vagueness. On the one hand, however, these is-
sues are important for other domains such as story understanding, building educational
systems, and so forth. On the other hand, the same issues that arise from executing
tasks in a dynamic, unpredictable world arise in dialogue planning and execution. Am-
biguity and vagueness arise in other sensor modalities, too. For example, an agent may
have to change its point of view to eliminate ambiguity in a visual scene. This strongly
argues for a reactive task execution architecture for dialogue systems. We have built an
architecture, the Dynamic Predictive Memory Architecture, which unifies task execu-
tion, descriptive logic and conceptual parsing in a robust dialogue system that cleanly
interacts with an agent’s other tasks. Any architecture, though, will have to address the
issues that reactive task execution systems are designed to solve.

4



Bibliography

Firby, R. J. 1995. Adaptive Execution in Complex Dynamic Domains, Yale University
Technical Report YALEU/CSD/RR #672.
Fitzgerald, W. 1997. The Conceptual Memory Manual, I/NET Technical Report, Oc-
tober, 1997.
Fitzgerald, W. 1997. The Conceptual Memory Parser Manual, I/NET Technical Report,
October 1997.
Fitzgerald, W. and Firby, R. J. 1998. The Dynamic Predictive Memory Architecture:
Integrating Language with Task Execution. Proceedings of IEEE Symposia on Intelli-
gence and Systems (SIS ’98), May 21-23, Washington, D.C.
Fitzgerald, W and Firby, R. J. 1996. Item descriptions add value to plans. Proceedings
of The Workshop on Plan Execution: Problems and Issues of the AAAI Fall Sympo-
sium, San Mateo, CA: Morgan Kaufmann.
Martin, C. 1993. Direct Memory Access Parsing. Ph.D. diss., Dept. of Computer
Science, Yale Univ.
I/NET’s Conversational Interface: http://www.inetmi.com/ci/ci.html.

5


