
Programming Without a Computer: A New Interface for Children under Eight

Peta Wyeth and Helen C. Purchase
Department of Computer Science and Electrical Engineering

University of Queensland, Australia
peta@csee.uq.edu.au
hcp@csee.uq.edu.au

Abstract
Electronic Blocks are a new programming interface,
designed for children aged between three and eight years.
The Electronic Blocks programming environment includes
sensor blocks, action blocks and logic blocks. By
connecting these blocks children can program structures
that interact with the environment. The Electronic Block
programming interface design is based on principles of
developmentally appropriate practices in early childhood
education. As a result the blocks provide young children
with a programming environment that allows them to
explore quite complex programming principles. The
simple syntax of the blocks provides opportunities for
young children unavailable through the use of traditional
programming languages. The blocks allow children to
create and use simple code structures. The Electronic
Block environment provides a developmentally
appropriate environment for planning overall strategies
for solving a problem, breaking a strategy down into
manageable units, and systematically determining the
weakness of the solution. Electronic Blocks are the
physical embodiment of computer programming. They
have the unique dynamic and programmable properties of
a computer minus its complexity.

1. Introduction

Electronic Blocks aim to provide young children, aged
between three and eight years of age, with a new interface
for exploring programming concepts. Electronic Blocks
represent a paradigm shift, away from using the computer
to teach programming, towards a physically embodied
system that provides programming experiences that
involve active manipulation and transformational of real
materials. This programming interface has been designed
to take into account the special needs of children under
eight and has been based on early childhood development
and learning research.

Electronic Blocks are blocks with electronic circuits
inside them. By placing electronic blocks on top of one

another young children build the equivalent of “computer
programs”. Sensors and effectors built into the blocks
allow children to build structures that interact with the
environment. The sensor blocks detect light, sound and
touch while the effector or action blocks are capable of
producing light, sound and movement. By connecting
sensor blocks with action blocks children can program
their own structures. They might create a group of
“robots” and these robots might wink at each other, move
when they hear sound, or be capable of following a light.
There are also logic blocks which logically negate, delay,
and, and toggle signals between sensor blocks and action
blocks. The inclusion of these blocks adds an additional
dimension to the capabilities of the children’s creations.

The design of these blocks has now been completed and
the implementation phase of the Electronic Block project
is nearing the completion. Once successfully implemented,
the Electronic Blocks will be extensively evaluated. This
evaluation has been designed to explore the extent to
which electronic blocks allow children to explore
programming concepts as hypothesised in this paper.

1.1. Learning to Program: A Powerful
Educational Experience

When computers were first introduced in early
childhood settings, there was a propensity for using the
computer as a tool to reinforce existing practices,
facilitating activities such as reading, writing and
mathematics. This mechanistic style of computer use, still
seen to some extent in schools, led educators to ask
whether or not computer-based activities offer anything
that is substantially different from what can be obtained in
the classroom by other means [13][3][14]. The answer for
some has been for educational institutions to embrace
computer use that offers opportunities for children to
explore the computer’s unique dynamic and programmable
properties. From as early as 1980, with the ground-
breaking work of Papert [9], researchers recognised that
computer programming as an educational activity had
great potential as a vehicle for the acquisition of useful

cognitive skills such as problem solving and reflective
thinking.

The research outlined in this paper follows this school
of thought. It is widely acknowledged that while
computers can have many functions within an early
education setting, its power as a tool for technology
education lies in the programmable and dynamic
properties unique to it. It is these properties which make it
different from other media with which children interact.
This type of computer exploration allows children to
become involved in technology in a way recommended by
Raizen et al. [10]. Computer programming requires
children to use their intellectual resources while involved
in processes such as designing, producing and using, to
create systems and structures. Programming also provides
the opportunity for children to become involved in “seeing
and constructing in terms of new formal knowledge of
how things are put together” [7].

For over a decade researchers a MIT Media Laboratory
have been studying the richness of experiences that
involve exploration of the dynamic and programmable
properties of a computer. The strong belief that children
benefit greatly from becoming creators, not just
consumers, of computer activities, drives their research. It
is a philosophy embraced by the research discussed in this
paper. Programming a computer allows children to have
an impact on the technology they are using, they become
the creators, and they are in control. Through learning to
program a computer children develop a much deeper
relationship with, and consequently deeper understanding
of, the computer [12].

