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Abstract

Current methods for recognition and interpretation of architectural drawings are limited to either low-level analysis of paper drawings or

interpretation of electronic drawings that depicts only high-level design entities. In this paper, we propose a Self-Incremental Axis-Net-based

Hierarchical Recognition (SINEHIR) model for automatic recognition and interpretation of real-life complex electronic construction

structural drawings. We design and implement a series of integrated algorithms for recognizing dimensions, coordinate systems

and structural components. We tested our approach on more than 200 real-life drawings. The results show that the average recognition rate of

structural components is about 90%, and the computation time is significantly shorter than manual estimation time.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Construction structural drawings (CSDs) are a set of

architectural drawings that describe the layout of various

structural objects (e.g. columns, beams, slabs, walls, and

holes) in a building and the mechanic design (e.g. steel bars or

concrete) of these structural objects. Since they define the

mechanic requirement of the entire building, they are the

most important kind of architectural drawings for quantity

surveying and construction. From CSDs, quantity surveyors

can calculate the volume of concrete and the shape and

dimension of each steel bar needed. These measurements are

usually not directly marked in the CSDs, one needs to first

mentally reconstruct the whole 3D model according to one’s

experience and the domain knowledge. Only after the

relationships of all the structural objects in the building

have been established, can these quantities be accurately

calculated. Unfortunately this manual process is very time-

consuming and error-prone.

Most of the previous research on the recognition of

architectural drawings has been limited to low-level
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analysis of paper drawings, such as vectorization and

recognition of the dimensions, texts and graphic primitives

[1–5]. To our knowledge, no previous work has attempted to

recognize the higher-level structural objects and extracts

useful information directly from electronic CSDs for real-

life construction or other applications; that is, the recog-

nition of CSDs is a new area in graphic recognition and

document interpretation. In addition to quantity surveying,

the recognition is also useful for other applications, such as

4D modeling, virtual reality, and graphical retrieval system.

We note that there has been extensive research on the

recognition and 3D reconstruction of mechanical parts from

engineering drawings [6–13]. Due to the differences between

engineering and architecture drawings, we will conclude

these methods are not suitable for our intended problem [1,2].

Generic recognition and accurate interpretation of

electronic CSDs are difficult for the following reasons.

(1) Real-life electronic drawings may not strictly follow

drafting standards and shortcuts are often used. There are

also thresholds and errors in electronic drawings; for

example, what is the largest distance tolerance of neighbor-

ing or connected graphic primitives? What is the angular

tolerance for two parallel lines? How does one recognize

structural objects when lines or arcs are missing or

extraneous? (2) A CSD only captures the architect’s
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intentions and major characteristic of the building, and its

precision varies from one architect to another. It is difficult

to develop a universal system to recognize all kinds of CSDs

and to calculate accurate engineering data from them. (3)

Manifold annotations (such as grid lines, dimensions,

references and attribute texts) are distributed within a

drawing and across multiple drawings. All the annotations,

including implicit meanings of the designers, have to be

recognized and integrated into a global coordinate system in

order to reconstruct an accurate 3D model. (4) Structural

objects exist in varied internal forms, for example, a column

may be composed of lines, solids, triangles, polylines or

blocks. Automatic recognition also faces the problem of

adaptability to new symbols and variants of existing objects.

Citing Tombre [10], ‘architectural design is more or less at

the crossroads between engineering and art, which makes

precise analysis and reconstruction more difficult’.

Our research group has been working on the recognition of

architecture drawings for the last 6 years [14–16]. Our ultimate

goals are to, fully automatically, recognize all kinds of

structural objects, reconstruct the entire 3D building, and

calculate the useful quantities for construction workers

directly from real-life electronic CSDs. During this process,

very little user interaction or parameterization will be needed.

In this paper, we present our successfully designed and

implemented automatic recognition system, which is based on

a new model called Self-Incremental Axis-Net-based Hier-

archical Recognition (SINEHIR). For a typical CSD project,

which is made up of about 72,000 graphic primitives (Table 1),

our system automatically recognizes about 17,000 structural

objects, reconstructs the 3D model, and calculates various

engineering data in less than 1 h. The data covers more than

320 tons of steel of accurate lengths and shapes, and

21,480 m2 area and 2112 m3 volume data of concrete for

various structural objects. A human usually takes at least 1.5

week to interpret and calculate such amounts of data.

The remainder of this paper is organized as follows.

Section 2 describes the specifics of electronic CSDs and

the overview of the proposed model. Section 3 presents

the various recognition algorithms for recognizing dimen-

sions, coordinate systems, columns, beams, walls and

slabs. Section 4 gives the experiment results. Finally, in

Section 5, we discuss the limitations of our system and

offer the conclusions.
Table 1

CSDs of a typical architectural projecta

CSD name Type Floors Number of

drawings

Number of

primitives

Level table Table 1–7 1 1756

Wall drawings Section

and table

1–2, 3–4, 5–6 3 13,670

Column drawings Section 1–2, 3–4, 5–6 3 11,771

Beam drawings Plane 2–3, 4–5, 6–7 3 21,280

Slab drawings Plane 2–3, 4–5, 6–7 3 23,438

a A dormitory project in Nanjing.
2. Self-incremental axis-net-based hierarchical

recognition model
2.1. Specifics of construction structural drawings

There are two main kinds of architectural drawings. One

only expresses the idea of the architect by showing the

layout of the design entities, such as windows, doors and

walls. The other more complex kind, called CSD, includes a

multitude of engineering data representing the mechanic

requirements (such as dimensions, structural objects with

accurate attributes, internal steel bars or concrete for

structural objects), which are needed for quantity surveying

and construction in real life. To reconstruct a 3D building

and to compute accurate material quantities, we must

interpret CSDs, which is the subject of our research.

