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Abstract. In this paper, we formalize two stepwise approaches, based
on pseudo-random generators, for proving P 6= NP and its arithmetic
analog: Permanent requires superpolynomial sized arithmetic circuits.

1 Introduction

The central aim of complexity theory is to prove lower bounds on the complexity
of problems. While the relative classification of problems (via reductions) has
been very successful, not much progress has been made in determining their
absolute complexity. For example, we do not even know if NE admits nonuniform
NC1 circuits.

Initial attempts (in 1970s) to prove lower bounds centered on using the diag-
onalization technique that had proven very useful in recursion theory. However,
a series of relativization results soon showed that this technique cannot help in
its standard guise [6]. Very recently, the technique has been used to prove cer-
tain simultaneous time-space lower bounds [7], however, its usefulness for single
resource lower bounds remains unclear.

In the 1980s, the results of Razborov [15] (lower bounds on monotone circuits)
and H̊astad [8] (lower bounds on constant depth circuits) gave rise to the hope of
proving lower bounds via combinatorial arguments on boolean circuit model of
complexity classes. However, there was little progress since mid-80s and ten years
later Razborov and Rudich [16] explained the reason for this: they showed that
combinatorial arguments used for previous lower bounds cannot be extended to
larger classes.

Over the last ten years, a new paradigm is slowly emerging that might lead
us to strong lower bounds: pseudo-random generators. These were introduced in
1980s by Yao [22], Blum, and Micali [4], Nisan and Wigderson [14] to formulate
the hardness of cryptographic primitives (in the first two references) and to
derandomize polynomial-time randomized algorithms (in the last reference).

It was known from the beginning that existence of pseudo-random genera-
tors implies lower bounds on boolean circuits. In fact, they can be viewed as a
strong form of diagonalization. Attempts were then made to prove the other (and
seemingly more interesting) direction: lower bounds on boolean circuits imply
existence of pseudo-random generators. This was achieved after a lot of effort:
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H̊astad, Impagliazzo, Levin and Luby [9] showed that pseudo-random genera-
tors of polynomial stretch are equivalent to one-way functions, Impagliazzo and
Wigderson [10] showed that pseudo-random generators of exponential stretch are
equivalent to hard sets in E.

Some recent advances suggest that the first (and easier) direction of the above
equivalence may in fact hold the key to obtaining lower bounds. Very recently,
Omer Reingold used expander graphs (these are one of the fundamental tools in
derandomization) to search in an undirected graph using logarithmic space [17].
This proves SL = L, resolving the complexity of the class SL. Although Rein-
gold’s result does not yield a pseudo-random generator or a lower bound, it
suggests that one can do derandomization without appealing to lower bounds,
and a strong enough derandomization will result in a lower bound.

Lower bounds for arithmetic circuits have also been investigated, but again,
without much success. It appears that obtaining lower bounds for these cir-
cuits should be easier than boolean circuits since boolean circuits can simulate
arithmetic circuits but not vice versa. Kabanets and Impagliazzo [11] have re-
cently observed a connection between lower bounds on arithmetic circuits and
derandomizations of polynomial identity testing problem (given a multivariate
polynomial computed by an arithmetic circuit, test if it is identically zero). This
connection, however, is not as tight as for boolean circuits. For these circuits too
there is some evidence that proving lower bounds via derandomization might
work: the primality testing algorithm of Agrawal, Kayal, Saxena [2] essentially
derandomizes a certain polynomial identity.

Admittedly, the evidence for the success of “pseudo-random generator” ap-
proach is weak: neither Reingold’s result nor the primality testing algorithm
yield a lower bound (the AKS “derandomization” works only for a problem, not
a class). However, this is one of the, if not the, most promising approach that
we have presently for obtaining boolean and arithmetic circuit lower bounds
and so needs to be investigated seriously. In this article, we formulate, based
on pseudo-random generators, stepwise approaches to resolve two of the most
important conjectures in complexity theory: P 6= NP and its arithmetic analog
Permanent requires superpolynomial-sized arithmetic circuits. For arithmetic cir-
cuits, the result of Kabanets and Impagliazzo is not strong enough to show that
derandomization implies second conjecture. To make it work, we define pseudo-
random generators for arithmetic circuits and show that certain generators imply
the desired lower bound on arithmetic circuits.