Unfortunately for young children, the ideas about
instructions and sequence, which form the core of
programming, are not necessarily simple. At a time when
young children are only just acquiring the rudiments of
notational systems and are struggling with symbolisation
in language [13], it would be unreasonable to expect them
to cope with the symbolic systems required to successfully
program a computer. In addition, programming languages
are artificial rather than natural languages and
consequently, they have a different epistemology that
deals with the unfamiliar world of computer data
structures and algorithms [15]. This makes them even
more difficult to learn.

As an alternative to the computer, Electronic Blocks are
designed to provide preschool and early primary school
children with a resource that has the unique dynamic and
programmable properties of a computer minus its
complexity. Electronic Blocks are the physical
embodiment of computer programming. They are naturally
less complex to program than a computer as they do not
require a knowledge of complex symbolic systems.

2. Developing a New Programming
Interface

The Electronic Block programming interface
incorporates two sets of design criteria, those that ensure
the age-appropriateness of the design and those that
capture the programmable elements of a computer.

2.1. Design Criteria

In order to meet principles of developmentally
appropriate practices that reflect current knowledge and
beliefs about what constitutes high quality,
developmentally appropriate early childhood education,
the design of Electronic Blocks must ensure:
1. activities are open-ended and discovery-oriented,

allowing children to be actively involved in the
learning process;

2. interaction encourages child-initiated play;
3. experiences involve active manipulation and

transformation of real materials;
4. entry level knowledge and experience is kept to a

minimum;
5. provision is made for children’s varied skill and

ability levels;
6. construction activities that involve design, creation

and evaluation processes form the basis of
interactions.

(based on Bredekamp and Copple [2])
Applying the principles of developmentally appropriate

practices, aims to ensure that the Electronic Blocks are a
developmentally appropriate resource for providing
programming experiences to children under the age of
eight.

In addition, in order to create a programmable resource,
electronic blocks have been designed using guidelines
outlined by Resnick [11]. These guidelines have formed
the basis of the following design criteria. Electronic
Blocks need to:
7. be non-algorithmic – the path of action is not fully

specified in advance;
8. be complex – the total path is not visible;
9. incorporate uncertainty – not everything that bears on

the task at hand is known;
10. allow users to find structure in apparent disorder;
11. yield multiple solutions, each with costs and benefits.

These 11 design criteria have formed the platform on
which the Electronic Blocks have been based.

3. A Description of Electronic Blocks

The Electronic Blocks have been designed so children
can connect them just as they would any other blocks. The
blocks have been made by placing electronics inside Lego

Duplo PrimoTM blocks. This ensures that the blocks are
easy to stack and connect.

Electronic Blocks have inputs and outputs and when
connected, the output of one block controls the input of
another. There are three kinds of electronic blocks: sensor
blocks, action blocks and logic blocks. Sensor blocks
detect light, touch and sound within the environment.
Action blocks produce some kind of output: a light block
produces light, while a movement block is capable of
motion. The sensor blocks will provide the signals that
make the action blocks “act”.

Logic blocks have an intermediary role. Placed between
a sensor block and an action block they have the ability to
alter the expected action.

3.1. Sensor Blocks

There are three Electronic Sensor Blocks: a seeing
block, a hearing block and a touch block. These blocks are
capable of detecting light, sound and touch, respectively.
They are single connector blocks that have an input
attached to the upper connector and an output attached to
the lower connector (see Figure 1). The input is off unless
it explicitly receives an on signal. The input and the sensor
are ORed together to produce the output. As a result when
two or more sensor blocks are stacked on an action block
any sensor input will trigger the action block.

3.2. Action Blocks

Action blocks produce some kind of output. The light
block produces light, the sound block produce sound and
the movement block is capable of motion. All action
blocks are double connector blocks (see Figure 1). They
are physically constrained by a base plate so that they
cannot be placed on top of another block and have to be
positioned at the bottom of a block stack. The two upper
connectors may receive an input signal. Each action block
works as an OR – the action takes place if the block
receives input from either upper connector.

3.3. Logic Blocks

With the exception of the and block, these blocks are
single connector blocks with an input attached to the upper
connector and an output attached to the lower connector
(see Figure 1). The input of the not, toggle, and delay
blocks is off unless an on signal is received. An on signal
will produce an output relative to the logic of the block.

The and block, a double connector block, has two upper
connectors which may receive an input signal (see Figure
1). The block works as a logical AND – it must receive an
input from both connectors to produce an output. The
output signal produced is attached to both lower
connectors.

