
Fitness Inheritance in the

Bayesian Optimization Algorithm

Martin Pelikan and Kumara Sastry

IlliGAL Report No. 2004009
February 2004

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

117 Transportation Building
104 S. Mathews Avenue Urbana, IL 61801

Office: (217) 333-2346
Fax: (217) 244-5705

Fitness Inheritance in the

Bayesian Optimization Algorithm

Martin Pelikan

Dept. of Math. and Computer Science, 320 CCB

University of Missouri at St. Louis

8001 Natural Bridge Rd., St. Louis, MO 63121

pelikan@cs.umsl.edu

Kumara Sastry

Illinois Genetic Algorithms Laboratory, 107 TB

University of Illinois at Urbana-Champaign

104 S. Mathews Ave. Urbana, IL 61801

kumara@illigal.ge.uiuc.edu

February 17, 2004

Abstract

This paper describes how fitness inheritance can be used to estimate fitness for a proportion
of newly sampled candidate solutions in the Bayesian optimization algorithm (BOA). The goal
of estimating fitness for some candidate solutions is to reduce the number of fitness evaluations
for problems where fitness evaluation is expensive. Bayesian networks used in BOA to model
promising solutions and generate the new ones are extended to allow not only for modeling and
sampling candidate solutions, but also for estimating their fitness. The results indicate that fitness
inheritance is a promising concept in BOA, because population-sizing requirements for building
appropriate models of promising solutions lead to good fitness estimates even if only a small
proportion of candidate solutions is evaluated using the actual fitness function. This can lead to
a reduction of the number of actual fitness evaluations by a factor of 30 or more.

1 Introduction

To ensure reliable convergence to a global optimum, genetic and evolutionary algorithms (GEAs)
must often maintain a large population of candidate solutions for a number of iterations. However,
in many real-world problems, fitness evaluation is computationally expensive and evaluating even
moderately sized populations of candidate solutions is intractable. For example, fitness evaluation
may include a large finite element analysis, it may consist of a complex traffic simulation, or it may
require interaction with a human expert.

This leads to an interesting question: Would it be possible to make GEAs evolve not only the
population of candidate solutions, but also a model of fitness, which could be used to evaluate
a certain proportion of newly generated candidate solutions (fitness inheritance)? Fortunately, the
answer to the above question is positive, and a few studies have been made to support this argument.
Methods were proposed for fitness inheritance in the simple genetic algorithm (GA) (Smith, Dike, &
Stegmann, 1995) and the univariate marginal distribution algorithm (UMDA) (Sastry, Goldberg, &

1

Pelikan, 2001). In both cases, the results were promising and suggested that fitness inheritance can
significantly reduce the number of fitness evaluations.

The purpose of this paper is to propose a method that uses models of promising solutions de-
veloped by the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cantú-Paz, 1999;
Pelikan, 2002) to model the fitness landscape and estimate fitness of newly generated candidate so-
lutions. Two types of models are considered: (1) traditional Bayesian networks with full conditional
probability tables (CPTs) used in BOA and (2) Bayesian networks with local structures used in
BOA with decision graphs (dBOA) (Pelikan, Goldberg, & Sastry, 2001) and the hierarchical BOA
(hBOA) (Pelikan & Goldberg, 2001; Pelikan & Goldberg, 2003). Since the model in BOA captures
significant nonlinearities in the fitness landscape, using this model as the basis for developing a model
of the fitness landscape seems to be a promising approach. Of course, other methods, such as neural
networks or various regression models, could be used instead. The proposed method is examined
on BOA with decision trees on three example problems: onemax, concatenated traps of order 4,
and concatenated traps of order 5. The results indicate that fitness inheritance is beneficial in BOA
even if only less than 1% of candidate solutions are evaluated using the actual fitness function. It
turns out that due to the population sizing requirements for creating a correct model of promising
solutions, the more fitness inheritance, the better.

The paper starts by discussing BOA and previous fitness inheritance studies. Section 4 presents
the proposed method for fitness inheritance in BOA. Section 5 presents and discusses experimental
results. Section 6 summarizes and concludes the paper.

