
Automatic conversion of programs from serial to parallelusing Genetic Programming - The Paragen SystemPaul WalshUniversity CollegeCorkpaul@csvax1.ucc.ie Conor RyanUniversity CollegeCorkconor@ravenloft.ucc.ieAbstractThis paper describes a novel system of converting sequential programs into func-tionally equivalent parallel programs without using data dependency rules. This sys-tem utilises the powerful directed search technique of Genetic Programming to �nd themost e�cient program in terms of parallelism. A brief description of the �eld of GeneticProgramming is given, followed by a discussion on the design and implementation issuesof this system.1 IntroductionOne of the major restrictions of the use of parallel hardware is the problem of producinge�cient software for general non SIMD type architectures and relevant problems. This isdue in part to the architectural complexity and diversity of parallel hardware. While thereare a large number of parallel processing platforms available, there is often a lack of softwaredesign expertise and tools for these platforms.Moreover, there is no easy way to port the software written for a serial (or parallel)platform to a parallel platform. Clearly, there is a need for e�cient translators to address thisproblem. Such tools could perform translation, in total, or they could o�er the programmer afacility for exploiting low level parallelism in certain sections of code. Furthermore, translationtools could also allow the developement of new applications in traditional serial languages,which can then be translated to the language of the target machine [Banarjee 93].The current thinking on the problem of autoparallelisation advocates the use of datadependencey analysis and program transformation techniques. However, such approacheshave limitations due in part to the lack of sophistication of current autoparallelisation tools[Blume 94]. Indeed, the problem of autoparallelisation is non-trivial and the number ofrules for the required symbolic analysis of programs is signi�cant. Also the application oftransformations to sequential code requires considerable processing.This paper introduces the Paragen system, a system which employs Genetic Programming[Koza 92] to allow the automatic conversion of serial programs. Paragen does not employ1

+

2 *

3 4Figure 1 : A simple parse treeany data dependency rules or analysis of any kind, either algorithmically or on the part ofthe programmer, thus considerably reducing the e�ort required for parallelising code.Using the Genetic Programming paradigm, Paragen e�ectively evolves parallel programswhich are functionally equivalent to an orginal, serial program.2 Genetic ProgrammingGenetic Programming(GP) is a relatively new technique for the generation of computer pro-grams. GP, like its ancestor, the Genetic Algorithm(GA), harnesses the power of evolutionto solve problems. Starting with an initial population of randomly created programs, \indi-viduals", GP literally evolves a solution to the problem at hand.Like natural evolution, the evolution that occurs in GP relies both on the genetic structureof the individuals that are under-going evolution, which allows the production of new indi-viduals, and on some sort of selection pressure which makes it imperative for the individualsto constantly improve or face extinction.2.1 Representation in Genetic ProgrammingUnlike traditional GA, GP uses program trees to represent individuals. So, for example theLISP program (+ 2 (* 3 4)) could be represented as in Figure 1. These program trees aremade up of two fundamental building blocks, nodes and leaves. Nodes are simply functionssuch as + * which take one or more arguments, while the leaves are terminals, i.e. numbersor zero-argument functions. The �rst major step in any implementation of GP is to correctlyidentify the necessary functions and terminals and to ensure that any combination of themwell result in a syntactically (although not necessarily functionally) correct program.2.2 Survival of the �ttestAn initial, random population of these individuals is created. Each of these individuals isthen evaluated, testing how suited they are to the particular task at hand. Typically, thereare a number of test-cases from which each individual is assigned a score.The next step in GP is to create the next generation in the population. Individualsare selected probabilistically from the previous (parent) generation to be either reproducedor crossed over. An individual chosen to be reproduced is copied unchanged into the next2

+

2 *

3 4

-

7 6

-

7 *

3 4

Subtrees selected for
crossoverFigure 2 : Crossing over two parent trees by swapping sub-treesgeneration. If an individual is chosen for crossover, a second individual is also chosen, andthese are then crossed over, as described in the next section, to produce a new individual.2.3 CrossoverDue to the nature of the representation scheme used by GP, it is possible to swap sub-treesfrom two individuals. This results in the creation of two new, syntactically correct individuals,see Figure 2. Crossover is the exploration tool of GP. It is by crossing over good performingindividuals the population as a whole slowly evolves until a \perfect" individual appears,i.e. an individual who ful�lls all the requirements of a problem. Many individuals, whowill be produced as the result of a crossover, do not perform well, and, in true Darwinianevolutionary style, they will be selected neither for crossover or reproduction in the followinggeneration, and so die o�.3 The Paragen SystemThe Paragen System was designed to be able to take a serial program, and automaticallytransform it into a functionally equivalent one. Individuals in the Paragen system are parsetrees which map a program onto a parallel machine. Four functions, all of the form XN,were made available to the system, P2, PN, S2 and S3. X denotes whether the subtreesare to be evaluated in Parallel or Serial. N denotes the number of subtrees attached to thisnode. Figure 3 shows some example programs.The next decision was to isolate what terminals were to be made available. Given thatthe functions tell Paragen how to map something onto a parallel machine, it was decidedthat the terminals should tell Paragen what to map onto the machine. This means that eachstatement or line of code in the original serial program becomes a terminal.3