A typical architectural project has several CSDs. They

may be presented as plane drawings, section drawings,

elevation drawings or tables for each type of structural

components (columns, beams, walls). Table 1 shows an

example. A CSD typically contains the following elements:
†
 Dimensions. Dimensions are used to locate structural

objects. There may be dimension annotations between

two parallel grid lines to indicate their exact distance. A

group of parallel grid lines, labeled with serial numbers

(A, B-1, B-2, C. or 1, 2/1, 2/2, 3.) is called a grid

group. Two orthogonal and connected grid groups form

an axes net. For example, Fig. 1 shows three axes nets,

marked as A1, A2, and A3 (the rightmost A1 has horizontal

and vertical grid groups, the center one A3 has the longest

grid lines).
†
 Components. Components comprise two types of struc-

tural objects: those that support the weight of the whole

building (columns, beams, walls, slabs, internal steels)

and the rest (such as holes). Fig. 2 shows a portion of a

CSD. Fig. 3 shows the columns to be extracted from

Fig. 2; Fig. 4 shows the beams and walls, and Fig. 5

shows the steel bars.
†
 Component relations. Usually no structural components

are isolated. The connection mode between components

must obey the mechanical constraints to support the

whole building. The component relations must be

correctly interpreted in order to reconstruct the whole

building and accurately calculate the engineering data.

Different connection modes between the same two

components will generate different engineering data

such as area, volume or shapes of the internal steel.

Therefore the main objectives of the recognition and

interpretation of CSDs are:
(1)
 Extracting the dimensions and grids to build axes nets

and then a local coordinate system in each CSD, and

integrating call the local coordinate systems into a

global 3D coordinate system;



Fig. 1. Axes nets in CSD.
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(2)
 Analyzing structural components, interpreting them by

their attributes and establishing their relations;
(3)
 Reconstructing 3D building and accurately calculating

all the necessary structural data.
Fig. 2. Part of a CSD.
2.2. Overview of the SINEHIR Model

Previous recognition systems for architectural drawings

are shape specific, with the details of the graphical

constraints hard-coded into the system [1,4]. Developing

such a system requires substantial effort. Still, because

electronic drawings may not strictly follow drafting

standards, and there are often missing or sharing graphical

entities, the algorithms of such systems are not robust

enough for real-life drawings. In designing a new model for

recognizing electronic CSDs, we require that the recog-

nition algorithms be shape-independent as far as possible,

based on internal semantic constraints rather than visual

graphical constraints. We name our model Self-Incremental

Axis-Net-based Hierarchical Recognition model (SINEHIR

model). When recognizing a structural component from the

graphic primitives, SINEHIR first identifies its character-

istic features from the more regular constituents, and then

tracks the graphic objects as far as possible under the

guidance and constraints of recognized objects and the

domain knowledge. For instance, SINEHIR first recognizes
the relatively regular objects, like dimensions and grid lines,

and then analyzes columns, which are distributed around the

internal grid points. Since beams are supported by columns,

SINEHIR next tries to recognize segments of beams by



Fig. 5. Steel, grid lines and a hole to be extracted from Fig. 2.
Fig. 3. Columns to be extracted from Fig. 2.
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searching between columns. Finally, SINEHIR makes use

of structural constraints of recognized structural com-

ponents and try to track a sequence of structural components

with minimal computational overhead. Throughout the

recognition process, we incrementally simplify the drawing

by removing objects that have been recognized; this

eliminates object interference.

SINEHIR applies the following principles to analyze

CSDs:
2.2.1. Integrate multiple views based on axes nets

Each CSD of a building provides parameterization

information through one or more axes nets and auxiliary

dimension sets. The axes nets in different CSDs only

correspond to each other logically, not physically. Hence,

for 3D reconstruction of the whole building, it is necessary

to recognize and integrate all the axes nets within each CSD,

and then integrate all of them into a global 3D coordinate

system.
Fig. 4. Beams to be extracted from Fig. 2.
2.2.2. Recognize structural components based on

architectural semantics

It is usually not possible to recognize a structural object

only from the local geometry information, especially in real-

life drawings with imperfections. Imitating the way humans

read the drawings, recognition and interpretation of

structural components should be guided by structural

semantics and their environment.

2.2.3. Integrate structural components using a hierarchical

self-incremental approach

The process of recognizing CSDs includes the analysis of

graphic primitives, recognition of structural components,

and integration of all recognized components in different

layers of the building. The order of these processes plays an

important role in the incremental construction of the whole

building—from columns to beams on each layer of the

building, from the bottom to the top layers. Recognitions

performed earlier can provide references, proofs and

guidance to subsequent recognition.
3. Hierarchical self-incremental recognition method

In this section, we describe the main algorithms of

SINEHIR to realize the above-mentioned three main

principles of recognition and interpretation of CSDs.

3.1. Recognition of global coordinate system based

on axes nets

Dimensions are distributed within individual drawings

and across multiple drawings. They form the basic reference

for recognition and reconstruction. SINEHIR first recog-

nizes the dimensions and integrate them into axes nets,



Fig. 6. Dimensions in CSDs.
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then reconstructs the local coordinate system for each CSD,

and finally integrates them into a global 3D coordinate

system. We first define some terms.
†
 Physical coordinate system: a coordinate system in

which the graphic primitives are drawn.
†
 Logical coordinate system: a coordinate system built

from the dimensions or attribute annotations (like height,

width, length).
†
 Axes net logical coordinate system: the logical coordi-

nate system associated with an axes net.
†
 Local logical coordinate system: the logical coordinate

system associated with a CSD.
†
 Global logical coordinate system: the logical 3D

coordinate system of the whole building.
3.1.1. Recognition of dimensions

Jensen [13] considered a dimension as composed of

graphics entities such as dimension lines, extension lines,

leaders, arrowheads and text. In CSDs, a dimension is

composed of a dimension line lid, two extension lines lie1

and lie2, two oblique lines lio1 and lio2, and a dimension text

t, which can be represented as dihlid, lie1, lie2, lio1, lio2, tii

(Fig. 6). A dimension shape is composed of all the entities of

a dimension except the text, i.e. h lid, lie1, lie2, lio1, lio2i.