2 Bayesian optimization algorithm

Probabilistic model-building genetic algorithms (PMBGAs) (Pelikan, Goldberg, & Lobo, 2002) re-
place traditional variation operators of genetic and evolutionary algorithms (Holland, 1975; Gold-
berg, 1989) by building a probabilistic model of promising solutions and sampling the model to
generate new candidate solutions. The Bayesian optimization algorithm (BOA) (Pelikan, Goldberg,
& Cantú-Paz, 1999) uses Bayesian networks to model candidate solutions.

BOA evolves a population of candidate solutions to the given problem. The first population
of candidate solutions is usually generated randomly according to a uniform distribution over all
solutions. The population is updated for a number of iterations using two basic operators: (1)
selection, and (2) variation. The selection operator selects better solutions at the expense of the
worse ones from the current population, yielding a population of promising candidates. The variation
operator starts by learning a probabilistic model of the selected solutions that encodes features
of these promising solutions and the inherent regularities. Bayesian networks are used to model
promising solutions because Bayesian networks are among the most powerful tools for capturing
and representing decomposition, which is an inherent feature of most complex real-world systems.
The variation operator then proceeds by sampling the probabilistic model to generate new solutions,
which are incorporated into the original population. Here, a simple replacement scheme is used
where new solutions fully replace the original population. A more detailed description of BOA can
be found in Pelikan (2002).

The remainder of this section discusses Bayesian networks, which are going to serve as the basis
for developing the model of fitness in BOA.

2

2.1 Bayesian Networks

Bayesian networks (BNs) (Howard & Matheson, 1981; Pearl, 1988; Buntine, 1991) are among the
most popular graphical models, where statistics, modularity, and graph theory are combined in a
practical tool for estimating probability distributions and inference. A Bayesian network is defined
by two components: (1) a structure, and (2) parameters. The structure is encoded by a directed
acyclic graph with the nodes corresponding to the variables in the modeled data set (in this case,
to the positions in solution strings) and the edges corresponding to conditional dependencies. The
parameters are represented by a set of conditional probability tables (CPTs) specifying a conditional
probability for each variable given any instance of the variables that the variable depends on.

A Bayesian network encodes a joint probability distribution given by

p(X) =

n
∏

i=1

p(Xi|Πi), (1)

where X = (X0, . . . , Xn−1) is a vector of all the variables in the problem; Πi is the set of parents of Xi

(the set of nodes from which there exists an edge to Xi); and p(Xi|Πi) is the conditional probability
of Xi given its parents Πi.

A directed edge relates the variables so that in the encoded distribution, the variable correspond-
ing to the terminal node is conditioned on the variable corresponding to the initial node. More
incoming edges into a node result in a conditional probability of the variable with a condition con-
taining all its parents. In addition to encoding dependencies, each Bayesian network encodes a set
of independence assumptions. Independence assumptions state that each variable is independent of
any of its antecedents in the ancestral ordering, given the values of the variable’s parents.

To learn Bayesian networks, a greedy algorithm is usually used for its efficiency and robustness.
The greedy algorithm starts with an empty Bayesian network. Each iteration then adds an edge
into the network that improves quality of the network the most. Network quality can be measured
by any popular scoring metric for Bayesian networks, such as the Bayesian Dirichlet metric with
likelihood equivalence (BDe) (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 1994)
or the Bayesian information criterion (BIC) (Schwarz, 1978). The learning is terminated when no
more improvement is possible.

2.2 Conditional probability tables (CPTs)

Conditional probability tables (CPTs) store conditional probabilities p(Xi|Πi) for each variable Xi.
The number of conditional probabilities for a variable that is conditioned on k parents grows expo-
nentially with k. For binary variables, for instance, the number of conditional probabilities is 2k,
because there are 2k instances of k parents and it is sufficient to store the probability of the variable
being 1 for each such instance. Figure 1 shows an example CPT for p(X1|X2, X3, X4).

Nonetheless, the dependencies sometimes also contain regularities. Furthermore, the exponential
growth of full CPTs often obstructs the creation of models that are both accurate and efficient.
That is why Bayesian networks are often extended with local structures that allow more efficient
representation of local conditional probability distributions than full CPTs (Chickering, Heckerman,
& Meek, 1997; Friedman & Goldszmidt, 1999).