2 Pseudo-Random Generators for Boolean Circuits

Let C(s(n), d(n)) denote the class of circuits of size s(n) and depth d(n) on inputs
of size n. We will assume that all our circuits are layered with layers alternating
between AND and OR gates.

We begin with the definition of a pseudo-random generator for boolean cir-
cuits.
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Definition 21 Function f , f : {0, 1}∗ 7→ {0, 1}∗, is a (`(n), n)-pseudo-random
generator against C(s(n), d(n)) if:

– f({0, 1}`(n)) ⊆ {0, 1}n with `(n) < n for all n.
– For any circuit C ∈ C(s(n), d(n)),

| Pr
x∈{0,1}n

[C(x) = 1]− Pr
y∈{0,1}`(n)

[C(f(y)) = 1] | ≤ 1
n

.

The difference between output and input length of a pseudo-random gener-
ator, n − `(n), is called the stretch of the generator. A simple counting argu-
ment shows that there exist (O(log s(n)), n)-pseudo-random generators against
C(s(n), d(n)):

Define f by randomly assigning strings of length n for inputs of size
4 log s(n). Let y be a string of size 4 log s(n). For a circuit C ∈ C(s(n), d(n))
with input size n, define random variable Y to be C(f(y)). The expected
value of Y is precisely the fraction of strings accepted by C. We have
s4(n) such independent random variables with the same expected value.
Hence, by Chernoff’s bound, the probability that the average of these
variables differs from the expectation by more than 1

n is less than 1
2s3(n) .

Since there are less than 2s2(n) circuits of size s(n), most of the choices
of f will be pseudo-random.

It is also easy to see (via a similar counting argument) that (o(log s(n)), n)-
pseudo-random generators cannot exist against C(s(n), d(n)). This motivates the
following definition.

Definition 22 A (O(log s(n)), n)-pseudo-random generator against C(s(n), d(n))
is called an optimal pseudo-random generator against C(s(n), d(n)).

So far, we have not examined the computability aspect of pseudo-random
generators. It is easy to see that optimal pseudo-random generators against
C(s(n), d(n)) can be computed in time O(2s2(n)). To make the notion interest-
ing, we need to compute them faster. There are two ways in which the time
complexity of a generator can be measured: as a function of output size or as a
function of input size. We choose to express it in terms of input size.

Definition 23 A (`(n), n)-pseudo-random generator f against C(s(n), d(n)) is
t(m)-computable if there is an algorithm running in time t(m) that on input
(y, i) with |y| = m = `(n) and 1 ≤ i ≤ n, outputs ith bit of f(y).

In the above, we have defined the complexity of f slightly differently – usually
it is defined to be the complexity of computing the entire f(y). Our definition
has an advantage when both `(n) and t(`(n)) are substantially smaller than n.
In that case, the first few bits of f can be computed very quickly and this fact
would be useful later.
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3 Boolean Circuit Lower Bounds via Pseudo-Random
Generators

A (`(n), n)-pseudo-random generator against C(s(n), d(n)) that is 2O(m)-computable
yields a lower bound on C(s(`−1(n)), d(`−1(n))).

Theorem 31 ([14]) Let f be a t(m)-computable (`(n), n)-pseudo-random gen-
erator against C(s(n), d(n)). Then there is a set in Ntime(t(m)·m) ∩ Dtime(t(m)·
2m) that cannot be accepted by any circuit family in C(s(`−1(n)), d(`−1(n))).

