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Abstract

The design of electronic Embedded Systems relies on a number of different engineering disciplines. As the
domain becomes ever more important, both in theoretical challenges and in industrial relevance, it has drawvn a
considerable attention in recent years, with a number of proposals for formalisms, languages and models to help
support the design flow. In this article we shall describe Synchronous Reactive languages, which emerged as early as
the 1980’s decade, and are now gaining increasing recognition for their modeling adequacy to embedded systems.

1 Introduction

Electronic Embedded Systems are not new, but their pervasive introduction in ordinary-life objects (cars, phones,
home appliances) brought a new focus onto design methods for such systems. New development techniques are
needed to meet the challenges of productivity in a competitive environment. This handbook reports on a number
of such innovative approaches to the matter. We shall concentrate here on Synchronous Reactive (S/R) languages
[34, 10, 4, 7].

S/R languagesrely on the synchronous hypothesis, which lets computationsand behaviorsbe divided into adiscrete
sequence of computation steps which are equivalently called reactions or execution instants. Initself, this assumption
is rather common in practical embedded system design. But the synchronous hypothesis adds to this the fact that,
inside each instant, the behavioral propagation is well-behaved (causal), so that the status of every signal or variable
is established and defined prior to being tested or used. This criterion, which may be seen at first as an isolated
technical requirement, is in fact the key point of the approach. It ensures strong semantic soundness by allowing
universally recognized mathematical models such as the Mealy machines and the digital circuits to be used as sup-
porting foundations. In turn, these models give access to a large corpus of efficient optimization, compilation, and
formal verification techniques. The synchronous hypothesis also guarantees full equivalence between various levels
of representation, thereby avoiding altogether the pitfalls of non-synthesizability of other similar formalisms. In that
sense, the synchronoushypothesisis, in our view, amajor contribution to the goal of model-based design of embedded
systems.

Structured languages have been introduced for the modeling and programming of S/R applications. They are
roughly classified in two families:

imperative languages, such as Esterel [13, 20, 14] and SyncCharts[2], provide constructsto shape control -dominated
programs as hierarchical synchronous automata, in the wake of the StateCharts formalism, but with a full-
fledged treatment of simultaneity, priority, and absence notification of signalsin a given reaction. Thanks to
this, signals assume a consistent status for all parallel componentsin the system at any given instant.

declarative languages, such as Lustre[35] and Signal[9], shape applications based on intensive data computation and
data-flow organization, with the control flow part operating under the form of (internally generated) activation
clocks. These clocks prescribe which data computation blocks areto be performed as part of the current reaction.
Here again, the semantics of the languages deal with theissue of behavior consistency, so that every value needed
in acomputation is indeed available at that instant.
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We shall describe here the Synchronous Hypothesis and its mathematical background, together with arange of design
techniques empowered by the approach and a short comparison with neighboring formalisms; then we introduce both
classes of S/R languages, with their special features and a couple of programming examples; finally we comment on
the benefits and shortcomings of SR modeling, closing with alook at future perspectives and extensions.

2 The Synchronous Hypothesis
2.1 What for?

Program correctness (the process performs as intended) and program efficiency (it performs as fast as possible) are
major concerns in all of computer science, but they are even more stringent in the embedded area, as no on-line
debugging is feasible, and time budgets are often imperative (for instance in multimedia applications).

Program correctness is sought by introducing appropriate syntactic constructs and dedicated languages, making
programs more easily understandable by humans, as well as allowing high-level modeling and associated verification
techniques. Provided semantic preservation is ensured down to actual implementation code, this provides reasonable
guarantees on functional correctness. However, while this might sound obvious for traditional software compilation
schemes, the hardware synthesis processis often not “ seamless’, as it includes manual rewriting.

Program efficiency istraditionally handled in the software world by algorithmic complexity analysis, and expressed
interms of individual operations. But in modern systems, dueto anumber of phenomena, this“ high-level” complexity
reflects rather imperfectly the "low-level” complexity in numbers of clock cycles spent. In the hardware domain, one
considers various levels of modeling, corresponding to more abstract (or conversely more precise) timing account:
transaction-level, cycle-accurate, time-accurate.

One possible way (amongst many) to view Synchronous Languages is to take up the analogy of cycle-accurate
programming to a more general setting, including (reactive) software as well. This analogy is supported by the fact
that simulation environments in many domains (from scientific engineering to HDL simulators) often use lockstep
computation paradigms, very close to the synchronous cycle-based computation. In these settings, cycles represent
logical steps, not physical time. Of course timing analysisis still possible afterwards, and in fact often simplified by
the previous division into cycles.