2.3 Decision trees and graphs for conditional probabilities

Decision trees are among the most flexible and efficient local structures, where conditional probabil-
ities of each variable are stored in one decision tree. Each internal (non-leaf) node in the decision

3

p(
XX3X2

0
0
0
0

1
1

1
1

0
0
1
1

0
0

1
1

0
1
0
1

1
0

1
0

0.25
0.25
0.25
0.47

0.20
0.20

0.20
0.20

X = 11

Π1)Π1

4

(a) Conditional probability table.

p(

2

X3

X = 11

X = 11 X = 11

X = 11

) = 0.25) = 0.47

) = 0.20

) = 0.25

0

0 1

1

X4

0 1

p(

p(p(

X

(b) Decision tree.

p(

2

X3

X = 11
X = 11

X = 11

) = 0.25) = 0.47

) = 0.20

0 1

1

X4

1

0

0

p(p(

X

(c) Decision graph.

Figure 1: A conditional probability table for p(X1|X2, X3, X4) using traditional representation (a)
as well as local structures (b and c).

tree for p(Xi|Πi) has a variable from Πi associated with it and the edges connecting the node to its
children stand for different values of the variable. For binary variables, there are two edges coming
out of each internal node; one edge corresponds to 0, whereas the other edge corresponds to 1. For
more than two values, either one edge can be used for each value, or the values may be classified into
several categories and each category would create an edge.

Each path in the decision tree for p(Xi|Πi) that starts in the root of the tree and ends in a leaf
encodes a set of constraints on the values of variables in Πi. Each leaf stores the value of a conditional
probability of Xi = 1 given the condition specified by the path from the root of the tree to the leaf.
A decision tree can encode the full conditional probability table for a variable with k parents if it
splits to 2k leaves, each corresponding to a unique condition. However, a decision tree enables more
efficient and flexible representation of local conditional distributions. See Figure 1b for an example
decision tree for the conditional probability table presented earlier.

A decision graph allows more edges to terminate in a single node. In other words, internal nodes
in the decision tree are allowed to share children and, as a result, each node can have more than
one parent. That makes this representation even more flexible. However, our experience indicates
that, in BOA, decision graphs usually do not provide better performance than decision trees. See
Figure 1c for an example decision graph.

To learn Bayesian networks with decision trees, a decision tree for each variable Xi is initialized
to an empty tree with a univariate probability of Xi = 1. In each iteration, each leaf of each decision
tree is split to determine how quality of the current network improves by executing the split, and
the best split is performed. The learning is finished when no splits improve the current network
anymore. Quality of each model can be estimated using any popular scoring metric. Here we use a
combination of the BDe (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 1994) and
BIC (Schwarz, 1978) metrics, where the BDe score is penalized with the number of bits required to
encode parameters (Pelikan, 2002). For decision graphs, a merge operation is introduced to allow
for merging two leaves of any (but always the same) decision graph.

3 Previous fitness inheritance studies

Despite the importance of fitness inheritance in robust population-based search, surprisingly few
studies of fitness inheritance can be found. This section reviews the most important studies.

4

3.1 Fitness inheritance in the simple GA

Smith, Dike, and Stegmann (1995) proposed two approaches to fitness inheritance in the simple
GA (Goldberg, 1989). The first approach is to compute the fitness of an offspring as the average
fitness of its parents. The second approach is to consider a weighted average based on how similar
the offspring is to each parent. The results indicated that GAs with fitness inheritance outperformed
those without inheritance. However, the above study of fitness inheritance did not consider the
effects of fitness inheritance on crucial GA parameters such as the population size and the number of
generations. As a result, the speed-up achieved by using fitness inheritance could not be estimated
properly.

Zheng, Julstrom, and Cheng (1997) used the aforementioned fitness inheritance model in the
simple GA for design of vector quantization codebooks.

3.2 Fitness inheritance in PMBGAs

Sastry, Goldberg, and Pelikan (2001) considered the univariate marginal distribution algorithm
(UMDA), which is one of the simplest PMBGAs. Using fitness inheritance in UMDA introduces
new challenges, because UMDA does not use two-parent recombination and therefore it is difficult
to find direct correspondence between parents and their offspring. Instead, Sastry et al. extend the
probabilistic model to allow for estimating fitness of newly sampled candidate solutions.