Several dimension recognition methods have been proposed

in the literature [17–20]. These methods usually recognize
Fig. 7. An example of dim
dimensions by starting from the detection of texts or

arrowheads. They are not applicable to CSDs for three

reasons. (1) Dimensions in CSDs are usually delimited by

oblique lines, not arrowheads. (2) It is not reliable to

recognize dimension shapes from texts because the dimen-

sion texts are not always centered on the dimension lines

(Fig. 6(b)). The distance between the text and the dimension

shape, and also the length of dimension lines, are not

reliable for the recognition of dimension texts. For example,

in Fig. 6(c) the text ‘1100’ is nearer to a candidate

dimension shape than the correct annotation text ‘1000’. In

Fig. 6(d), the length of the dimension line of the annotated

dimension text ‘800’ is much longer than that of ‘1000’.

Fig. 7(a) illustrates a scenario in which recognizing the

dimensions either from the texts or from candidate

dimension shapes would be difficult. (3) Few of the former

research efforts consider accurate geometry reconstruction

for quantity surveying or the integration of multiple

drawings to build a global 3D coordinate system.

We propose an iterative bidirectional method for

dimension recognition. We first recognize the candidate

dimension shapes from the short oblique lines, and then

group those dimensions that share a dimension line or

extension lines into a dimension group. Dimensions in a

dimension group are ordered sequentially along a dimension

line; for example, Fig. 7 shows a group hdi, diC1, diC2i.

Next, for each candidate dimension shape, we collect all its
ension recognition.
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nearby texts, within a given threshold. At the same time, for

each dimension text, we collect all the nearby candidate

dimension shapes. Finally, the dimension shapes and

dimension texts are matched bidirectionally—a

new dimension is considered recognized if a candidate

dimension shape matches a candidate dimension text, or

vice versa. When a dimension is recognized, we remove the

pertinent text from the sets of candidate dimension texts of

all other dimension shapes, and similarly, remove the

pertinent dimension shape from the sets of candidate

dimension shapes of all other dimension texts.

Let L be the set of lines in a CSD, and T be the set of

texts. We define

TextHeight Z
1

n

Xn

iZ1

heightðtextiÞ

where n is the number of texts in a CSD. The algorithm

proceeds as follows.
1.
Tab

Res

Ste

Ste

Ste

Ste
Find all the candidate oblique lines: consider each line

lih(xi0, yi0),(xi1, yi1)i in L, add the line to the set of

candidate oblique lines, OL, if it satisfies the following

conditions:

(a) length(li)!TextHeight

(b) Neither (xi0, yi0) nor (xi1, yi1) is the endpoint of any

other lines in L.
le 2

ults o

p 3

p 4, it

p 4, it

p 5
2.
 Find all the dimension groups: consider each line li in

(L-OL), and try to find the dimension group that has li as

the dimension line as follows.

(a) Search for two oblique lines lk, lj, ksj, in OL, where

li intersects both lk and lj. Let the intersection points

be (x1, y1) and (x2, y2), respectively.

(b) Search for two candidate extension lines in (L-OL),

where lm intersects with li at (x1, y1), ln intersects

with li at (x2, y2), and litlm, litln (i.e. lm and ln are

two). If successful, create a candidate dimension

shape dihli, lm, ln, lk, lji;

(c) If di is the first candidate dimension shape of li
found, create a new dimension group dg containing

only di,

else let the current group be dgZhd1hli; l1e1; l1e2;

l1o1; l1o2i;.;dshli; lse1; lse2; lso1; lso2ii, and add di

into dg at the correct position as follows:

(i) If lmZlre2, lnZl(rC1)e1, for some 1!r!s, then

insert di into dg between dr and drC1

(ii) If lnZl1e1, then insert di into dg as the first

dimension shape.
f runn

eratio

eratio
ing the dimension recognition algorithm on Fig. 7(a)

di diC1 diC2 dj

{800, 300, 1200, 500} {700, 900} {900} {800

n 1 {800, 1200, 500} {700} – {800

n 2 {800, 1200} – – {800

{800} – – {120
(iii) If lmZlse2, then add di into dg as the last

dimension shape.
, 300

, 120

, 120

0}
, 1200

0}

0}
3.
 Find all the candidate dimension texts for each dimen-

sion shape and all the candidate dimension shapes for

each dimension text as follows. Consider each candidate

dimension shape found in step 2, dihlid, lie1, lie2, lio1, lio2i,

for each text tj in T, make tj a candidate dimension text

for di and make di a candidate dimension shape for tj if

distance(tj, lid)!x, where xZ4!TextHeight, and tj
appears between the extension lines lie1 and lie2.
4.
 Perform bidirectional matching. Let ctdi denotes the set

of candidate dimension texts of dimension shape di and

let cstj denotes the set of candidate dimension shapes of

text tj.

(a) Consider every ctdi that is a singleton set: ctdiZ{tk}.

Output hdi, tki as a recognized dimension. Remove

ctdi and delete tk from the other ctdj(jsi).

(b) Consider every csti that is a singleton set: cstiZ{dk}.

Output hdk, ti as a recognized dimension. Remove csti

and delete dk from the other cstj(jsi).

(c) Repeat this step until no new dimension is

recognized;
5.
 If some ctdi has more than one items and

(xRTextHeight), then set xZx/2 and goto 4; else

match the remaining candidate dimension shapes and

texts according to distance, or warn the user.

Fig. 7 shows two dimension groups to be recognized

and Table 2 shows the incremental recognition results.

After step 3, the set of candidate dimension texts of di is

{800, 300, 1200, 500}. After the first iteration of step 4, the

set is reduced to {800, 1200, 500} because 300 is matched

by djC1 and thus is removed from di and dj. After another

iteration of step 4, the set is further reduced to {800, 1200}.

When only one text is left for a dimension shape, the

dimension is considered successfully recognized. After

step 5, 1200 is matched to di according to distance. The

text 1100 is not used because it is not between two

extension lines, thus not a dimension text.
3.1.2. Recognition of axes nets and axes nets-based

geometry reconstruction

There are usually hundreds of dimensions distributed in

all the CSDs in a project. To reconstruct the global logical

coordinate system, the first step is to normalize all the

recognized dimensions.
djC1 djC2 djC3

} {300} {500, 700, 900} {900, 1400}

– {500, 700} {1400}

– {500} –

– – –



Fig. 8. Parallel grid groups sharing the same extension lines.