The focus of synchronous languages is thus to allow modeling and programming of systems where cycle (compu-
tation step) precision is needed. The objective is to provide domain-specific structured languages for their descrip-
tion, and to study matching techniques for efficient design, including compilation/synthesis, optimization, and analy-
sis/verification. The strong condition insuring the feasibility of these design activities is the synchronous hypothesis,
described next.

2.2 Basic notions

What has come to be known as the Synchronous Hypothesis, laying foundationsfor S/R systems, isreally a collection
of assumptions of a common nature, sometimes adapted to the framework considered. We shall avoid heavy mathe-
matical formalization in this presentation, and defer the interested reader to the existing literature, such as[4, 7]. The
basics are:

Instantsand reactions: behaviora activitiesare divided accordingto (logical, abstract) discretetime. |n other words,
computations are divided according to a succession of non-overlapping execution instants. In each instant, input
signals possibly occur (for instance by being sampled), internal computations take place, and control and data
are propagated until output values are computed and a new global system state is reached. This execution cycle
is called the reaction of the system to the input signals. Although we used the word “time” just before, there
is no real physical time involved, and instant durations need not be uniform (or even considered !). All that is
required is that reactions converge and computations are entirely performed before the current execution instant
ends and a new one begins. This empowers the obvious conceptual abstraction that computations are infinitely
fast (“instantaneous’, “zero-time”), and take place only at discrete points in (physical) time, with no duration.
When presented without sufficient explanations, this strong formulation of the Synchronous Hypothesisis often
discarded by newcomers as unredlistic (while, again, it is only an abstraction, amply used in other domains
where “all-or-nothing” transaction operations take place).



Signals: broadcast signals are used to propagate information. At each execution instant, asignal can either be present
or absent. If present, it also carries some value of a prescribed type (“pure” signals exists aswell, that carry only
their presence status). Thekey ruleisthat asignal must be consistent (same present/absent status, same data) for
all read operations during any given instant. In particular, reads from parallel components must be consistent,
meaning that signals act as controlled shared variables.

Causality: the crucial task of deciding whenever asignal can be declared absent is of utter importance in the theory
of SIR systems, and an important part of the theoretical body behind the Synchronous Hypothesis. Thisis of
course especialy true of local signals, that are both generated and tested inside the system. The fundamental
rule is that the presence status and value of a signal should be defined before they are read (and tested). This
requirement takes various practical forms depending on the actual language or formalism considered, and we
shall come back to this later. Note that “before” refers here to causal dependency in the computation of the
instant, and not to physical or even logical time between successive instants [12]. The Synchronous Hypothesis
ensures that all possible schedules of operations amount to the same result (convergence); it also leads to the
definition of “correct” programs, as opposed to ill-behaved ones where no causal scheduling can be found.

Activation conditionsand clocks: Each signal can be seen as defining (or generating) a new clock, ticking when
it occurs; in hardware design, thisis called gated clocks. Clocks and sub-clocks, either external or internally
generated, can be used as control entities to activate (or not) component blocks of the system. We shall also call
them activation conditions.

2.3 Mathematical models

If one forgetstemporarily about data values, and one accepts the duality of present/absent signals mapped to true/false
values, then there is a natural interpretation of synchronous formalisms as synchronous digital circuits at schematic
gate level, or “netlists’ (roughly RTL level with only Boolean variables and registers). In turn, such circuits have a
straightforward behavioral expansion into Mealy FSMs.

The two slight restrictions above are not essential: the adjunction of types and values into digital circuit models
has been successfully attempted in a number of contexts, and S/R systems can aso be seen as contributing to this
goa. Meanwhile, the introduction of clocks and presence/absence signal status in S/R languages departs drastically
from the prominent notion of sensitivity list generally used to define the simulation semantics of Hardware Description
Languages (HDLS).

We now comment on the opportunities made available through the interpretation of S/R systems into Meay ma-
chinesor netlists.

netlists. we consider here a simple form, as Boolean equation systems defining the values of wires and Boolean reg-
isters as a Boolean function of other wires and previous register values. Some wires represent input and output
signals (with value t rue indicating signal presence), others are internal variables.
This type of representation is of specia interest because it can provide exact dependency relations between
variables, and thus the good representation level to study causality issues with accurate analysis. Notions of
“constructive” causality have been the subject of much attention here. They attempt to refine the usual crude
criterion for synthesizability, which forbids cyclic dependencies between non-register variables (so that a vari-
able seemsto depend upon itself in the same instant), but does not take into account the Bool ean interpretation,
nor the potentially reachable configurations. Consider the equation z = y V z, while it has been established
that y is the constant true. Then 2 does not really depend on z, since its (constant) value is forced by y's.
Constructive causality seeks for the best possible faithful notion of true combinatorial dependency taking the
Boolean interpretation of functions into account. For details, see [52].
Another equally important aspect of the mathematical model is that a number of combinatorial and sequential
optimization techniques have been developed over the years, in the context of hardware synthesis approaches.
The main ones are now embedded in the SIS and MV SIS optimization suites, from UC Berkeley [50, 30]. They
come as agreat help in allowing programs written in high-level S/R formalisms to compile into efficient code,
either software or hardware-targeted [51].