Proof. Define a set A as follows:

On input x, |x| = m = `(n) + 1 for some n, find if there exists a y,
|y| = `(n) such that x is a prefix of f(y). If yes, accept otherwise reject.

The set A is in Ntime(t(m) ·m): guess a y of size m−1 and compute first m bits
of f(y). The set of also in Dtime(t(m) · 2m): for every y of size m − 1 compute
the first m bits of f(y) and check if any matches.

Suppose there is a circuit family in C(s(`−1(n)), d(`−1(n))) that accepts A.
Fix an input size m = `(n)+1 for some n and consider the corresponding circuit
C from the family. Construct a new circuit, say D, on input size n as follows.
Circuit D simply simulates circuit C on the first m bits of its input (ignoring the
remaining bits). By the definition of A, it follows that for every y, |y| = m− 1,
f(y) is accepted by D. In addition, circuit D rejects at least half of its inputs
(because the number of prefixes of m bits of f(y)’s is at most 2m−1). Circuit D
is in C(s(n), d(n)) since the input size has grown from m (for circuit C) to n (for
circuit D). Therefore,

| Pr
x∈{0,1}n

[D(x) = 1]− Pr
y∈{0,1}m−1

[D(f(y)) = 1] | ≤ 1
n

.

However, the first probability is less than 1
2 while the second is 1 as argued

above. This is a contradiction. ut

For optimal generators, we get the following corollary.

Corollary 32 Let f be a t(m)-computable optimal pseudo-random generator
against C(s(n), d(n)). Then there is a set in Ntime(t(m) ·m) ∩ Dtime(t(m) ·2m)
that cannot be accepted by any circuit family in C(2εn, d(s−1(2εn))) for some
ε > 0.1

As of now, the best pseudo-random generator known is the following.

Lemma 33 ([8, 14]) For any d > 0, there exists a mO(1)-computable (logO(d) n, n)-
pseudo-random generator against C(n, d), the class of size n, depth d circuits.

1 The converse of this corollary was shown by Impagliazzo and Wigderson [10].
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The above generator is constructed by taking H̊astad’s lower bound [8] on
constant-depth circuits and applying Nisan-Wigderson’s construction [14] of
pseudo-random generators on it. This generator is clearly not an optimal gen-
erator, but comes close – its input length is logO(d) n instead of O(log n). If one
can reduce the input length to, say, O(t(d) log n) for any function t(·), then we
get an optimal generator. This is our first step:

Step 1. Obtain a 2O(m)-computable optimal pseudo-random generator against
C(n, d) for each d > 0.

Such generators will already yield an interesting lower bound.

Lemma 34 If there exists a 2O(m)-computable optimal pseudo-random genera-
tor against C(n, d) then there is a set in E that cannot be accepted by any circuit
family in C(2εn, d) for some ε > 0.

Proof. Direct from Corollary 32. ut

It is worth mentioning at this point that exponential lower bounds are not
known even for depth three circuits! The above lemma implies another lower
bound:

Corollary 35 If there exists a 2O(m)-computable optimal pseudo-random gen-
erator against C(n, d) then there is a set in E that cannot be accepted by a
non-uniform semiunbounded circuit family of size nd−ε, depth (d − ε) log n for
any ε > 0.

Proof. Take any size nd−ε, depth (d − ε) log n (for some ε > 0) circuit C on
n inputs with unbounded fanin OR-gates. The circuit can be converted into
a subexponential size depth d circuit as follows. Cut C into d

2 layers of depth
2(d−ε)

d log n each. In each layer, write each topmost gate as OR-of-ANDs of bot-
tommost gates. A direct counting shows that each such OR-of-ANDs will have
O(n2dn1− ε

d ) gates. There are at most nd−ε OR-of-ANDs, and therefore, the size
of the resulting circuit is at most 2O(log n·n1− ε

d ) = 2o(n). The depth of the cir-
cuit is d. The existence of a 2O(m)-computable optimal pseudo-random generator
against C(n, d) implies the existence of a set A in E that cannot be accepted by
any family of circuits from C(2δn, d) for suitable δ > 0 by the above lemma. This
means that circuit C cannot accept {A}=n. ut

By improving the complexity of the generator, we can get a better lower
bound. This is our second step:

Step 2. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, d) for each d > 0.