UMDA models the population of promising solutions after selection using the probability vector,
which stores the probability of a 1 at each position. These probabilities are then used to sample new
candidate solutions. To incorporate fitness inheritance, the probability vector p = (p1, p2, . . . , pn) is
extended to include additional two statistics f̄(Xi = 0) and f̄(Xi = 1) for each string position i.
The term f̄(Xi = 0) denotes the average fitness of all solutions where the ith bit is 0; analogously,
the term f̄(Xi = 1) denotes the average fitness of solutions with the ith bit equal to 1. The fitness
of each new solution can then estimated as

fest(X1, X2, . . . , Xn) = f̄ +

n
∑

i=1

(

f̄(Xi)− f̄
)

, (2)

where f̄ is the average fitness of all solutions used to estimate the fitness.

Sastry et al. (2001) also developed theory for fitness inheritance in UMDA on onemax that
estimates the number of actual fitness evaluations when a given proportion of candidate solutions
inherits fitness, whereas the remaining candidate solutions are evaluated using the actual fitness. The
basic idea is to start by adapting the population sizing and time-to-convergence models to UMDA
with fitness inheritance, and relate these quantities to their counterparts in standard UMDA. If
optimal population size is used in both cases, Sastry et al. showed that only about 20% evaluations
can be saved. However, if the same population size is used in both cases, the number of evaluations
decreases by a factor of more than three.

4 Modeling fitness in BOA

This section describes how the fitness model is built and updated using Bayesian networks, and how
new candidate solutions can be evaluated using the model. Both Bayesian networks with full CPTs
as well as the ones with local structures are discussed. The section also discusses where the statistics
can be acquired from to built an accurate fitness model.

5

p(
XX3X2

0
0
0
0

1
1

1
1

0
0
1
1

0
0

1
1

0
1
0
1

1
0

1
0

0.25
0.25
0.25
0.47

0.20
0.20

0.20
0.20

X = 11 X = 11f()Π1X = 01

−0.47
−0.52
−0.50
−0.37

−0.45
−0.63

−0.51
−0.49

0.51
0.49
0.53
0.47

0.46
0.58

0.62
0.73

f()Π1

Π1)Π1

4

(a) Conditional probability table.

f(

2

X3

X = 11

X = 11

X = 01

X = 11

X = 11

X = 01

X = 11

X = 11

X = 01

X = 11

X = 11

X = 01

) = 0.50

) = 0.25

) = −0.48

) = 0.52

) = 0.25

) = −0.50

) = 0.51

) = 0.47

) = −0.48

) = 0.47

) = 0.20

) = −0.54
0

0 1

1

X4

0 1

p(

f(

f(

p(

f(

f(

p(

f(

f(

p(

f(

X

(b) Decision tree.

f(

2

X3

X = 11

X = 11

X = 01

X = 11

X = 11

X = 01

X = 11

X = 11

X = 01

) = 0.51

) = 0.25

) = −0.49

) = 0.47

) = 0.20

) = −0.54

) = 0.51

) = 0.47

) = −0.48

0 1

1

X4

1

0

0

p(

f(

f(

p(

f(

f(

p(

f(

X

(c) Decision graph.

Figure 2: Fitness inheritance in a conditional probability table for p(X1|X2, X3, X4) (a) and its
representation using local structures (b and c).

4.1 Modeling fitness using Bayesian networks

In UMDA, probabilities of a 1 at each position that form the probability vector are each coupled with
an average fitness of a 0 and a 1 at that position. Analogically, Bayesian networks can be extended
to incorporate an average fitness of a 0 and a 1 for each statistic stored by the model.

In BOA, for every variable Xi and each possible value xi of Xi, an average fitness of solutions
with Xi = xi must be stored for each instance πi of Xi’s parents Πi. In the binary case, each row
in the conditional probability table is thus extended by two additional entries. Figure 2a shows an
example conditional probability table extended with fitness information based on the conditional
probability table presented in Figure 1a. The fitness can then be estimated as

fest(X1, X2, . . . , Xn) = f̄ +
n
∑

i=1

(

f̄(Xi|Πi)− f̄(Πi)
)

, (3)

where f̄(Xi|Πi) denotes the average fitness of solutions with Xi and Πi, and f̄(Πi) is the average
fitness of all solutions with Πi. Clearly,

f̄(Πi) =
∑

Xi

p(Xi|Πi)f̄(Xi|Πi). (4)

4.2 Modeling fitness using Bayesian networks with decision graphs

A similar method as for full CPTs can be used to incorporate fitness information into Bayesian
networks with decision trees or graphs. The average fitness of each instance of each variable must be
stored in every leaf of a decision tree or graph. Figure 2 shows an example decision tree and graph
extended with fitness information based on the decision tree and graph presented earlier in Figure 1.
The fitness averages in each leaf are restricted to solutions that satisfy the condition specified by the
path from the root of the tree to the leaf.