Mealy machines: Mealy machines arefinite-state automata corresponding strictly to the synchronous assumption. In
agiven state, provided a certain input val uation (a subset of present signals), the machine reacts by immediately



producing a set of output signal's before entering a new state.

The Mealy machines can be generated from netlists (and by extension from any S/R system). The Mealy
machine construction can then be seen as a symbolic expansion of all possible behaviors, computing the space
of reachable states (RSS) on the way. But while the precise RSS is won, the precise causal dependencies
relations are lost, whichiswhy Mealy FSM and netlists models are both useful in the course of S/R design [55].
When the RSS is extracted, often in symbolic BDD form, it can be used in a number of ways. We already
mentioned that constructive causality only considers dependencies inside the RSS; similarly, al activities of
model-checking formal verification, and test coverage analysis are strongly linked to the RSS construction
[18, 17,27, 3].

The modeling style of netlists can be extrapolated to block-diagram networks, often used in multimedia digital signal
processing, by adding more types and arithmetic operators, as well as activation conditions to introduce some amount
of control-flow. The declarative synchronous languages can be seen as attempts to provide structured programming
to compose large systems modularly in this class of applications, as described in section 4. Similarly, imperative
languages provide ways to program in a structured way hierarchical systems of interacting Mealy FSMs, as described
in section 3.

2.3.1 Synchronous Hypothesisvs. neighboring models

Many quasi-synchronousformalisms exist in the fields of embedded system (co-)simulation: the simulation semantics
of SystemC and regular HDLs at RTL level, or the discrete-step Simulink/Stateflow simulation, or the official State-
Charts semantics for instance. Such formalisms generally employ a notion of physical time in order to establish when
to start the next execution instant. |nside the current execution instant, however, delta-cycles allow zero-delay activity
propagation, and potentially complex behaviors occur inside a given single reaction. The main difference hereis that
no causality analysis (based on the Synchronous Hypothesis) is performed at compilation time, so that an efficient
ordering/scheduling cannot be pre-computed before ssimulation. Instead, each variable change recursively triggers
further re-computations of all depending variables in the same reaction.

2.4 Implementation issues

The problem of implementing a synchronous specification mainly consists in defining the step reaction function that
will implement the behavior of aninstant, as showninfigure 1. Then, the global behavior is computed by iterating this
function for successive instants and successive input signal valuations. Following the basic mathematical interpreta-

reaction () {
decode_state ; read_input ;
compute ;
write_output ; encode_state ;
}

Figure 1: Thereaction function is called at each instant to perform the computation of the current step

tions, the compilation of a S/R program may either consist in the expansioninto aflat Mealy FSM, or in the transl ation
into a flat netlist (with more types and arithmetic operators, but without activation conditions). The run-time imple-
mentation consists here in the execution of the resulting Mealy machine or netlist. In the first case, the automaton
structure is implemented as a big top-level switch between states. In the second case, the netlist is totally ordered in a
way compatible with causality, and all the equationsin the ordered list are evaluated at each execution instant. These
basic techniques are at the heart of the first compilers, and still of someindustrial ones.

In the last decade fancier implementation schemes have been sought, relying on the use of activation conditions:
During each reaction, execution starts by identifying the “truly useful” program blocks, which are marked as “active’.
Then only the actual execution of the active blocks is scheduled (a bit more dynamically) and performed in an order
that respects the causality of the program. In the case of declarative languages, the activation conditions come in
the form of a hierarchy of clock under-samplings — the clock tree, obtained through a “clock calculus’ computation
performed at compile time (see section 4.3). In the case of imperative formalisms, activation conditions are based



on the halting points (where the control flow can stop between execution instants) and on the signal-generated (sub-
)clocks (see section 3.3).

3 Imperative style: Esterel and SyncCharts

For control-dominated systems, comprising a fair number of (sub-)modes and macro-states with activity swapping
between them, it is natural to employ a description style that is algorithmic and imperative, describing the changesand
progression of control in an explicit flow. In essence, one seeksto represent hierarchical (Mealy) Finite State Machines
(FSM), but with some data computation and communi cation treatment performed inside states and transitions. Esterel
provides this in a textual fashion, while SyncCharts propose a graphical counterpart, with visual macro-states. It
should be noted that systems here remain finite-state (at least their control structure).