The better time complexity of the generator implies that the set A will now
belong to the class NP instead of E. Thus we get:
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Corollary 36 If there exists a mO(1)-computable optimal pseudo-random gen-
erator against C(n, d) then there is a set in NP that cannot be accepted by a
non-uniform semiunbounded circuit family of size nd−ε, depth (d − ε) log n for
any ε > 0.

The next aim is to construct an optimal pseudo-random generator against
a larger class of circuits: class of logarithmic depth circuits of fanin two, i.e.,
NC1. This class contains constant depth circuits and is only “slightly higher”
(although no lower bounds are known for this class).

Step 3. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, log n).

This generalization improves the lower bound substantially.

Lemma 37 If there exists a mO(1)-computable optimal pseudo-random genera-
tor against C(n, log n) then there is a set in NP that cannot be accepted by any
non-uniform family of sublinear depth and subexponential size circuits.

Proof. Directly from Corollary 32. ut

The last step is to push the class of circuits further up to all polylog depth
circuits, i.e., the class NC. This class is believed to be substantially smaller than
the class of all polynomial sized circuits.

Step 4. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, logO(1) n).

The following lemma follows immediately.

Lemma 38 If there exists a mO(1)-computable optimal pseudo-random genera-
tor against C(n, logO(1) n) then there is a set in NP that cannot be accepted by
any non-uniform family of polynomial depth and subexponential size circuits.

As a corollary of above, we have:

Corollary 39 If there exists a mO(1)-computable optimal pseudo-random gen-
erator against C(n, logO(1) n) then P 6= NP.

4 Pseudo-Random Generators for Arithmetic Circuits

Lower bounds for arithmetic circuits are even less understood than boolean cir-
cuits. For example, we do not even know lower bounds on depth four arithmetic
circuits. Mulmuley and Sohoni [12] have been trying to use algebraic geometric
techniques for proving arithmetic circuit lower bounds. Here, we formulate an
alternative way using pseudo-random generators.

Let A(n, F ) be the class of arithmetic circuits over field F such that any
circuit C ∈ A(n, F ) has n addition, subtraction, and multiplication gates over
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the field F . We assume that all arithmetic circuits are layered and the layers
alternate between multiplication and addition/subtraction gates. Circuit C has
at most n input variables and computes a polynomial over F of degree at most
2n. Note that the number of input variables for arithmetic circuit is not as
important parameter as for boolean circuits. Even single variable circuits can
compute very complex polynomials. Kabanets and Impagliazzo [11] showed a
connection between polynomial identity testing and lower bounds on arithmetic
circuits. They proved that if there is a polynomial-time deterministic algorithm
for verifying polynomial identities then NEXP cannot have polynomial-sized
arithmetic circuits. They also proved a partial converse: if Permanent cannot
be computed by polynomial-sized arithmetic circuits, then polynomial identity
testing can be done in subexponential time.

We make this relationship between identity testing and lower bounds stronger
via an appropriate notion of pseudo-random generator against arithmetic cir-
cuits.

Definition 41 Function f : N 7→ (F [y])∗ is a (`(n), n)-pseudo-random generator
against A(n, F ) if:

– f(n) ∈ (F [y])n+1 for every n > 0.
– Let f(n) = (f1(y), . . . , fn(y), g(y)). Then each fi(y) as well as g(y) is a

polynomial of degree at most 2`(n).
– For any circuit C ∈ A(n, F ) with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)).