S3

A B C

S3

A B C

S2

P2

BA

C

Program 2Program 1

S2

P2 A

B C

Parallel version of each programFigure 3 : Two example programs, shown in serial and parallel formStmt A : a = b + 2 Stmt A : a = a + bStmt B : c = b + 5 Stmt B : b = a + 1Stmt C : c = e + f Stmt C : c = a + 3Two example sequential programs, shown in parse tree form in Figure 33.1 Functions and TerminalsUnlike virtually every other parallelisation technique, Paragen makes no attempt whatsoeverto analyse the original program. In fact, Paragen completely disassembles a program into itsconstituent statements, and attempts to rebuild it in a parallel form using these statementsand a combination of the parallel and serial functions available.3.2 Testing individualsThe �rst step testing an individual in Paragen is to instantiate it on a (virtual) parallelmachine. Individuals are then subjected to a number of test-cases, each of which involvesdi�erent starting values for the variables used. The program is then executed on the parallelmachine and the resulting values compared to the those values produced by the serial pro-gram. Each time the parallel version gets the same result as the serial version, its score isincremented.3.3 Selection in ParagenMost problems tackled by GP involve solving a set problem, such as sorting numbers, recog-nising a shape, performing regression etc., but the problem of autoparallellisation is not quiteso straightforward. The problem faced by Paragen is a two-pronged one.To maintain a balanced population of individuals who are both correct and parallel,Paragen employs the Pygmy Algorithm[Ryan 94a]. The Pygmy Algorithm di�ers from normal4

GP selection in that there are two parent populations. Individuals in the �rst population arescored primarily on their correctness, but also take parallelism into consideration, while thosein the second population are scored primarily for their parallelism, with some considerationbeing given to correctness. Each parent population is made up of a list of individuals, sortedon their score.When an individual is tested, it is compared against the individuals in each of the parentpopulations. If the individual has scored high enough to enter the population, the lowestmember of that population is removed. This approach of keeping a list of parents is known asa Steady-State approach and means that reproduction is no longer needed, as high performingindividuals are always preserved.3.4 The Perfect IndividualOne di�culty with any GP system is knowing when to terminate a run. This di�culty arisesbecause it is often impossible to identify when a perfect individual has appeared, althoughthere is no di�culty in identifying which individual is the best from any given run. Thereare all manner of approaches to terminating a run prematurely, based on lack of change inthe population, or on an individual attaining a certain score.In this paper, we are more concerned with showing that the Paragen system is capable ofautoparallelisation than with optimizing GP, so we simply allow the run to terminate afteran arbitrarily set number of generations.4 Paragen - The First ResultsThis paper serves very much as an introduction to the workings of Paragen. To illustrate howParagen operates, it has been tested on a variety of common parallelisation problems fromthe literature[Bruanl 93]. For these experiments, GP was run with populations varying from20 to 80 individuals, for 20 to 50 generations, depending on the di�culty of the problem.4.1 Autoparallelisation Problems - Data DependenciesGiven a sequential program it is often necessary to determine the order of execution of thestatements within that program. Often there is a dependency between the statements inthe sequential program where the order of execution must be preserved. Statements withoutany dependencies can execute in parallel. With current autoparallelisation techniques thesedependencies must be determined before the correct transformation can be carried out. Inthe Paragen system, however, these dependencies are automatically determined by the �t-ness function. Initially, the Paragen system was sucessfully tested with individual problemscharacteristic of the three major types of data dependency, namely Flow-dependency, anti-dependency and output dependency. However, for more realistic problems, we tested thesystem with loops that contain various types of dependencies, as described in the followingsection. 5

4.2 LoopsThe parallelisation of loops is one of the most important aspects of autoparallelisation, asthe bulk of computing workloads are controlled by loop type structures. In parallelisingloops, there may be data dependencies both within the loop itself and across the di�erentloop iterations. Data dependencies that span loop iterations are known as cross iterationdependancies. This is especially signi�cant as many parallelisation techniques attempt toexecute the di�erent iterations of a loop in parallel, but ignore any parallelism within the loop.This approach alleviates the data dependancy constraint within the loop as often the originalsequence of statements is preserved. However with the exibility of the Paragen system wecan simultaneously extract parallelism both within the loop and across loop iterations.Another consideration in the parallelisation of loops is array access. Loop control struc-tures are often used in the processing of arrays and this further complicates data dependencyanalysis techniques. The parallelisation of loop iterations in the Paragen system is madepossible by the introduction of another function, the DoAcross function. DoAcross takesthree arguments, the initial value of the index, the number of iterations and the loops to beexecuted. A corresponding sequential loop was also made available, Do.In the following example, which is an extended version of the problem described in[Bruanl 93], there is a data dependency across di�erent loop iterations due to the state-ments S4 and S8. Here statement S4 of one iteration must be executed before statementS8 of the next iteration, due to the ow dependency caused by e[i-1]. This requires a syn-chronisation mechanism to be used between di�erent loop iterations. However, because theParagen system also converts the statements within the loop iteration, by re-ordering and /or parallelisation, the e�ect of the synchronisation mechanism on performance is minimised.In the case of a generated code being run on a machine that requires synchronisation, asimple post-processing can be applied to the program to determine where synchronisationmechanisms.Our extensions to this problem are the introduction of a number of dependencies withinthe loop, between S1 and S2, between S6 and S7 and between S5 and S6.for i := 1 to n dobeginS1: a[i] := f[i] * 2;S2: f[i] := 57;S3: g[i] := d[i] + 8;S4: e[i] := e[i] + d[i];S5: b[i] := a[i] + d[i];S6: a[i] := b[i] + 2;S7: a[i] := d[i];S8: c[i] := e[i-1] * 2;end;The resulting code produced by Paragen:DoAcross i := 1 to nbegin 6