4. Young Children Programming with
Electronic Blocks

Children of all ages are capable of programming using
the electronic blocks. They have been designed to be used
by children across the early childhood spectrum – children
under five who are not engaged in the formal education
process as well as school aged children.

4.1. Pre-schoolers Programming ~ simple
constructions producing simple behaviours

Even very young children can use a set of Electronic
Blocks. Three, four and five-year-olds can stack and
balance the Electronic Blocks and as a result become
familiar with their simple functionality. Children of this
age can experience electronic blocks in the same manner
they experience any other construction material. As a
result of simply playing with the blocks, children can
accidentally produce interesting behaviours that they
would undoubtedly find fascinating. They might build a
block tower that flashes when they talk, or moves with

Hearing
Seeing
Touch
Not

Toggle
Delay

Single Connector Block

Light
Sound

Movement
And

Double Connector Block

Figure 1. Single and double connector
electronic blocks

their touch. These are examples of simple sensor-action
combinations. Given a set of three sensor blocks and three
action blocks, there are a total of nine such combinations.
While young children are becoming used to the
functionality of Electronic Blocks it may be advantageous
to limit interactions to these simple input-output
combinations. Logic blocks may be added when children
demonstrate confidence using the sensor and action
blocks.

4.2. The Impact of Logic Blocks

The addition of logic blocks to the set of Electronic
Blocks opens up a wide variety of additional construction
opportunities. Logic blocks provide users with the
capability to:

• only produce an action if two input signals are
received simultaneously,

• produce an action if a particular stimulus is not
received,

• add a time delay between the sensor input and the
desired action, and

• toggle the input so that in the first instance the
stimulus from the environment will “turn the
action on” and the second instance of the stimulus
will “turn the action off”.

A task that sees the introduction of a logic block is the
creation of a car that starts when you clap and stops when
you clap again. A toggle block placed between a hearing
block and a movement block will achieve this result. Logic
blocks add to the complexity and variety of structures that
may be created.

4.3. Increasing Complexity – Creating
Interacting Electronic Block Stacks

A fascinating aspect of Electronic Blocks is their ability
to interact not only with the environment but also with
each other. An example of two Electronic Block structures
interacting is the creation of a remote control car. By
creating one block stack which contains a touch block and
a light block and another stack which has a seeing block
on top of a movement block, a child has effectively created
a remote control car. By pressing the touch block, the child
triggers the light. This light in turn is detected as an input
by the seeing block which actives the movement block.

5. Promoting Programming Skills with
Electronic Blocks

Programming is generally thought of in terms of code
writing and debugging – in essence consisting of “a series
of written instructions that make a computer accomplish a
task” (Pea and Kurland, 1984 as cited in [8]). However, in

recent years, the changing nature of computer interfaces
has lead people to question this definition of
programming. Given the development of direct
manipulation programming languages such as ToonTalkTM

[6] and Cocoa [15], the acceptance of “languageless”
programming as a legitimate alternative for the purpose of
teaching programming is gaining momentum.

In addition to “writing code” programming is about
defining a problem and being able to generate effective
programming approaches with an awareness of the
alternatives that are most appropriate. A programmer
needs to design a solution based on a hypothesis of how
the problem will best be solved. Developing a solution
requires an evaluation of alternate strategies and careful
planning of the steps required to achieve this solution.
Subsequent testing is required to determine the strengths
and weaknesses of the original hypothesis.

These are the skills that the Electronic Blocks
programming environment aim to promote. In analysing
the extent to which Electronic Blocks can promote the
development of such programming skills the following
hierarchy (developed by Oakley and McDougall [8]) has
been used:

Each of these skills is examined with respect to how it
can be achieved more readily using Electronic Blocks than
by the use of a traditional programming language.

5.1. Knowledge of Syntax

The syntax of Electronic Blocks is very simple. In order
to produce some kind of behaviour children must
1. Include an action block in the block stack.
2. Include a sensor block in the block stack.
3. Place the action block at the bottom of a block stack.

All action blocks are physically constrained by a base
plate ensuring that they cannot be placed on top of another
block. Therefore, creating a block stack to produce a
behaviour is simple. All that is required is one sensor
block and one action block. A child can create a car that
moves in a bright environment by placing a seeing block
on top of a movement block. By placing a touch block on
a light block a child has created a camera flash – the light
flashes when they hit the button.