A direct application of Schwartz-Zippel lemma [18, 23] shows that there
always exist (O(log n), n)-pseudo-random generators against A(n, F ):

For every n > 0, define f(n) to be the sequence (f1(y), f2(y), . . . , fn(y), g(y))
where each fi(y) is a random degree n3 − 1 polynomial and g(y) is an
irreducible polynomial of degree n3 over F . In addition, if F is infinite,
all these polynomials have coefficients bounded by 2n. Let C ∈ A(n, F )
compute a non-zero polynomial on m ≤ n variables. Let F̂ be the exten-
sion field F [y]/(g(y)). Polynomial fi(y) can be thought of as a random
element of the field F̂ . Now by Schwartz-Zippel lemma, the probability
that C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)) is at most deg C

2n3 ≤ 1
2n3−n

since deg C ≤ 2n. Since there are at most 2n2
circuits of size n, the

probability that the generator fails against any such circuit is at most
1

2n3−n2−n
. Therefore, most of the choices of f are pseudo-random.

As in the case of boolean circuits, we call such generators optimal pseudo-random
generators. There are, however, a few of crucial differences between the boolean
and arithmetic cases. Firstly, the pseudo-random generator against arithmetic
circuits does not approximate the number of zeroes of the polynomial computed
by the circuit. Secondly, it computes a polynomial for each input instead of
a bit value and a moduli polynomial. Finally, it outputs only one sequence
of n + 1 polynomials as opposed to a polynomial number of strings of length
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n in the boolean case. The degree of each output polynomial is 2`(n) which
equals nO(1) for optimal generator. Therefore, the time needed to compute such
a generator is 2Ω(`(n)) (= nΩ(1) for optimal case). This can be exponentially
larger than the input size of the generator. Hence we do not have as much
freedom available to vary the time complexity of the generator. This motivates
the following definition.

Definition 42 A (`(n), n)-pseudo-random generator f against A(n, F ) is effi-
ciently computable if f(n) is computable in time 2O(`(n)).

This definition of pseudo-random generators is the right one from the per-
spective of derandomization of identity testing.

Theorem 43 Suppose there exists an efficiently computable (`(n), n)-pseudo-
random generator against A(n, F ). Then polynomial identity testing can be done
deterministically in time n · 2O(`(n)).

Proof. Let C ∈ A(n, F ) be a circuit of size n computing a possible identity
over F on m ≤ n variables. Then C(f1(y), f2(y), . . . , fm(y)) (mod g(y)) can be
computed in time 2O(`(n)): each fi(y) and g(y) is of degree 2O(`(n)) and can be
computed in the same time; and then the circuit C can be evaluated modulo
g(y) in n · 2O(`(n)) time. ut

Corollary 44 Suppose there exists an efficiently computable optimal pseudo-
random generator against A(n, F ). Then polynomial identity testing can be done
in P.

A further evidence of “correctness” of the definition is provided by the AKS
primality test [2] which can be viewed as derandomization of a specific identity.
The identity is C(x) = (1 + x)n − xn − 1 over Zn and, as shown in [1], the
function f(n) = (x, g(x)) with

g(x) = x16 log5 n ·
16 log5 n∏

r=1

4 log4 n∏
a=1

((x− a)r − 1)

(g(x) is of degree O(log14 n)) is an efficiently computable optimal “pseudo-
random generator” against C(x) ∈ A(O(log n), Zn) (it is not really a pseudo-
random generator since it works only against a subset of circuits inA(O(log n), Zn)).

5 Arithmetic Circuit Lower Bounds via Pseudo-Random
Generators

As in the case of boolean circuits, an efficiently computable pseudo-random
generator implies a lower bound:
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Theorem 51 Let f be an efficiently computable (`(n), n)-pseudo-random gen-
erator against A(n, F ). Then there is a multilinear polynomial computable in
time 2O(`(n)) that cannot be computed by any circuit family in A(n, F ).2

Proof. For any m = `(n), define polynomial q(x1, x2, . . . , x2m) as:

q(x1, x2, . . . , x2m) =
∑

S⊆[1,2m]

cS ·
∏
i∈S

xi.