T. Lu et al. / Computer-Aided Design 37 (2005) 1053–1069 1059
The two end points of a dimension are the intersection

of its dimension line with the two extension lines. (If

dimensions are represented with short oblique lines, then the

end points are usually also intersection of oblique lines and

extension lines.) For brevity, we define a1za2 if and only if

ja1Ka2j!x, where x is the following threshold (calculated

from only information in the CSD, before any high-level

components are recognized):

x Z TextHeight=20 (1)

Let the two end points of a dimension di be (xi1, yi1) and (xi2,

yi2). Without loss of generality, we assume xi1%xi2, and if

xi1zxi2, then yi1%yi2; that is, the dimension vector viZ
hðxi1; yi1Þ; ðxi2; yi2Þi is directed to the right and upward.

Two dimensions di and dj are connectable if their

corresponding dimension vectors viZ hðxi1; yi1Þ; ðxi2; yi2Þi

and vjZ hðxj1; yj1Þ; ðxj2; yj2Þi satisfy the following condition:

½jqi Kqjj!qx�o ½½xi2 zxj1oyi2 zyj1��

n ½xi1 zxj2oyi1 zyj2��

where qi and qj are the angles of vi and vj, with respect to the

horizontal line, and qx(vi,vj) is the angle threshold defined as

qxðvi; vjÞ Z
TextHeight

maxðminðlengthðvi; vjÞÞ;TextHeightÞ

!MAX_ANGLE_THRESHOLD (3)

and it decreases when the lengths of vi and vj increase. In our

experiments, we set MAX_ANGLE_THRESHOLD to 3. If

the dimensions are represented as arcs (angular dimen-

sions), then di and dj are connectable only if

½½ðxi1 KCjxÞ
2 C ðyi1 KCjyÞ

2�1=2 zRj�o ½½xi2 zxj1

oyi2 zyj1��n ½xi1 zxj2oyi1 zyj2�� (4)

where (Cjx, Cjy) is the center of the arc of the dimension

shape dj, and Rj is the radius.

After the dimension normalization, we select those

dimensions whose extension lines are connected to or near

some grid annotations (such as ‘A’, ‘B’, ‘C’ or ‘1’, ‘2’, ‘3’),

and organize them into grid groups if they are connectable

according to (2). An extension line of a dimension with a

grid annotation is also called a grid line. A merged grid

group can be represented as

GG Z hv1; v2; v3;.; vmi

where vi is a dimension vector. To remove redundant

information, we also merge those recognized grid groups

that share the same extension lines but are not connectable

according to (2), e.g. parallel grid groups as shown in Fig. 8.

Finally, we add all the nearby grid annotations (numbers or

alphabets in a circle) to the corresponding grid groups; they

will be used for determining the internal grid points in

Section 3.2.1.
Given two grid groups ggiZ ðvi1; vi2; vi3.vimÞ and

ggjZðvj1;vj2;vj3.vjnÞ, mR1, nR1, where vikZhðxik1;yik1Þ;

ðxik2;yik2Þi. An axes net hggi, ggji is considered recognized if

the vectors in ggi and ggj are orthogonal and near each other.

Without loss of generality, we shall assume that ggi is

directed somewhat to the right and ggj is directed somewhat

upward. If the groups ggi and ggj are composed of angular

dimensions, then we build an angular axes net if xi11zxj11

and yi11zyj11.
3.1.3. Reconstruction of global logical coordinate system

Next we construct coordinate systems from axes nets. A

CSD project has only one global logical coordinate system,

but always has several local logical coordinate systems,

each associated with one CSD. In each local logical

coordinate system, there may also exist several axes net

logical coordinate systems. In this case, SINEHIR needs to

select one of them to be the benchmark axes net and

recursively transforms all the axes nets nested in this axes

net. We store these parent–child relationships among the

axes nets in a CSD as a tree, with the benchmark axes net at

the root. For example, for the CSD in Fig. 1, suppose A1 is

selected as the benchmark axes net (because it has

horizontal and vertical grid groups, alternatively A3 may

be selected because it has the longest grid lines), then A3 is

nested in A1 at O3, hence SINEHIR defines A3 as a child of

A1. Similarly, A2 is nested in A3 at O2, hence A2 is identified

as a child of A3.

The detailed algorithm for constructing the global logical

coordinate system is as follows.
1.
 Transform all the axes nets in the same CSD into a local

logical coordinate system.

(a) Consider each axes net axk with grid groups hggi,

ggji. Build a right-handed logical coordinate system

F(axk) as follows: let the intersection point of the

vectors of ggi and ggj (vggi and vggj) be the origin of

F(axk), the direction of vggi and vggj be the x and y

axis of F(axk), respectively. Mark the coordinates on

the x axis and y axis according to the dimension texts

along the sorted dimensions of ggi and ggj.

(b) Identify the parent–child relationships of all the

F(axk)’s as follows. If the origin of a coordinate

system F(axk) is inside another coordinate system

F(axr), then make F(axk) a child of F(axr).
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(c) Traverse the parent–child tree structure from the

leaves, transform a coordinate system F(axk) to its

parent coordinate system F(axr) using the following

transformation matrix:

M Z

cos q Ksin q Kx0 cos q Cy0 sin q

sin q cos q Kx0 sin q Ky0 sin q

0 0 1

0
B@

1
CA (5)

where (x0, y0) are the coordinates of the origin of

F(axk) with respect to F(axr), and q is the rotation

angle needed to align the axes of F(axk) with those of

F(axr). At the root, we obtain the logical coordinate

system of the CSD.
2.
 Among all the local logical coordinate systems corre-

sponding to the CSDs, select the one with the longest x or

y axis as the benchmark coordinate system. Integrate all

the local logical coordinate systems by translating or

rotating each of them into the global logical coordinate

system.

The integration of local coordinate systems into a global

logical coordinate system eliminates several problems: a

multitude of dimension in different views, the complexity of

isomerous coordinate systems, and intersection of different

coordinate systems. Inconsistency of dimension sets can

also be easily checked.