4.3 Where to inherit fitness from?

We still have not faced the following question: Where to obtain information to compute statistics
used for fitness inheritance? More specifically, for each instance xi of Xi and each instance πi of Xi’s
parents Πi, we must compute the average fitness of all solutions with Xi = xi and Πi = πi. Here we
use two sources for computing the fitness-inheritance statistics:

6

1. Selected parents that were evaluated using the actual fitness function, and

2. the offspring that were evaluated the actual fitness function.

The reason for restricting computation of fitness-inheritance statistics to selected parents and
offspring is that the probabilistic model used as the basis for selecting relevant statistics repre-
sents nonlinearities in the population of parents and the population of offspring. Since it is best
to maximize learning data available, it seems natural to use these two populations to compute the
fitness-inheritance statistics. The reason for restricting input for computing these statistics to solu-
tions that were evaluated using the actual fitness function is that the fitness of other solutions was
estimated only and it involves errors that could mislead fitness inheritance and propagate through
generations. Both using only those solutions that were evaluated using the actual fitness function
and incorporating the offspring in estimating inheritance statistics differs from previous fitness in-
heritance studies (Smith, Dike, & Stegmann, 1995; Sastry, Goldberg, & Pelikan, 2001).

5 Experiments

This section describes experiments and provides experimental results. Test problems are described
first. Next, experimental results are presented and discussed.

5.1 Onemax

Onemax is a simple linear function that computes the sum of bits in the input binary string:

fonemax(X1, X2, . . . , Xn) =
n
∑

i=1

Xi, (5)

where (X1, X2, . . . , Xn) denotes the input binary string of n bits. In onemax, the fitness contribution
of each bit is independent of its context. That is why a simple model used in UMDA that considers
each variable independently of other variables suffices and yields convergence to the optimum in
about O(n logn) evaluations. However, any other models of bounded complexity should work well,
and practically any crossover operator used in standard GAs should also suffice.

In the model of fitness developed by BOA, the average fitness of a 1 in any leaf should be
approximately 0.5, whereas the average fitness of a 0 in any leaf should be approximately −0.5. As
a result, solutions will get penalized for 0s, while they would be rewarded for 1s. The average fitness
will vary throughout the run. This paper considers onemax of n = 50 bits.

5.2 Concatenated 4-bit trap

In concatenated 4-bit traps (Ackley, 1987; Deb & Goldberg, 1994), the input string is first partitioned
into independent groups of 4 bits each. This partitioning should be unknown to the algorithm, but
it should not change during the run. A 4-bit trap function is applied to each group of 4 bits and
the contributions of all traps are added together to form the fitness. Each 4-bit trap is defined as
follows:

trap4(u) =

{

4 if u = 4
3− u otherwise

, (6)

where u is the number of 1s in the input string of 4 bits. An important feature of traps is that in
each of the 4-bit traps, all 4 bits must be treated together, because all statistics of lower order lead

7

the algorithm away from the optimum. That is why most crossover operators as well as the model
in UMDA will fail at solving this problem faster than in exponential number of evaluations, which
is just as bad as blind search.

Unlike in onemax, f̄(Xi = 0) and f̄(Xi = 1) depend on the state of the search because the
distribution of contexts of each bit changes over time and bits in a trap are not independent. The
context of each leaf also determines whether f̄(Xi = 0) < f̄(Xi = 1) or f̄(Xi = 0) > f̄(Xi = 1) in
the leaf. This paper considers a trap consisting of 10 copies of the 4-bit trap, where the total number
of bits is n = 40.

5.3 Concatenated 5-bit trap

Concatenated traps of order 5 can be defined analogically to traps of order 4, but instead of dealing
with groups of 4 bits, groups of 5 bits are considered. The contribution of each group of 5 bits is
computed as

trap5(u) =

{

5 if u = 5
4− u otherwise

, (7)

where u is the number of 1s in the input string of 5 bits. Traps of order 5 also necessitate that all
bits in each group are treated together, because statistics of lower order are misleading.