The coefficients cS satisfy the condition∑
S⊆[1,2m]

cS ·
∏
i∈S

fi(y) = 0

where f(n) = (f1(y), f2(y), . . . , fn(y), g(y)). Such a q always exists as the fol-
lowing argument shows.

The number of coefficients of q are exactly 22m. These need to satisfy a
polynomial equation of degree at most 2m ·2m. So the equation gives rise
to at most 2m ·2m +1 homogeneous constraints on the coefficients. Since
(2m · 2m + 1) < 22m for m ≥ 3, there is always a non-trivial polynomial
q satisfying all the conditions.

The polynomial q can be computed by solving a system of 2O(m) linear equations
in 2O(m) variables over the field F . Each of these equations can be computed in
time 2O(m) using computability of f . Therefore, q can be computed in time 2O(m).
Now suppose q can be computed by a circuit C ∈ A(n, F ). By the definition of
polynomial q, it follows that C(f1(y), f2(y), . . . , f2m(y)) = 0. The size of circuit
C is n and it computes a non-zero polynomial. This contradicts the pseudo-
randomness of f . ut

As in the case of boolean circuits, optimal pseudo-random generators against
constant depth arithmetic circuits is our first goal.

Step 1. Obtain an efficiently-computable optimal pseudo-random generator against
size n arithmetic circuits of depth d over F for each d > 0.

And exactly as in the boolean case, we get a lower bound on log-depth
polynomial size circuits with unbounded fanin addition gates.

Lemma 52 If there exist efficiently-computable optimal pseudo-random gener-
ators against size n arithmetic circuits of depth d over F then for there exists
a multilinear polynomial computable in E that cannot be computed by a nonuni-
form family of circuits with unbounded fanin addition gates of size nd−ε, depth
(d− ε) log n for any ε > 0.
2 A partial converse of this theorem can also be shown: if there exists a polyno-

mial computable in time 2O(`(n)) that cannot be computed by a circuit family in
A(n, F ) then there exists an efficiently computable (`2(n), n)-pseudo-random gener-
ator against the class of size n circuits over F whose degree is bounded by n.
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Proof. A size nd−ε, depth (d− ε) log n arithmetic circuit with unbounded fanin
addition gates can be translated, exactly as in proof of Lemma 35, to a subex-
ponential sized depth d circuit. The optimal pseudo-random generator against
depth d circuits gives the lower bound. ut

The class of arithmetic branching programs is equivalent to the class of poly-
nomials computed by determinants of a polynomial sized matrix [21, 19, 5]. Also,
polynomial-sized arithmetic formulas can be expressed as polynomial sized arith-
metic branching programs. We get a much stronger lower bound by generalizing
the pseudo-random generator to work against polynomial sized branching pro-
grams.

Step 2. Obtain an efficiently-computable optimal pseudo-random generator against
size n arithmetic branching programs over F .

This step nearly achieves our final goal.

Lemma 53 If there exist efficiently-computable optimal pseudo-random gener-
ators against size n arithmetic branching programs over F then there exists a
multilinear polynomial computable in E that (1) cannot be expressed as the de-
terminant of a subexponential sized matrix and (2) cannot be computed by a
2o( n

log n )-sized arithmetic circuit.

Proof. The first part follows directly from Theorem 51 translated for arithmetic
branching programs. For the second part, recall that the polynomial q is multi-
linear and so has polynomial degree. In [20] it is shown that arithmetic circuits
of size N and degree D can be transformed to arithmetic circuits of size NO(1)

with depth O(log N log D). Further, a circuit of depth O(log N log D) can be ex-
pressed as determinant of a matrix of size 2O(log N log D) = NO(log D). Using the
lower bound of first part, it follows that the polynomial q cannot be computed
by arithmetic circuits of size 2o( n

log n ). ut
To obtain a lower bound on permanent, we need to improve the time com-

plexity of polynomial q. Suppose that each coefficient cS of the polynomial q
can be computed by a #P-function (this will require that all coefficients of each
polynomial in f(n) to be computed by a #P-function). Then it follows that the
polynomial q can be expressed as permanent of a matrix of size polynomial in
m (because permanent captures #P-computations). Let us call such a generator
#P-computable.