3.2. Structural-components recognition algorithms

Most of the current recognition methods for architectural

or engineering drawings are bottom-up methods. Bottom-up

approaches begin with examining neighboring pixels, and

are mostly used to solve lower level interpretation tasks,

such as vectorization. After that, prior to recognition of

high-level structural objects, parameterization is needed to

correct all the distortions or errors [3–5,21]. Since our

objective is to automatically recognize structural objects

directly from electronic CSD drawings, bottom-up methods

are not applicable. SINEHIR adopts a top-down strategy,

starting from global relationships and constraints of

structural objects based on architectural knowledge. Requir-

ing additional parameterization or editing operations during

the recognition process is unrealistic and infeasible for the

following reasons: (1) multitude of manual interactions will

greatly decrease the efficiency of recognition system; (2) we

cannot ensure that all the errors are corrected by the users

before the recognition starts; (3) most importantly, the users

of this kind of systems are always real-life constructors,

designers or quantity surveyors who cannot understand why

editing is necessary or do not know how to edit all the

distortions or incompleteness in the drawings (which can be

easily understood by humans).

The SINEHIR model is not based only on geometrical

constraints; semantic and domain knowledge are used as far

as possible to circumvent problems due to imperfections in
drawings, such as lines are disjoint from the primitives when

they should be connected. Since the outlines of structural

objects are usually not closed due to imperfections,

geometry-based methods are not suitable for the recognition

of real-life CSDs. These methods include shape grammars,

rule-based, network-based and template-matching recog-

nition methods [1,4,22–24]. In contrast, SINEHIR first

transforms all the primitives that could represent structural

objects (such as polylines, solids, blocks) into free lines,

and merge all the connected and collinear lines into long

lines. After that, SINEHIR tracks the candidate free lines

around each internal grid point (intersection of previously

recognized grid lines) to find the columns. Because at most

one internal grid point falls within a column’s outline and at

most one column lies near an internal grid point, we build a

bounding box for each internal grid point enclosing its four

neighboring grid points. Then we use this box to constrain

the recognition of columns distributed around this internal

grid point. After the columns are recognized, those free long

lines crossing multiple columns are split into shorter ones to

facilitate the recognition of beam segments between

columns using a threshold calculated based on the

recognized columns. These recognized columns and seg-

ments form seed components. Finally, the less regular

structural components are recognized by attempting to

extend from the seed components. This is a dynamic process

within the CSD environment and based only on the domain

knowledge, so it is feasible to recognize variants of

structural objects despite drawing imperfections.

3.2.1. Column recognition based on section tracking

Columns are usually distributed around the internal grid

points of axes nets. They support beams, slabs, rooms or

other structural objects, and are the first to be built in real-

life construction. Columns in real-life drawings may be

represented in many shapes, so it is important to design an

algorithm that is general and can recognize variants of

known structural objects. Fig. 9 shows some examples of

columns. The external outlines represent the column shapes,

and the internal red lines indicate the column steel bars. The

estimation of steel bars in columns will strongly depend on

the column shape. Shape grammars have been proven to be

efficient in recognition of engineering designs [22,23] and

certain types of architectural drawings. Given a shape, they

rely on matching variants of shapes generated from shape

rules. Using shape grammars to recognize objects in CSDs

would be difficult. Very often, part of the column outline is

shared or overlapped with grid lines, neighboring symbols

or components, thus the shape of a candidate column may

not be closed. Without any hints that a column might exist, it

is difficult to judge whether a shared or overlapped line

should be used. Moreover, columns that appear to have the

same shape may be composed of completely different kinds

of graphic primitives in different CSDs; for example, a

rectangle shape may be composed of lines, polylines,

triangle solids, or rectangle solid. In fact, it is unreliable to



Fig. 9. Source column sections.
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recognize objects from thousands of overlapping or

connected lines in a real-life CSD.

SINEHIR uses a section-tracking method to dynamically

analyze columns of various shapes. In the real-life drawings,

columns are usually located around internal grid points. So

we first calculate all the internal grid points of an axes net,

and for each of the grid points, we compute a bounding box

and explode all the neighboring lines (which may be part of

polylines, solids or blocks) which intersect this bounding

box into free lines. Next we try to trace closed paths from

these free lines to find all the loops that potentially represent

columns. Finally, we omit those loops that are too small or

too big (i.e. do not meet the size and proportion constraints

of the CSD). The detailed algorithm is as follows.
1.
 Suppose an axes net is denoted as ank Z hggiðvi1; vi2;

vi3.vimÞ; ggjðvj1; vj2; vj3.vjnÞi. Calculate the intersec-

tion of all the grid lines in ggi and ggj. Let (xikjl, yikjl) be

the intersection point of the grid lines vik and vjl,

1%k%m, 1%l%n.
2.
 For each internal grid point (xikjl, yikjl), check if there is a

column around it:

(a) Define a bounding box for (xikjl, yikjl) as {(x,y)jxi(kK1)jl

!x!xi(kC1)jl, yikj(lK1)!y!yikj(lC1), 1%k%m,

1%l%n}. Explode all the neighboring polylines,

solids, and blocks that intersect with this bounding

box into free lines (including those lines that are part of

other recognized objects, like grid lines).

(b) Omit those free lines that cannot candidate

column lines, e.g. free lines nearest to tiny circles

in the bounding box because they are lines of steel

bars if tiny circles are present. Let the remaining set

be SL.
(c) Trace the closed outline of each candidate column in

SL:

i. Compute all the intersection points of the lines in

SL and store it in a set V.

ii. If two points in V are on the same line in SL,

create an edge connecting them and store it in an

edge set E.

iii. Trace a closed path by depth-first search in E.

Suppose the current edge is Ei and the candidate

next edge under consideration is Ej. The edge Ej

is added to the path if Ei and Ej share a common

point in V and Ei and Ej are not parallel. If a loop

is found, then we have found a candidate

column. Repeat this step until all the edges in

E have been considered.

(d) Omit those candidate columns that are too small or

too large compared with the size of the bounding

box.
Fig. 10 shows an example of tracking the outline of a

column. We do not start with a set of known shapes and

attempt to do shape matching. Instead we track closed

shapes using the constraints derived from architectural

knowledge (e.g. columns exist around internal grid points,

size and proportion constraints of columns in CSDs). In this

way, variants or new shapes can be tracked and recognized.