3.1 Syntax and structure

Esterel introduces a specific pause construct, used to divide behaviors into successive instants (reactions). The
pause statement excepted, control is flowing through sequential, parallel and if-then-else constructs, performing data
operations and interprocess signaling. But it stops at pause, memorizing the activity of that location point for the
next execution instant. This provides the needed atomicity mechanism, since the instant is over when all currently
active parallel componentsreach apause statement.

The full Esterel language contains a large number of constructs that facilitate modeling, but there exists a reduced
kernel of primitive statements (corresponding to the natural structuring paradigms) from which all the other constructs
can be derived. Thisis of special interest for model-based approaches, because only primitives need to be assigned
semantics as transformations in the model space. The semantics of the primitives are then combined to obtain the
semantics of composed statements. Figure 2 providesthe list of primitive operators for the data-less subset of Esterel
(also called Pure Esterel). A few comments are herein order:

e in p; ¢ the reaction where p terminates is the same as the reaction where ¢ starts (control can be split into
reactions only by pause statementsinside p or g).

e the 1oop constructs do not terminate, unless aborted from above. This abortion can be dueto an external signa
received by an abort statement, or to an internal exception raised through the t rap/exit mechanism, or
to any of the two (like for the weak abort statement). The body of aloop statement should not instantly
terminate, or else the loop will unroll endlessly in the same instant, leading to divergence. Thisis checked by
static analysis techniques. Finally, loops are the only means of defining iterating behaviors (there is no general
recursion), so that the system remains finite-state.

e the present signa testing primitive allows an else part. Thisis essential to the expressive power of the
language, and has strong semantic implications pertaining to the Synchronous Hypothesis. It is enough to note
here that, according to the synchronous hypothesis, signal absence can effectively be asserted.

e the difference between “abort p when S” and “weak abort p when S” isthat in the first case signal S
can only come from outside p and its occurrence prevents p from executing during the execution instant where
S arrives. In the second case, S can a'so be emitted by p, and the preemption occurs only after p has completed
its execution for the instant.

e technically speaking, the trap/exit mechanisms can emulate the abort statements. But we feel that the
ease of understanding makes the latter worth inclusion in the set of primitives. Similarly, we shall some-
times use “await S” as a shorthand for “abort loop pause end when S”, and “sustain S” for
“loop emit S end”.

Most of the data-handling part of the language is deferred to a general-purpose host language (C, C++, Java, ...).
Esterel only declares type names, variables types, and function signatures (which are used as mere abstract instruc-
tions). The actual type specifications and function implementations must be provided and linked at later compilation
time.



In addition to the structuring primitives of figure 2, the language contains (and requires) interface declarations
(for signals, most notably), and modular division with submodules invocation. Submodule instantiation allows signal
renaming, i.e. transforming virtual name parametersinto actual ones (again, mostly for signals). Rather than providing
afull user manual for the language, we shall illustrate most of these features on an example.

[p] enforces precedence by parenthesis
pause suspends the execution until next instant
Piq executes p, then ¢ as soon as p terminates
loop p end iterates p forever in sequence

p|]|ql executes p and ¢ in parallel, synchronously
signal S inend declareslocal signa S inp
emit S emitssigna S
present S thenpelse gend executesp or ¢ upon S being present or absent !
abort pwhen S executes p until S occurs (exclusive)
weak abort pwhen S executes p until S occurs (inclusive)
suspend p when S executes p unless S occurs
trap T inpend declare/catch exception T in p
exit T raise exception T’

Figure 2: Pure Esterel statements

The small example of fig. 3 has four input signals and one output signal. Meant to model a cyclic computation
like a communication protocol, the core of our exampleis the loop which awaits the input I, emits 0, and then awaits
J before instantly restarting. The local signal END signals the completion of loop cycles. When started, the await

module Example: input I,J,KILL,SUSP; output O;
suspend
trap T in %exception handler, performs the preemption
signal END in
loop %basic computation loop
await I;emit O;await J;emit END
end
||
$preemption protocol, triggered by KILL
await KILL;await END;exit T
end
end;
when SUSP %$suspend signal
end module

Figure 3: A simple Esterel program modeling a cyclic computation (like a communication protocol) which can be
interrupted between cycles and which can be suspended

statement waits for the next clock cycle where its signal is present. The computation of al the other statements
present in our example is performed during a single clock cycle, so that the await statements are the only places
where control can be suspended between reactions (they preserve the state of the program between cycles). A direct
consequenceisthat the signals T and J must come in different clock cyclesin order not to be discarded.

Theloopis preempted by the exception handling statement t rap when“exit T” isexecuted. Inthiscase, trap
instantly terminates, control is given in sequence, and the program terminates. The preemption protocol is triggered
by the input signal KILL, but the exception T is raised only when END is emitted. The program is suspended — no
computation is performed and the state is kept unchanged — in clock cycles where the SUSP signal is received. A
possible execution trace for our programis giveninfig. 4.