Average fitness values f̄(Xi) depend on context similarly as for traps of order 4, and they thus
follow similar dynamics. This paper considers a trap consisting of 10 copies of the 5-bit trap, where
the total number of bits is n = 50.

5.4 Experimental results

On each test problem, the following fitness inheritance proportions were considered: 0 to 0.9 with
step 0.1, 0.91 to 0.99 with step 0.01, and 0.991 to 0.999 with step 0.001. For each test problem
and fitness inheritance proportion, 30 independent experiments were performed. Each experiment
consisted of 10 independent runs with the minimum population size to ensure convergence to a
solution within 10% of the optimum (i.e., with at least 90% correct bits) in all 10 runs. For each
experiment, bisection method was used to determine the minimum population size, and the number
of evaluations (excl. the evaluations done using the model of fitness) was recorded. The average of 10
runs in all experiments was then computed and displayed as a function of the proportion of candidate
solutions for which fitness was estimated using the fitness model. Speed-up is also computed, which
is equal to the factor by which the number of evaluations decreases compared to the case with no
inheritance.

The results on onemax, traps of order 4, and traps of order 5, are shown in figures 3, 4, and 5. In
all experiments, the number of actual fitness evaluations decreases with the inheritance proportion
and it reaches the optimum when the proportion of candidate solutions for fitness inheritance is more
than 99%. That means that considering only the actual fitness evaluations, evaluating less than 1%
of candidate solutions with the actual fitness seems to be beneficial. The number of evaluations of
the actual fitness can be decreased by a factor of more than 31 for onemax, 32 for the trap of order
4, and 53 for the trap of order 5. Although the actual savings depend on the problem considered,
it can be expected that fitness inheritance enables significant reduction of fitness evaluations on
many problems because deceptive problems of bounded difficulty bound a large class of important
problems.

Considering only the actual fitness evaluations ignores time complexity of selection, model con-
struction, generation of new candidate solutions, and fitness estimation. Combining these factors

8

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Proportion inherited

N
um

be
r

of
 e

va
lu

at
io

ns

(a) Number of evaluations.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Proportion inherited

S
pe

ed
−

up
 (

w
.r

.t.
 n

o
in

he
rit

an
ce

)

(b) Speed-up.

Figure 3: Results on a 50-bit onemax.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Proportion inherited

N
um

be
r

of
 e

va
lu

at
io

ns

(a) Number of evaluations.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Proportion inherited

S
pe

ed
−

up
 (

w
.r

.t.
 n

o
in

he
rit

an
ce

)

(b) Speed-up.

Figure 4: Results on a concatenated trap consisting of 10 traps of order 4.

with the complexity estimate for the actual fitness evaluation can be used to compute the optimal
proportion of candidate solutions to evaluate using fitness inheritance. Nonetheless, the results pre-
sented in this paper clearly indicate that using fitness inheritance in BOA can reduce the number of
solutions that must be evaluated using the actual fitness function by a factor of 30 or more. Con-
sequently, if fitness evaluation is a bottleneck, there is a lot of space for improvement using fitness
inheritance in BOA.

6 Summary and conclusions

Fitness inheritance enables genetic and evolutionary algorithms to evaluate only a certain proportion
of candidate solutions using the actual fitness function, while the fitness of remaining solutions is
computed using a model of the fitness landscape updated on the fly. Using fitness models that can be
updated and used efficiently can significantly speed up solution to problems where fitness evaluation

9

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5
x 10

6

Proportion inherited

N
um

be
r

of
 e

va
lu

at
io

ns

(a) Number of evaluations.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Proportion inherited

S
pe

ed
−

up
 (

w
.r

.t.
 n

o
in

he
rit

an
ce

)

(b) Speed-up.

Figure 5: Results on a concatenated trap consisting of 10 traps of order 5.

is computationally expensive.

This paper showed that while fitness inheritance yields only moderate speed-ups of about 20% in
simple GAs and UMDA, in BOA the benefits of using fitness inheritance become more significant.
Due to rather large population-sizing requirements for creating an adequate probabilistic model of
promising solutions in BOA, the number of actual function evaluations decreases even if less than
1% of candidate solutions are evaluated using the actual fitness function, while the fitness of the
remaining solutions is estimated using only its model. That is an important result, because BOA
and other advanced PMBGAs often require large populations, and evaluating large populations can
become intractable for problems with computationally expensive fitness evaluation.