When all the columns in a CSD have been recognized, the

details (e.g. internal steel bars, dimensions) of the source

columns are copied to their corresponding columns without

attributes in other CSDs. SINEHIR first checks the

consistency of the two columns by matching their outlines:

starting from the longest side of each column, traverse

anticlockwise and match the convexity/concavity of



Fig. 11. Beam A should not be recognized as a whole.

Fig. 10. Recognizing a column by section tracking.
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the vertices. If all the boundary lines and vertices match,

SINEHIR calculates the angle between the two correspond-

ing longest lines and copy the details.
Fig. 12. Recognized segments from Fig. 9.
3.2.2. Segment recognition based on semantic relation

Beams and walls are usually represented as pairs of

parallel outlines whose projections onto each other overlap

partly or completely. Fig. 4 shows some beams colored in

pink. The shape of beams appears simple, but because many

lines overlap and are parallel to each other, it is very difficult

to decide what kind of parallel pairs may represent beams.

The lines of a beam may appear in different colors or even in

the drawings of other building layers. Furthermore, a beam

is often not represented as a closed shape, hence we neither

use the section-tracking method, nor any other methods

based on geometrical constraints for symbol recognition

[4,5,24]. We must design a new top-down method under the

guidance of semantic constraints to correctly recognize

beams from thousands of lines in real-life CSDs.

To simplify and abstract the relationships of various

kinds of structural objects for the later 3D reconstruction,

we introduce nodes and segments. They form the two basic

kinds of elements in the SINEHIR model. The recognized

columns are the nodes. A segment is a minimal portion of a

parallel line pair. A parallel line pair that spans multiple

columns or crosses parallel line pairs are divided into

segments. We called a segment that is between two columns

a seed segment, and a portion that is between a column and

another parallel line pair, or between two parallel line pairs,

an extended segment. We introduce segments because:

(1) the lengths of the two lines in a parallel pair could be

different in real-life CSDs and long lines are often shared by

other parallel pairs to improve drawing efficiency; (2) if

long parallel pairs are recognized in their entirety, then it is

difficult to recognize other objects that are composed of

shorter lines; for example, in Fig. 11, if two vertical parallel

lines of beam A are recognized as a whole, then it is difficult

to recognize the surrounding components which are

bounded by only part of beam A (e.g. corridor B, slab C,

D or E). The recognition of slabs will be introduced in

Section 3.2.3. Each junction area formed by two pairs of

perpendicular parallel lines will be recognized as an
extended node. We will represent the relationships of

nodes and segments by a component relation graph,

with the nodes as the vertices and the segments as the

edges (Fig. 16).

3.2.2.1. Recognition of seed segments. Our semantic-

relations-based segment recognition algorithm starts from

recognizing seed segments. To recognize seed segments, we

first scan all the recognized columns and find free candidate

lines between every two columns (Fig. 12). We split long

lines that cross two columns, and create new candidate free

lines of shorter lengths. Next, we identify all possible

candidate parallel pairs from these free lines, and remove

those that do not satisfy the semantic constraints (e.g. the

draught lines of annotation 300!800 in Fig. 13(a)). Let C

be the set of the recognized columns, and F be the set of free

lines (lines not used by columns, dimensions or other

recognized objects). The recognition algorithm for seed

segments considers each pair of two columns ci and cj in C,

with (xi, yi) and (xj, yj) as their physical coordinates of their



Fig. 13. Recognizing seed segments. (a) Parallel lines between two columns (b) a bounding box of two columns (c) a candidate parallel-line pair.
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centroids, respectively, and tries to find a seed segment

between the columns.
1.
 Build a bounding box for the two columns ci and cj. Let

the four corners of the box be p1Z ðxiKDx; yi CDyÞ; p2

ZðxiCDx; yiKDyÞ; p3Z ðxjKDx; yjCDyÞ; p4Z ðxjC
Dx; yj KDyÞ, where DxZdsinq, DyZdcosq, with dZ
max(width(ci), width(cj))/2, and qZatanððyjKyiÞ =ðxjK
xiÞÞ assuming (xjsxi). (Fig. 13(b)). Let the two sides of

the box at column ci and cj be liZp1p2 and ljZp3p4,

respectively.
2.
 Consider each free line f connecting (xf1, yf1) and (xf2, yf2)

and check if it is a candidate segment line. Let S be

the target set of candidate segment lines and initialize

SZ{}.

i. If (xf1, yf1) and (xf2, yf2) are both inside the box, add f

to S, where x is calculated as follows:

x Z
1

2n

Xn

iZ1

widthðnodeiÞ; where n is sizeof ðCÞ (6)

ii. If (xf1, yf1) is inside the box, and the free line f

intersects the side li of the box at (xa, ya), where

xf1%xa%xf2, yf1%ya%yf2, xjKDx%xa%xjCDx,

yjKDy%ya%yjCDy, add a new line lnew connecting

(xf1, yf1) and (xa, ya) to S. Perform a similar test on

(xf2, yf2) and the other side lj of the box (e.g.

Fig. 13(c)).

iii. If the free line f intersects with the side li of the box at

(xa, ya), and with the other side lj of the box at (xb,

yb), where xf1%xa,xb%xf2, yf1%ya,yb%yf2, xiK
Dx%xa%xiCDx, xjKDx%xb%xjCDx, yiKDy%
ya%yiCDy, yjKDy%yb%yjCDy, then add a new

line lnew connecting (xa, ya) and (xb, yb) to S;
3.
 Find all the candidate parallel line pairs from the set S.

Let PP be the target set of candidate parallel line pair and

set PPZ{}. Consider every two free lines lm and ln in S

and add ppkhlm, lni to the set PP if the following
conditions hold:

½jqm Kqnj!qx�o ½0:4%overlaplengthðlm; lnÞ=

minðlengthðlmÞ; lengthðlnÞÞ%1� ð7Þ

where qm and qn are the angles of lm and ln, with respect

to the horizontal line, qx(lm, ln) is the angle threshold

calculated from (3), overlaplength(lm, ln) is the overlap-

ping length of lm and ln, and 0.4 is an empirical minimal

scale for overlapping.
4.
 Consider every candidate parallel line pair ppk in PP and

delete it if one of the following conditions is met:

i. width(ppk)!width(ppmax), where ppmax is the paral-

lel line pair with maximum width in PP.

ii. starting from column ci (respectively cj), one can visit

along ppk and other parallel pairs in PP and back to

column ci (respectively cj) (because no beams loop

back to the same column).
The remaining parallel line pair is a seed segment if PP is

not empty, and at most only one beam that connects the two

columns in the given direction will be found. If PP is empty,

no beams will be recognized.