3.2 Semantics

Esterel enjoys a full-fledged formal semantics, in the form of Sructural Operational Semantic (SOS) rules [12]. In
fact, there are two main levels of such rules, with the coarser describing all potential, logically consistent behaviors,

clock | inputs | outputs | comments
0 any all inputs discarded
1 I (@)
2 KILL preemption protocol triggered
3 nothing happens
4 JSUSP suspend, J discarded
5 J END emitted, T raised, program terminates

Figure 4: A possible execution trace for our example

while the more precise one only selects those that can be obtained in a constructive way (thereby discarding some
programsas “unnatural” in this respect). Thisissue can be introduced with two small examples:
present S then emit S end present S else emit S end

Inthefirst casethe signal S canlogically be assumed as either present or absent: if assumed present, it will be emitted,
so it will become present; if assumed absent, it will not be emitted. In the second case, following a similar reason-
ing, the signal can be neither present, nor absent. In both cases, anyhow, the analysis is done by “guessing” before
branching to the potentially validating emissions. While more complex causality paradoxes can be built using the
full language, these two examples already show that the problem stems from the existence of causality dependencies
inside a reaction, prompted by instantaneous sequential control propagation and signal exchanges. The so-called con-
structive causality semantics of Esterel checks precisely that control and signal propagation are well-behaved, so that
no “guess’ isrequired. Programs which pass this requirement are deemed as “ correct”, and they provide deterministic
behaviors for whatever input is presented to the program (which is a desirable feature in embedded system design).

3.3 Compilation and compilers

Following the pattern presented in section 2.4, the first compilers for Esterel were based on the trandation of the
source into (Mealy) finite automata or into digital synchronouscircuits at netlist level. Then, the generated sequential
code was a compiled automata or netlist simulator. The automata-based compilation [14] was used in the first Esterel
compilers (known as Esterel V 3). Automaton generation was done here by exhaustive expansion of all reachable states
using symbolic execution (all datais kept uninterpreted). Execution time was then theoretically optimal, but code size
could blow up (as the number of states), and huge code duplication was mandatory for actions that were performed
in several different states. The netlist-based compilation (Esterel VV5) is based on a quasi-linear, structural Esterel-
to-circuits translation scheme [11] that ensures the tractability of compilation even for the largest examples. The
drawback of the method is the reaction time (the ssimulation time for the generated netlist), which increases linearly
with the size of the program.

Apart from these two previous compilation schemes, which have matured into full industrial-strength compilers,
several attempts have been made to develop a more efficient, basically event-based type of compilation which follows
more readily the naive execution path and control propagationinside each reaction, and in particular executes“ as much
as possible” only the truly active parts of the program?. We mention here three such approaches: the Saxo compiler
of Closse et al. [56], the EC compiler of Edwards [28], and the GRC2C compiler of Potop and de Simone [47].
All of them are structured around flowgraph-based intermediate representations that are easily translated into well-
structured sequential code. The different intermediate representations also give the differences between approaches,
by determining which Esterel programs can be represented, and what optimization and code generation techniques can
be applied.

1Recall that thisis areal issue in Esterel, since programs may contain reaction to absence of signals, and determining this absence may require
to check that no emission remains possible in the potential behaviors, whatever feasible test branches could be taken. To achieve this goa at a
reasonable computational price, current compilers require in fact additional restrictions — in essence, the acyclicity of the dependency/causality
graph at some representation level. Acyclicity ensures constructiveness, because any topologica order of the operations in the graph gives an
execution order which is correct for al instants.



We exemplify on the GRC2C compiler [47], whichis structured around the GRC intermediate form. The GRC rep-
resentation of our example, giveninfig. 5, uses two graph-based structures—ahierarchical state representation (HSR)
and a concurrent control-flow graph (CCFG) — to preserve most of the structural information of the Esterel program
while making the control flow explicit with few graph-building primitive nodes. The HSR is an abstraction of the syn-

a. Hierarchical b. Concurrent
State Control-Flow
Representation - Graph

program IS
______,..,-—gffstate test
1] |program () suspend nodes
[12]
4 signal
O N
exit 12
pause(6) pause(10) trapT(10)
10 sel :
await | await J 9 a Join
trapT(5) pause(5)
. 12
await KILL await END Coxit 2>
Cexit 0>

Figure 5: GRC intermediate representation for our Esterel example

tax tree of theinitial Esterel program. It can be seen asa structured datamemory that preserves state information across
reactions. During each instant, a set of activation conditions (clocks) is computed from this memory state, to drive the
execution towards active instructions. The CCFG represents in an operational fashion the computation of an instant
(the transition function). During each reaction, the dynamic CCFG operates on the static HSR by marking/unmarking
component nodes (subtrees) with “active” tags as they are activated or deactivated by the semantics.