In order to use logic blocks successfully children need
to understand that:

Evaluation of Alternate Strategies
Complex Planning
Debugging
Use of Simple Structures
Coding Simple Structures
Knowledge of Syntax Lowest

Highest

1. Logic blocks alter the signal they receive from the
blocks above them. If they are at the top of a block
stack they will not effect the operation of that stack.

2. If two sensor blocks are placed on top of a logic block
then the logic block will perform the logic operation
when either environmental condition is met. In the
example in Figure 2 the light will turn on in the dark
(ie. not light) or when not touched. Either condition
effects the behaviour of the action block.

Logic blocks increase the complexity of electronic
block syntax. The order of placement of the logic blocks
within a program stack is an important consideration, as
each change in order has the potential to yield a different
outcome. Fortunately, even with this increase in
complexity, two factors make it possible to work through
logic issues using trial and error. Firstly, any solution stack
that has a sensor block and an action block yields a
testable behaviour. This allows the child to easily
determine the impact of a logic block in a stack. Secondly,
changing a program stack is a relatively straightforward
operation – simply pulling the blocks apart and reordering
the stack.

Compared with the syntax of even the simplest
computer programming language, the syntax of electronic
blocks are significantly less complex. This lack of
complexity ensures that Electronic Blocks provide a
powerful platform for teaching children fundamental
programming concepts. Reducing the complexity of the
syntax provides children with greater opportunities to
focus on high-level programming concepts such as
debugging, planning and evaluating strategies.

5.2. Coding Simple Structures

An important issue in learning to program is program
design – successful mapping between problem domain and
program domain (as defined by Brooks cited in [4]).
Research indicates that end user programmers have
difficulty dealing with entities in the program domain that
do not have corresponding entities in the problem domain
and an abundance of low level primitives is one of the
great cognitive barriers to programming (for a review of
this research see [4]). Given the cognitive limitations of
young children, it may be concluded that such difficulties
would be amplified.

An important consideration, then, for creating a
programming environment for young children, is the
inclusion of entities that map directly back to the problem
domain. Electronic blocks represent such entities. If a
child wishes to create a robot that sings in the light, then it
is a simple matter of mapping the problem to the blocks
available. That child will need to include a seeing block so
the robot can tell whether it is light or dark and a noise
block to create the sound. If that child then wanted to
create a robot that does not sing in the light it is a matter of
adding a not block to the program stack. If the child wants
the robot to sing in the light after a delay they just need to
add a delay block.

This task-oriented style of programming makes the
coding of simple structures relatively simple. Each entity
in the Electronic Block system maps directly to the
problem domain.

While new task-specific visual programming languages
are being designed to address this issue, most computer
programming languages are full of low-level primitives
that do not map directly back to the problem domain. The
act of coding a simple structure in most programming
languages requires a knowledge of low-level primitives
and how they should be combined to achieve the desired
result. Given that young children rely more on their visual
and auditory perception for knowledge than they do on
logical thought processes [5] it is understandable that they
find type of programming is extremely difficult.

5.3. Use of Simple Structures

A child can create a camera flash by placing a touch
block on top of a light block. They can create a remote
control car by placing a seeing block on a movement block
and then using the camera flash as the remote control (see
Figure 3). Pressing the touch sensor would result in a light
turning on. This light would be sensed by the seeing block,
which would in turn trigger the movement of the
movement block. A remote control vehicle has been
created.

This is an example of a way in which Electronic Blocks
allow children to reuse simple “code structures”. The same

Light
Block

Not
Block

Seeing
Block

Touch
Block

Figure 2. Program stack including a logic block

camera flash may be subsequently used to trigger a series
of seeing block, light block combinations, which grouped
together make an interesting lighting display.

Once familiar with the syntax of the Electronic Blocks
and experienced in the coding of simple structures, reuse
of the structures is simply a matter of locating them near
another block stack so they are able to trigger a sensor
located on that stack.

Using simple structures in traditional programming
languages is significantly more complex. This is largely
due to the greater complexity of both the syntax and
semantics of these languages. A new generation of the
Logo programming language, Boxer, developed at MIT
and designed as the successor of Logo, attempts to address
this issues. The designers have created an environment
where computational objects such as programs are visual
units (boxes) that may be easily manipulated as a whole.
They have attempted to create a system that allows
children to directly change or use anything put on the
screen, thereby creating a simple form of concrete
programming (di Sessa, 1984, cited in [1]). Such work
acknowledges the difficulties faced by young children
when learning to master a programming language.