Fig. 13 shows an example. There are five free lines, l1 to

l5 in Fig. 13(a). The line l1 is excluded because it is outside

the bounding box. At step 3, the line l5 is truncated to get a

new line lnew, eliminating the problem of recognizing long

lines in their entirety. At step 4, PPZ fhl2; l3i; hl2; l4i;

hl2; lnewi; hl3; l4i; hl3; lnewi; hl4; lnewig. After step 4, only one

parallel pair is left, PPZ fhl2; lnewig, which is the correct

seed segment. Semantic constraints could be helpful in

accelerating this process; for example, l4 may be excluded

earlier on if it is previously recognized as a draught line.

Real-life electronic drawings often do not strictly follow

drafting standard. For example, l2 does not intersect the

outlines of the two columns at all; l5 is too long, overshooting

both columns (may also cross other objects). The segment

between those two columns cannot be recognized from its



Fig. 14. Examples of extended segments.
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boundary outline because it is not closed. Only under the

guidance of recognized components can such candidate

segments be recognized as seed segments.

3.2.2.2. Recognition of extended segments. An extended

segment is a minimal portion of a parallel pair delimited by

a column and another parallel pair, or by two parallel pairs.

Compared with the recognition of seed segments, there are

fewer clues for the recognition of extended segments from

thousands of lines in CSDs. A feasible way is to start from

recognized columns and seed segments. This approach has

proven to be efficient in our experiments with nearly two

hundred real-life CSDs.

Let C denote the set of nodes (initially consisting of only

the recognized columns), F denote the set of free lines, and

SS denote the set of recognized seed segments. Consider

each node ci in C with one or more recognized

segments connected to it. Let one of the connected segments

be ppjhlj1, lj2i. We try to recognize other segments connected

to node ci.
1.
 recalculate a threshold x from SS:

x Z
2

n

Xm

iZ1

widthðsegmentiÞ; m Z sizeof ðSSÞ (8)
2.
 create a square bounding box for ci with side of length

2x;
3.
 search for a candidate parallel-line pair ppkhlk1, lk2i from

the set of free lines F such that

(a) one end of lk1 or lk2 is inside the box, and

(b) the other end of lk1 or lk2 is connected to another

node ck(ksi); output ppk as an extended segment.
Fig. 15. Recognized nodes and segments.
Fig. 14 shows some recognizable extended segments.

Imperfections in drafting may exist; for example, a column

may not be drawn explicitly; instead two pairs of parallel

lines perpendicular to each other may be drawn to intersect

at an area that represents a column semantically. Our

proposed semantic-relation-based method successfully

resolves all these cases.

Calculating thresholds is always a big problem in

recognition of drawings. We use a dynamic adjustment

method to compute threshold as more components are

recognized. At the beginning, we calculate the distance
threshold based on the physical coordinates of the texts using

formula (1). After the columns are recognized, we recalculate

the threshold based on the size of the recognized columns

using formula (6) to recognize the seed segments, which are

connected to columns. After the seed segments are recognized,

we have more information on the average physical width of

seed segments, which will help us decide which parallel lines

may constitute the extended segments in the complex

environment, so we recalculate the threshold by formula (8).

After the extended segments are recognized, we find their

intersections with other seed segments or other extended

segments and split long segments into minimal portions.

During this process, each connection area formed by two

segments is recognized as an extended node and is added to

the set C, which initially contains only the recognized

columns. Then these newly added extended nodes bring

about another round of recognition of extended segments.

The process is ended when no extended node or extended

segment is recognized. In that sense the node and segment

recognition is a self-growing process.

Fig. 15 shows the final result of the node and segment

recognition of the CSD in Fig. 2. Fig. 16 shows the same

recognition result in the form of a component relation graph.



Fig. 16. Component relation graph of Fig. 15.

Fig. 18. Component relation graph of Fig. 17.
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3.2.3. Recognition of composite components based on

component relation graph

Composite components are high-level components that

are made up of a group of related nodes and segments. In the

slab drawing, a slab is surrounded by columns and beams,

which can be extracted as a minimum enclosure surrounded

by connected nodes and segments in a component relation

graph; that is, there is no other node or segment within a

slab’s enclosure (Fig. 17). Suppose Gs is the component

relation graph of a slab drawing, S is the set of segments and

N is the set of nodes in Gs, then for all si, sj2S, (isj), si does

not intersect sj (except possibly at their endpoints); that is,

GsZ(S,N) is a planar graph and each bounded plane in Gs

represents a slab in the corresponding slab drawing.

SINEHIR traces simple cycles in the graph to recognize

the slabs (Fig. 18). Fig. 19 shows the recognized slabs from

a real-life slab CSD, with adjacent slabs shaded in different
Fig. 17. Two slabs in part of a CSD.
colors. The slab recognition process no longer depends on

the complex graphics details of the primitives.

Walls or beams are composed of consecutive nodes and

segments. In CSDs, a wall or a beam usually has a text name

(e.g. Q1 and LL1, respectively, in Fig. 20), which is

connected to a segment by a line. So after the nodes and

segments are recognized from a CSD, part of a wall or a

beam can be recognized from their text name and segment.