For instance, when we start our small example (fig. 3,5), the “program start (1)” and “program (0)” HSR nodes
are active, while al the statements of the program (and the associated HSR nodes) are not. Like in any instant, control
enters the CCFG by the topmost node and uses the first state decoding node (labelled 0) to read the state of the HSR
and branch to the start behavior, which sets the “ program start (1)” indicator to inactive (with “exit 1), and activates
“await |” and “await KILL" (with “enter 8" and “enter 11").

The HSR also serves as a repository for tags, which record redundancies between various activation clocks, and
are used by the optimization and code generation algorithms. Such atag is #, which tells that at most one child of
the tagged node can retain control between reactions at a time (the activation clocks of the branches are exclusive).
Other tags (not figured here) are computed through complex static analysis of both the HSR and CCFG. Thetagsallow
efficient optimization and sequential code generation.

The CCFG is obtained by making the control flow of the Esterel program explicit (a structural, quasi-linear trans-
lation process)?. Usualy, it can be highly optimized using classical compiler techniques and some methods derived
from circuit optimization, both driven by the HSR tags computed by static analysis. Code generation from a GRC
representation is done by encoding the state on sequential variables, and by scheduling the CCFG operators using
classical compilation techniques[43].

The Saxo compiler of Closse et al. [56] uses a discrete-event interpretation of Esterel to generate a compiled
event-driven simulator. The compiler flow is similar to that of VeriSUIF [29], but Esterel’s synchronous semantics
are used to highly simplify the approach. An event graph intermediate representation is used here to split the program

2Such a process is necessary, because most Esterel statements pack together two distinct, and often disjoint behaviors: one for the execution
instants where they are started, and one for instants where control is resumed from inside.



into alist of guarded procedures. The guardsintuitively correspond to events that trigger computation. At each clock
cycle, the simulation engine traverses the list once, from the beginning to the end, and executes the procedures with
an active guard. The execution of a procedure may modify the guards for the current cycle and for the next cycle. The
resulting code is slower than its GRC2C-generated counterpart for two reasons: First, it does not exploit the hierarchy
of exclusion relations determined by switching statements like the tests. Second, optimization is less effective because
the program hierarchy is lost when the state is (very redundantly) encoded using guards.

The EC compiler of Edwards[28] treats Esterel as having control-flow semantics (in the spirit of [40, 43]) in order
to take advantage of the initial program hierarchy and produce efficient, well-structured C code. The Esterel program
isfirst translated here into a concurrent control-flow graph representing the computation of areaction. The translation
makesthe control flow explicit and encodesthe state access operations using tests and assignments of integer variables.
Its static scheduling algorithm takes advantage of the mutual exclusions between parts of the program and generates
code that uses program counter variablesinstead of simple Boolean guards. Theresult isthereforefaster than its Saxo-
generated counterpart. However, it isusually slower than the GRC2C-generated code because the GRC representation
preservesthe state structure of theinitial Esterel program and uses static analysistechniquesto determine redundancies
in the activation pattern. Thus, it is able to better simplify the final state representation and the CCFG.

3.4 AnalysigVerification/Test Generation: Benefits from formal approaches

We claimed that the introduction of well-chosen structuring primitives, endowed with forma mathematical semantics
and interpretations as well-defined transformations in the realms of Mealy machines and synchronous circuits, was
instrumental in allowing powerful analysis and synthesis techniques as part of the design of synchronous programs.
What are they, and how do they appear in practice to enhance the confidence in the correctness of Safety-Critical
embedded applications ?

Maybe the most obviousis that synchronous formalisms can fully benefit from the model-checking and automatic
verification usually associated to the netlist and Mealy machine representations, and now widely popular in the hard-
ware design community with the PSL/SuGaR and assertion-based design approaches. Symbolic BDD- and SAT-based
model-checking techniques are thus available on all S/R systems. Moreover,the structured syntax allows in many
cases theintroduction of modular approaches, or guide abstraction techniques with the goal of reducing complexity of
analysis.

The ability of formal methods akin to model-checking can also be used to automatically produce test sequences
which seek to reach the best possible coverage in terms of visited states or exercised transitions. Here again specific
techniques were devel oped to match the S/R models.