5.4. Debugging

An important consideration in the debugging process is
the need that programmers have to evaluate incomplete
programs as well as finished ones [4]. In fact, studies show
that the less experienced the programmer, the smaller the
amount that is produced before it must be evaluated. An
important characteristic of the Electronic Blocks is that
small fragments of larger programs are generally complete
within themselves and may easily be tested in a stand-
alone fashion. An example of this is the creation of a
vehicle that moves either when it hears a noise or when it
sees a light. A partial solution would involve placing a
hearing block on a movement block. This “code fragment”
could be tested simply by making a noise to ensure that the

vehicle moves. The addition of a seeing block would
complete the solution.

The Electronic Blocks provide an environment for
novices where it is easy to check a program fragment
before adding to it. Every step can be checked
individually, as can combinations of steps, to see whether
something has gone wrong. This is a programming
environment that allows seriously incomplete program
fragments to be evaluated. Most computer based
programming environments do not allow this flexibility.

5.5. Complex Planning

A programmer must plan the overall strategy for
solving a problem, break this strategy down into
manageable units, and to systematically seek out weakness
in one’s reasoning.

The Electronic Block programming environment
provides the opportunity for children to become involved
in this type of planning activity. To illustrate this point, the
example of creating robots that wink at each other is used.
Initially a child might create two program stacks, each
containing a seeing block and a light block. The light
block represents the “wink”. This solution has a problem.
Neither robot will initiate the winking sequence. Both are
sitting waiting for a light input. The solution may involve
the addition of a not block to one of the stacks. This
modification to Robot1 will result in it starting the
winking sequence. When Robot2 winks in response,
Robot1 will sense the presence of the light and its light
will turn off. As a result Robot2’s light will then turn off.
This results in a wink by Robot1, and the process is
repeated. This solution might be further improved by the
addition of a delay block to Robot2. This solution is
illustrated in Figure 4.

Figure 4. A solution to the winking robots
problem

Light
Block

Touch
Block

Movement
Block

Seeing
Block

Figure 3. An example of reusing simple code
structures

Camera Flash /
Remote Control

Light
Block

Seeing
Block

Not
Block

Light
Block

Seeing
Block

Delay
Block

Robot1 Robot2

The emergent nature of the problem makes it an ideal
programming task for children. The path of action is not
fully specified in advance, nor is it visible. Children are
required to make a plan of action, evaluate each step
through testing their solution and make any necessary
adjustments.

Possessing strategies for planning and debugging is a
prerequisite for programming success. Many bugs arise as
a result of plan composition problems – difficulties in
putting the ‘pieces’ of a program together [4]. Electronic
Blocks avoid this difficulty because each piece of a
program works independently and each step towards a
solution may easily be tested. In addition, research
suggests that using spatial reasoning for support may be
useful in the planning and debugging processes [4].
Electronic Blocks provide more scope for visual and
spatial reasoning than text based languages.

5.6. Evaluation of Alternate Strategies

There are many Electronic Block programming tasks
that have multiple solutions, each with costs and benefits.
As a physically embodied programming environment,
Electronic Blocks provide a powerful means for evaluating
alternate strategies. Children, unsure of the best solution,
may easily build two solutions concurrently, and then
compare and contrast them. While young children might
struggle to logically analyse the positives and negatives of
alternative strategies (as may be required with a traditional
programming language), their natural curiosity and
inherent desire to construct their own understanding of the
world, acts as a driving force in the exploration of such
alternatives with Electronic Blocks. Children are true
scientific explorers of their environment and within a non-
threatening environment that encourages autonomy,
children will naturally seek alternate strategies and test the
limits of their creations.

6. Conclusion

Electronic Blocks are physically embodied and
consequently will provide experiences that involve active
manipulation and transformational of real materials. The
Electronic Blocks are undeniably a resource that allows
children to work both autonomously and actively, and the
variety of expressive opportunities they offer guarantees
open-ended, discovery oriented learning experiences.

6.1. Successful, Independent Programming

The examples of programming outlined above show
that children can use the Electronic Block programming
environment independently to build programs. The theory
of developmentally appropriate practice utilised in the
design of the electronic blocks guarantees a learning

environment where children can experience programming
unimpeded. Alan Kay of the Apple Research Laboratory
identified this as of key significance.