Then, based on the relationships of the segments and nodes

in the component relation graph, all the beams and walls can

be quickly recognized. Fig. 21 shows the beams and walls

recognized from Fig. 20. The bottom left wall named ‘Q1’ is

composed of two connected segments (and three nodes)

because the third segment is annotated by another wall text

‘Q11’.
3.2.4. 3D reconstruction

After the columns, beams, slabs and walls are recog-

nized, we reconstruct the whole 3D building. We first

calculate, for each recognized component, its closed shape

in terms of 2D physical coordinates, then recognize and

interpret the nearby attribute annotations. Next, from its

physical shape and annotated attributes, we create a 3D

shape for each component using the global logical

coordinate system. Lastly we reconstruct the whole building

based on the 3D components. The process is described as

follows:
1.
 Calculate the physical coordinates of the shapes of

recognized nodes and segments. Build the rectangular

shape of a segment ssihli1,li2i as follows:

(a) Find the two nodes ci1 and ci2 connected to ssi, with

centroids (xi1, yi1) and (xi2, yi2), respectively.

(b) Project (xi1, yi1) to both li1 and li2, and let their

projection points be (xp11, yp11), and (xp12, yp12),

respectively. Similarly, project (xi2, yi2) to both li1
and li2 and let their projection points be (xp21, yp21)

and (xp22, yp22), respectively. Build a new rectangu-

lar shape from the four projection points obtained;
2.
 Transform the shapes of the nodes and segments into the

global logical coordinate system built in Section 3.1;



Fig. 19. Recognized slabs from a real-life slab CSD.
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3.
 Recognize and interpret the annotations of columns,

beams or walls, which are near to the shapes of the

recognized components. These annotations are in fixed

formats. For example, the text ‘300!500’ in Fig. 13(a)

will be interpreted as a beam of width 300 mm and height

500 mm;
4.
 Scan all recognized nodes and segments, reconstruct a

3D solid for each component according to the global
Fig. 20. Part of a CSD.
coordinates of the shape and the 3D attributes of the

component;
5.
 Reconstruct the building based on the component solids.
3.2.5. Calculating internal steel

Our last goal is to recognize the steel bars distributed

on or in the recognized components (for example, drawn
Fig. 21. Beams and walls recognized from Fig. 20.



Fig. 22. Different positions of text mean different steel types.
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as lines or polylines with hooks at the end on slabs in

Fig. 5; the red lines and tiny circles in the sections of

columns in Fig. 9 (web version only); or presented as

texts likes 2:18 in Fig. 20). Since by now the number

of unused graphic primitives is sharply reduced, the steel

bars can be quickly analyzed. The texts of different types

of steel bars (e.g. top-left-row1, top-left-row2, top-right-

row1, top-right-row2 in Fig. 22) usually appear at

different position relative to a beam or wall. Since

different types of steel have different formulae for shape

calculation, they generate different engineering data and

3D reconstruction. Fig. 23 shows some calculation

methods and resulting shapes based on the steel types

and the text positions, which are stored in SINEHIR as

calculation rules. For example, the length formulae for

the top-left-row-1 steel of the beam in red includes:

the bending length 15d, the length extended into the

connected column 0.4Lae, and the length inside the beam

Ln/3. So the final length and shape of this kind of steel

is shown in Fig. 24(a). Similarly, SINEHIR can interpret

the length of the top-left-row-2 steel and the bottom steel

as shown in Fig. 24(b) and (c), respectively.
Fig. 23. Steel of different types has differe

Fig. 24. Final results of lengths
4. Experimental results

We have implemented an architectural drawing recog-

nition and interpretation system using Visual CCC6.0.

Table 3 gives the experimental results of recognizing CSDs

of three different real-life projects, without any user

intervention during the recognition process. For a typical

CSD project, marked A in Table 3, made up of about 72,000

graphic primitives, the average recognition rate is 93.90%

and about 17,000 structural objects are recognized. For

project A, our system automatically calculates the engin-

eering data in less than 1 h, and the average accuracy of the

calculated engineering data is 98.11%, which completely

satisfies practical requirement.

To visualize the reconstructed structure, our system also

provides 3D display functionality. Fig. 25 shows the various

structural objects reconstructed by SINEHIR. The internal

steel of the components is first recognized, and then

analyzed from the steel texts or positions, and lastly

calculated according to the calculation rules of SINEHIR.

Fig. 25(b) shows a column steel that is automatic

recognized, analyzed and calculated from a column CSD.
nt calculation formulae and shapes.

and shapes of steel bars.



Fig. 25. The reconstructed components of a 3D building. (a) Reconstructed walls and column. (b) A column and its internal steel.

Table 3

Recognition rate of three real-life projects

Recognition parameters Aa Bb Cc

Graphic primitives 72,1997 35,361 42,327

Dimensions/rate (%) 2268/96.22 1989/97.18 4905/94.62

Seed nodes/rate (%) 765/100 333/99.10 468/97.88

Segments/rate (%) 7897/95.38 2264/94.44 3034/89.49

Composite components/rate (%) 4450/92.40 1396/88.09 1157/82.05

Average recognition rate (%) 96.00 94.70 91.01

a A dormitory project in Nanjing.
b An office building project in Guangdong.
c A government project in Shanghai.
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5. Conclusions

In this paper, we discuss the problems encountered in the

recognition of electronic construction drawings, and present

the Self-Incremental Axis-Net-based Hierarchical Recog-

nition model. Recognition algorithms for the various classes

of high-level component objects are presented. Experimen-

tal results show that our system can recognize real-life

drawings at the average rate of more than 93.90%.

SINEHIR has a few limitations. (1) Drawings that

contain graphical sections of structural objects in the form

of tables cannot be well recognized, because SINEHIR is a

top-down model, which is under the direction of relation-

ships among structural objects. (2) The representation

methods of objects in the library are always not enough

for real-life drawings; for example, we find that there are at

least 11 types of presenting the steel symbol ‘F’: it may be

composed of a circle, two half-circles, a letter ‘O’, or

number ‘o’ with a straight line, or a graphical polylines, etc.

We expect to see even more new ways of presenting this

symbol in new drawings. (3) Some distortions, incomplete-

ness or minor errors can be automatically resolved, but

others, such as the missing of thickness annotation of a slab
or the missing of one of the parallel lines of a beam, cannot

be automatically resolved. SINEHIR has to warn the users

or indicate it in the 3D building.

Further research includes more general symbol recog-

nition, recognition of other kinds of components (such as

stairs and groundwork), analysis of other types of

architectural drawings (such as decoration drawings),

bottom-up methods for structural objects in tables, and 4D

modeling.
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