Also, symbolic representations of the reachable state spaces (or abstracted over-approximations), which can effec-
tively be produced and certified correct thanks to the formal semantics, can be used in the course of compilation and
optimization. In particular for Esterel, the RSS computation allows more “correct” programs w.r.t. constructiveness:
indeed causal dependencies may vary in direction depending on the state. If all dependenciesare put together regard-
less of the states, then a causality cycle may appear, while not al components of the cycle may be active at the same
instant, and so no real cycle exists (but it takes a dynamic analysis to establish this). Similarly, the RSS may exhibit
combinatorial relations between registers encoding the local states, so that register elimination is possible to further
simplify the state space structure.

Finally, the domain-specific structuring primitives empowering dedicated programming can also be seen asan im-
portant criterion. Readable, easily understandable programs are a big step towards correct programs. And when issues
of correctness are not so plain and easy, as for instance when regarding proper scheduling of behaviorsinside areac-
tion to respect causal effects, then powerful abstract hypothesis are defined in the S/R domain that define admissible
orderings (and build them for correct programs). A graphical version of Esterel, named SyncCharts for Synchronous
StateCharts, has been defined to provide a visual formalism with a truly synchronous semantics.

4 Thedeclarative style: Lustre and Signal

The presentation of declarative formalisms implementing the synchronous hypothesis as defined in Section 2 can be
cast into a model of computation (proposed in [33]) consisting of a domain of traces/behaviors and of a semi-lattice
structure that renders the synchronous hypothesis using a timing equivalencerelation: clock equivalence. Asynchrony



can be superimposed on this model by considering a flow equivalence relation. Heterogeneous systems [6] can also
be modeled by parameterizing the composition operator using arbitrary timing relations.

4.1 A synchronous model of computation

We consider apartially-ordered set of tagst to denote instants (which are seen, in the sense of Section 2.2, as symbolic
periodsin time during which one reaction takes place). Therelationt, < ¢, saysthat ¢; occursbeforets. A minimum
tag exists, denoted by 0. A totally ordered set of tags C is called a chain and denotes the sampling of a possibly
continuous or dense signal over a countable series of causally related tags. Events, signals, behaviors and processes
are defined as follows:

- anevent e isapair consisting of avaluev and atag ¢,

- asignal s isafunction from achain of tagsto a set of values.

- abehavior b isafunction from a set of names x to signals.

- aprocess p isaset of behaviors that have the same domain.
In the remainder, we write tags(s) for the tags of asignal s, vars(b) for the domains of b, b| x for the projection of
abehavior b on a set of names X and b/ X for its complementary. Figure 6 depicts a behavior (b) over three signals
named z, y and z. Two frames depict timing domains formalized by chains of tags. Signal = and y belong to the same
timing domain: x is adown-sampling of y. Its events are synchronous to odd occurrences of events along y and share
the same tags, e.g. t;. Even tags of y, e.g. t2, are ordered along its chain, e.g. t; < t», but absent from z. Signal z
belongs to a different timing domain. Itstags, e.g. ¢ 3 are not ordered with respect to the chain of y, eg. t; £ ¢3 and
ts £ t;.

Figure 6: A behavior (named b) over three signals (z, i and z) belonging to two clock domains

The synchronous composition of the processes p and ¢ is denoted p|q. It is defined by the union b U ¢ of all
behaviors b (from p) and ¢ (from ¢) which hold the same values at the same tags b| ; = ¢|; for adl signal z € I =
vars(b) N vars(c) they share. Figure 7 depicts the synchronous composition, right, of the behaviors b, left, and the
behavior ¢, middle. The signal v, shared by b and ¢, carries the same tags and the same values in both b and ¢. Hence,
b U ¢ defines the synchronous composition of b and c.

x: ot x: ot
e 2 o2 ° ° | e ol1 o2 o ° = Y 2 o2 o °
z ols ° ° z ots ° °
Figure 7: Synchronous compositionof b € pandc € ¢

A scheduling structure isdefined to schedule the occurrence of events along signals during aninstant ¢. A schedul-
ing — by apre-order relation between dates z; where ¢ represents the time and = the location of the event. Figure 8
depicts such arelation, superimposed to the signals z and y of figure 6. Therelationy ;, — ¢, , for instance, requires
y to be calculated before x at the instant ¢,. Naturally, scheduling is contained in time: if ¢ < t' then z; —° x for
any z and b and it z; —° z, thent' £ t.
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Figure 8: Scheduling relations between simultaneous events

A synchronousstructure isdefined by a semi-lattice structure to denote behaviors that have the same timing struc-
ture. The intuition behind this relation (depicted in figure 9) is to consider a signal as an elastic with ordered marks
onit (tags). If the eastic is stretched, marks remain in the same relative and partial order but have more space (time)
between each other. The same holdsfor aset of elastics: abehavior. If elastics are equally stretched, the order between
marksis unchanged. In figure 9, the time scale of « and y changes but the partial timing and scheduling relations are
preserved. Stretching is a partial-order relation which defines clock equivalence. Formally, abehavior ¢ isastretching
of b of same domain, written b < ¢, if there exists an increasing bijection on tags f that preserves the timing and
scheduling relations. If so, ¢ is theimage of b by f. Last, the behaviors b and ¢ are said clock-equivalent, written
b ~ ¢, iff thereexistsabehaviord st.d < bandd < c.