Increasing the proportion of candidate solutions evaluated using a fitness model results in greater
population-sizing requirements, and the optimal inheritance proportion depends on the complexity
of building and sampling the model of promising solutions as well as that of evaluating solutions
using the actual fitness function. The good news is that the more complex the evaluation function,
the higher proportions of candidate solutions can be evaluated using the model of fitness instead of
the actual fitness function.

An important topic for future work is to incorporate fitness inheritance in presence of niching,
which can lead to accumulation of candidate solutions whose fitness is overestimated. Resolving this
problem would enable the use of fitness inheritance in the hierarchical BOA (hBOA) (Pelikan &
Goldberg, 2001; Pelikan & Goldberg, 2003), which combines BOA with local structures and niching.
Another important topic is to develop theory that extends theoretical work on fitness inheritance in
UMDA to BOA and other competent GAs. Finally, it is important to apply the proposed fitness
inheritance model to solve challenging real-world problems with expensive fitness evaluation.

Acknowledgments

The authors would like to thank David E. Goldberg for discussions and comments. A part of this
work was supported by the Research Award at the University of Missouri at St. Louis and the
Research Board at the University of Missouri. Most experiments were done on Asgard cluster at
the Institute of Theoretical Physics at the Swiss Federal Institute of Technology (ETH) Zürich. The
hBOA software, used by Pelikan, was developed by Martin Pelikan and David E. Goldberg at the
University of Illinois at Urbana-Champaign.

10

References

Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic Algorithms
and Simulated Annealing , 170–204.

Buntine, W. L. (1991). Theory refinement of Bayesian networks. Proceedings of the Uncertainty
in Artificial Intelligence (UAI-91), 52–60.

Chickering, D. M., Heckerman, D., & Meek, C. (1997). A Bayesian approach to learning Bayesian
networks with local structure (Technical Report MSR-TR-97-07). Redmond, WA: Microsoft
Research.

Cooper, G. F., & Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic
networks from data. Machine Learning , 9 , 309–347.

Deb, K., & Goldberg, D. E. (1994). Sufficient conditions for deceptive and easy binary functions.
Annals of Mathematics and Artificial Intelligence, 10 , 385–408.

Friedman, N., & Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In
Jordan, M. I. (Ed.), Graphical models (pp. 421–459). Cambridge, MA: MIT Press.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Read-
ing, MA: Addison-Wesley.

Heckerman, D., Geiger, D., & Chickering, D. M. (1994). Learning Bayesian networks: The com-
bination of knowledge and statistical data (Technical Report MSR-TR-94-09). Redmond, WA:
Microsoft Research.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press.

Howard, R. A., & Matheson, J. E. (1981). Influence diagrams. In Howard, R. A., & Matheson,
J. E. (Eds.), Readings on the principles and applications of decision analysis, Volume II (pp.
721–762). Menlo Park, CA: Strategic Decisions Group.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference.
San Mateo, CA: Morgan Kaufmann.

Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy. Doctoral
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report
No. 2002023.

Pelikan, M., & Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic algo-
rithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
511–518. Also IlliGAL Report No. 2000020.

Pelikan, M., & Goldberg, D. E. (2003). A hierarchy machine: Learning to optimize from nature
and humans. Complexity , 8 (5).

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I , 525–
532. Also IlliGAL Report No. 99003.

Pelikan, M., Goldberg, D. E., & Lobo, F. (2002). A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 21 (1), 5–20. Also IlliGAL
Report No. 99018.

Pelikan, M., Goldberg, D. E., & Sastry, K. (2001). Bayesian optimization algorithm, decision
graphs, and Occam’s razor. Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), 519–526. Also IlliGAL Report No. 2000020.

11

Sastry, K., Goldberg, D. E., & Pelikan, M. (2001). Don’t evaluate, inherit. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2001), 551–558. Also IlliGAL
Report No. 2001013.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6 , 461–464.

Smith, R. E., Dike, B. A., & Stegmann, S. A. (1995). Fitness inheritance in genetic algorithms.
Proceedings of the ACM Symposium on Applied Computing , 345–350.

Zheng, X., Julstrom, B., & Cheng, W. (1997). Design of vector quantization codebooks using a
genetic algorithm. In Proceedings of the International Conference on Evolutionary Computation
(ICEC-97) (pp. 525–529). Picataway, NJ: IEEE Press.

12