PAR-BEGINS1: a[i] := f[i] * 2;S3: g[i] := d[i] + 8;S4: e[i] := e[i] + d[i];PAR-ENDPAR-BEGINS8: c[i] := e[i-1] * 2;S5: b[i] := a[i] + d[i];PAR-ENDPAR-BEGINS2: f[i] := 57;S6: a[i] := b[i] + 2;PAR-ENDS7: a[i] := d[i];end;4.3 Paragen and SynchronisationIn the virtual machine that Paragen uses, all processors execute at exactly the same speed,so there is no need for synchronisation between shared variables being used at di�erent timesteps. If an asynchronous machine is to be used, some synchronisation may be necessary.This can be done by post-processing of the generated parallel program to detect any owdependencies, the only dependencies that may a�ect the running of the program, and syn-chronisation mechanisms can be automatically inserted.4.4 Paragen and loopholesAs stated earlier, the �tness of a program is a combination of how correct it is and how parallelit is, but Paragen (and GP in general) proved to be quite adept at discovering loopholes. Acommon strategy, especially in the shorter examples, was for Paragen to execute all theinstructions in parallel, regardless of dependencies. This gave the individual a high score interms of parallelism - the program executing in only one time step - and a high score in termsof correctness was achieved by ensuring that each statement was executed so many timesthat the variables a�ected ended up with the correct values. This behaviour was curbed byreducing an individual's �tness each time it repeated an instruction.Paragen also noticed that in the case of output dependencies, where statement S2 writesto the same variable as S1, S1 could often be left out of the �nal program as it didn't a�ectany �nal values. Clearly, this is not correct, so it was necessary to reduce an individuals�tness each time it left out an instruction.Another strategy that had to be discouraged was that of individuals who didn't do any-thing. These individuals exploited the fact that several variables used by many programsdon't change, and by not doing anything these individuals would get a score by virtue of thefact that these variables will always contain the correct value at the end of the run. To preventindividuals such as these from having a chance of being selected, only those variables which7

appear on the left hand side of statements are considered when calculating an individual'sscore.5 Proving ParagenCurrently the programs produced by Paragen can be proved to be functionally identical tothe original program by writing the converted program in CSP notation. One of the majorbene�ts in converting the code to CSP is that the resulting program may be formally veri�ed.6 Conclusion and Future DirectionsThe Paragen system is a new auto-parallelisation tool which can be used to convert serialprograms without any analysis for dependencies. Paragen has been successfully tested withcode containing a number of data dependencies, and has successfully converted loops con-taining cross-iteration dependencies. As well as converting entire loops, Paragen can alsodetermine sections of code within those loops that can be parallelised while still preservingany dependencies contained within.Extending Paragen to convert entire functions or subroutines is the next obvious step, and,from the extremely encouraging results presented in this paper, should not be too di�cult.The next step for Paragen is to produce code in the Occam language, using channels asnecessary for synchronisation, which would allow the generated code to be used on a widevariety of parallel machines.The eventual goal for Paragen is to create parallel programs on the y, with just a state-ment of the problem which is to be solved. This would eliminate the need to write the original,serial program, which would further automate the process of generating parallel code.References[Banarjee 93] Banerjee, U. et al, Automatic Program Parallelization, Proceedings of theIEEE, Vol. 81, No. 2, February 1993.[Blume 94] Blume W., et al. Automatic Detection of Parallelism, IEEE Parallel and Dis-tributed Technology, Fall 1994.[Bruanl 93] Braunl, T. Automatic Parallelisation and Vectorization, Parallel Programmingan Introduction, Prentice Hall, 1993, ISBN 0-13-336827-0.[Burns 88] Burns, A. (1988) : Transforming Occam Programs. In Programming in Occam2 :Addison-Wesley, 1988, ISBN 0-201-17371-9.[Koza 92] Koza, J. (1992) : Genetic Programming. Cambridge : M.I.T. Press.[Ryan 94a] Ryan, C. (1994) : Pygmies and Civil Servants. In Advances in Genetic Program-ming. Ed. K. Kinnear Jr. Cambridge : MIT Press8