Step 3. Obtain a #P-computable optimal pseudo-random generator against size
n arithmetic branching programs over F .

Corollary 54 If there exists an efficiently-computable optimal pseudo-random
generator against size n arithmetic branching programs over F then the perma-
nent of a n × n matrix over F (1) cannot be expressed as the determinant of a
subexponential-sized matrix over F , (2) cannot be computed by a 2o( n

log n )-sized
arithmetic circuit.

Of course, the above step cannot be carried out for fields of characteristic
two where permanent is equal to the determinant.
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6 Will This Approach Work?

In the sequence of steps proposed to prove arithmetic and boolean circuit lower
bounds, perhaps the most important one is step 1. Achieving this step will,
besides providing strong lower bounds for the first time, will establish the cor-
rectness of the approach and increase the possibility that remaining steps can
also be achieved.

In this section, we discuss some potential candidates to achieve Step 1 for
both boolean and arithmetic circuits.

6.1 Step 1 for Boolean Circuits

Hitting set generators are a weaker form of optimal pseudo-random generators.
The difference is that for a circuit C that accepts at least half of its inputs, a
hitting set generator is required to generate at least one input x to C such that
C(x) = 1. (As opposed to this, pseudo-random generators are required to gener-
ate appoximately Prx[C(x) = 1] fraction of x’s on which C(x) = 1.) Both hitting
set generators and optimal pseudo-random generators against C(s(n), d(n)) have
input of size O(log s(n)).

The proof of Theorem 31 shows that efficiently computable hitting set gener-
ators are sufficient to obtain lower bounds. Coupled with the result of [10], this
implies that efficiently computable hitting set generators and efficiently com-
putable optimal pseudo-random generators are equivalent.

Let f : {0, 1}O(log n) 7→ {0, 1}n be any 1
n2d -biased, 2 log n-wise indepen-

dent generator. In other words, any 2 log n output bits of f , on a random
input, are nearly independent (with a bias of at most 1

n2d ). There exist sev-
eral constructions of such generators [13, 3]. We take one from [3]. Define fB,d,
fB,d : {0, 1}(4d+4) log n 7→ {0, 1}n, as:

fB,d(x, y) = (x0 · y)(x1 · y) · · · (xn−1 · y)

where |x| = |y| = (2d + 2) log n, xi is computed in the field Fn2d+2 treating x as
an element of the field, and ‘·’ is inner product modulo 2. It is shown in [3] that
fB,d satisfies the required independence property.

Functions fB,d can easily shown to be mO(1) computable. We can prove the
following about function fB,2:

Lemma 61 Function fB,2 is a hitting set generator against depth 2, size n
boolean circuits.

Proof. Without loss of generality, consider a depth 2, size n circuit C that is
an OR-of-ANDs and accepts at least half fraction of inputs. Delete all the AND
gates from C of fanin more than 2 log n. Let the resulting circuit be C ′. Any
input accepted by circuit C ′ is also accepted by C and the fraction of inputs
accepted by C ′ is at least 1

2 −
1
n (a deleted AND gate outputs a 1 on at most

1
n2 inputs and there are at most n deleted AND gates). Consider any surviving
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AND gate in the circuit. Its fanin is at most 2 log n. Therefore, it outputs a 1
on at least 1

n2 inputs. Since the output of fB,2 is 2 log n-wise independent with
a bias of at most 1

n4 , the probability that this AND gate will output a 1, when
given fB,2 as input, is at least 1

n2 − 1
n4 > 0. Hence fB,2 is a hitting set generator

against C.