“One of the things I have been interested
in for many years … is the possibility of
giving young kids direct access to
interesting ideas via an interface that does
not require the mediation of adults at all.”

[7]
The Electronic Block programming interface is simple

to master and while things might not always go to plan,
making adjustments is as easy as pulling blocks apart and
rebuilding them.

6.2. A Flexible Programming Interface for
Children of All Ages

In designing the Electronic Blocks consideration has
been given to providing a number of levels at which
children can work. They can be used as "normal" building
blocks or provide challenges through the use of logic
blocks and through the creation of structures that interact.
The flexibility - with respect to skill and ability levels -
with which the Electronic Blocks have been designed,
makes them a powerful resource for teaching
programming concepts. However, it is the more complex
interactions with Electronic Blocks, the use of logic blocks
and interacting block structures, which provide the greatest
opportunities to learn about programming. Examples
outlined throughout the paper, demonstrate how the
simplicity of Electronic Block syntax allows for
significant opportunities to explore programming concepts
such as defining a problem, planning the solution, testing
and debugging, and evaluating alternatives.

6.3. Evaluating the Electronic Blocks in
Educational Settings

Theoretical evidence points to the Electronic Blocks
being a powerful tool for young children to experience
programming without the use of a computer. The next step
in this project is to carry out evaluations in school settings
to the test this hypothesis. The Electronic Blocks are
currently being implemented following the design outlined
in this paper. They will be taken into both preschool and
primary school settings for complete evaluation.

7. References

[1] Adams, T. (1996). Logo environments: The evolution of the
language. In J. Oakley (ed.), Logo in Australia: Selected readings
(pp. 1-16). Richmond, Vic: Computing in Education Group of
Victoria.
[2] Bredekamp, S., & Copple, C. (Eds.). (1997).
Developmentally appropriate practice in early childhood

education. (Revised ed.). Washington, D.C.: National
Association for the Education of Young Children.
[3] Cuffaro, H. K. (1984). Microcomputers in education: Why is
earlier better? Teachers College Record, 85, 559-568.
[4] Green, T. R. G., & Petre, M. (1996). Usability analysis of
visual programming environments: A ‘cognitive dimensions’
framework. Journal of Visual Languages and Computing, 7, 131-
174.
[5] Gullo, D. F. (1992). Development and characteristics of
kindergarten-age children. In L. R. Williams, & D. P. Fromberg
(eds.), Encyclopaedia of early childhood education (pp 206-207).
New York: Garland Publishing Inc.
[6] Kahn, K. (1996). ToonTalkTM – An animated programming
environment for children. Journal of Visual Languages and
Computing, 7, 197-217.
[7] Kay, A. (1994). Observations about children and computers.
Advanced Technology Group, Learning Concepts Group, Apple
Research Laboratory Research Note No. 31. [Online]. Available:
http://www.atg.apple.com/technology/reports/RN31.html
[8] Oakley, J., & McDougall, A. (1997). Young children as
programmers: Fantasy or flight. In A. McDougall, & C. Dowling
(Eds.), Learning in Logo microworlds. Richmond, Vic:
Computing in Education Group of Victoria.
[9] Papert, S. (1980). Mindstorms: Children, computers and
powerful ideas. New York: Basic Books.
[10] Raizen, S. A., Sellwood, P., Todd, R. D., & Vickers, M.
(1995). Technology education in the classroom: Understanding
the designed world. San Francisco: Jossey-Bass Publishers.
[11] Resnick, L. (1987). Education and learning to think.
Committee on Mathematics, Science, and Technology Education,
Commission on Behavioural and Social Sciences and Education,
National Research Council. Washington, D.C.: National
Academy Press.
[12] Resnick, M., Bruckman, A., & Martin, F. (1996) Pianos not
stereos: Creating computational construction kits. Interactions, 3
(5), 41-50.
[13] Sheingold, K. (1987). The microcomputer as a symbolic
medium. In R. D. Pea, & K. Sheingold (Eds.), Mirrors of minds:
Patterns of experience in educational computing (pp 198-208).
Norwood, NJ: Ablex Publishing Corporation.
[14] Sloan, D. (1984). On raising critical questions about the
computer in education. Teachers College Record, 85, 539-547.
[15] Smith, D. C., Cypher, A., & Schmucker, K. (1996). Making
programming easier for children. Interactions, September –
October, 59-67.