About lemma and Lemma 35 together show that:

Corollary 62 There is a set in NP that cannot be accepted by semiunbounded
circuits of size n2−ε and depth (2− ε) log n for any ε > 0.

In fact, using a different definition for fB,2 from [3] can bring the complexity
of the hard set down to SAC1 from NP. This implies that fB,d cannot be a
hitting set generator for all d (because SAC1 circuits can be transformed to
subexponential sized constant depth circuits as observed earlier). However, it
appears that a combination of fB,d with other derandomization primitives can
result in hitting set generators for higher depths.

6.2 Step 1 for Arithmetic Circuits

We need to weaken the definition of pseudo-random generators for arithmetic
circuits too.

Definition 63 Function f : N× N 7→ (F [y])∗ is a hitting set generator against
A(n, F ) if:

– f(n, k) ∈ (F [y])n+1 for every n > 0 and 1 ≤ k ≤ nO(1).
– Let f(n, k) = (f1,k(y), . . . , fn,k(y), gk(y)). Then each fi,k(y) as well as gk(y)

is a polynomial of degree at most nO(1).
– For any circuit C ∈ A(n, F ) with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff for every k, 1 ≤ k ≤ nO(1),

C(f1,k(y), f2,k(y), . . . , fm,k(y)) = 0 (mod gk(y)).

It is easy to see that a complete derandomization of identity testing can also
be done by an efficiently computable hitting set generator. By slightly modifying
the definition of polynomial q in the proof of Theorem 51, a similar lower bound
can be shown too (q will now need to satisfy nO(1) polynomial equations of degree
nO(1) instead of just one; this still translates to nO(1) homogeneous constraints
on the coefficients of q).

Define function fA,d as:

fA,d(n, k) = (yk0
, yk1

, . . . , ykn−1
, yr − 1)

where r ≥ n4d is a prime and 1 ≤ k < r.
Function fA,d is easily seen to be nO(1) computable. Polynomial q, defined

for function fA,d, can be computed in PSPACE (it is not clear how to compute
q in #P). We can prove the following about function fA,2:
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Lemma 64 Function fA,2 is a hitting set generator against size n, depth 2
arithmetic circuits.

Proof. Consider a size n, depth 2 arithmetic circuit C computing a non-zero
polynomial. If C has a multiplication gate at the top, then it will be non-zero
on any sequence fA,2(n, k) such that ki 6= kj (mod r) for 1 ≤ i < j < n. Most
of the k’s (e.g., any k which is a generator for F ∗

r ) have this property.
Now consider C with an addition gate at the top. C then computes a poly-

nomial of degree up to n with at most n non-zero terms. Let t1 be the first
term of this polynomial (under some ordering) and let tj be any other term.
Then the number of k’s for which t1 = tj (mod yr − 1) under the substitution
of variables according to fA,2(n, k) is at most n − 1. So the number of k’s for
which t1 = tj (mod yr − 1) for some j is at most n2. As total number of k’s
is n4, there exist k’s for which t1 6= tj (mod yr − 1) for any j > 1 under the
substitution fA,2(n, k). C evaluates to a non-zero polynomial modulo yr − 1 on
such inputs.

Using Lemma 52, this results in:

Corollary 65 There is a multilinear function computable in PSPACE that can-
not be computed by circuits with unbounded fanin addition gates of size n2−ε and
depth (2− ε) log n for any ε > 0.

We conjecture that above lemma holds for all depths:

Conjecture. Function fA,d is a hitting set generator against depth d, size n
arithmetic circuits for every d > 0.

It is to be hoped that the next twenty five years will be more fruitful for lower
bounds than the previous ones. One might even hope that all the proposed steps
will be achieved answering two of the most fundamental questions in complexity
theory.
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