Figure 9: Relating synchronous behaviors by stretching

4.2 Declarative design languages

The declarative design languages Lustre [35] and Signal [9] share the core syntax of figure 10 and can both be ex-
pressed within the synchronous model of computation of section 4.1. In both languages, aprocess P isan infiniteloop
that consists of the synchronous composition P | Q) of simultaneous equationsz = y f z over signas named z, y, z.
Both Lustre and Signal support the restriction of a signal name z to aprocess P, noted P/z. The analogy stops here
as Lustre and Signal differ in fundamental ways. Lustreis a single-clocked programming language, while Signal isa
multi-clocked (polychronous) specification formalism. This difference originates in the choice of different primitive
combinators (named f in figure 10) and resultsin orthogonal system design methodol ogies.

PQu=z=yfz|Plz|P|Q

Figure 10: A common syntactic core for Lustre and Signal

Combinators for Lustre In a Lustre process, each equation processes the n*" event of each input signal during
the nt" reaction (to possibly produce an output event). As it synchronizes upon availability of all inputs, the timing
structure of a Lustre program is easily captured within a single clock domain: all input events are related to a master
clock and the clock of the output signalsis defined by sampling the master. There are three fundamental combinators
in Lustre:

e Déelay: “z = prey” initidly lets x undefined and then definesit by the previous value of y.

e Followed-by: “2 = y -> 2" initidly defines z by the value v, and then by z. The pre and -> operators
are usudly used together, likein “z = v -> pre (y)”, to define asignal = initiadlized to v and defined by the
previous value of y. Scade, the commercial version of Lustre, uses a one-bit analysis to check that each signa
defined by a pre iseffectively initidlized by an ->.
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e Conditional: “z = ifbthenyelse 2" definesz by y if bistrueand by z if b isfase. It can be used without
alternative“z = if btheny” tosampley at theclock b, as shownin figure 11.

y ol1,01 t2,v2 t3,v3
y t1,v1 t2,v2 tzvg + t
ifbtheny 2,02 3)U3
_ t1,v to,v1 t3,v2
v->prey ’ o'2; o"3: b ot10 ts,1 ts,1

Figure 11: Theif-then-else conditional in Lustre

Lustre programs are structured as data-flow functions, also called nodes. A node takes a number of input signals
and defines a number of output signals upon the presence of an activation condition. If that condition matches an edge
of theinput signal clock, then the nodeis activated and possibly produces output. Otherwise, outputs are undetermined
or defaulted. As an example, figure 12 defines a resettable counter. It takes an input signal tick and returns the
count of its occurrences. A boolean reset signa can be triggered to reset the count to 0. We observe that the
boolean input signals t i ck and reset are synchronousto the output signal count and define a data-flow function.

node counter (tick, reset: bool) returns (count: int);
let
count = if true->reset
then 0
else if tick then pre count+l else pre count;

Figure 12; A resettable counter in Lustre

Combinators for Signal As opposed to nodes in Lustre, equations = : =y f z in Signa more generally denote
processes that define timing relations between input and output signals. There are three primitive combinators in
Signal:

e Delay: “z :=y$1inito” initidly defines the signal = by the value v and then by the previous value of the
signal y. Thesignal y and itsdelayed copy “z : = y$1 initv” are synchronous: they share the same set of tags
ty,to,. ... Initidly (at t1), the signal « takesthe declared value v. Attagt,,, « takesthevalueof y attag ¢,,—1 .
Thisisdisplayedin figure 13.

t1,v1 t2,v2 t3,v3

(z:=y$linitv) z o0 ef2v1 lsv2
Figure 13: The delay operator in Signal

e Sampling: “x : =y when 2" defines z by y when z istrue (and both y and z are present); « is present with the
valuew, at t, only if y ispresent with v, at ¢, and if z ispresent at ¢, with the value true. When thisis the case,
one needs to schedule the calculation of y and z before =, asdepicted by v, — @1, < 2.

e Merge “z = ydefault 2" definesz by y when y is present and by z otherwise. If y isabsent and z present
withv; at ¢; then z holds (¢1,v). If y ispresent (at ¢» or ¢3) then z holdsits value whether z is present (at ¢2)
or not (at ¢3). Thisis depicted in figure 14.

The structuring element of a Signal specification is a process. A process accepts input signals originating from
possibly different clock domains to produce output signals when needed. Recalling the example of the resettable
counter (figure 12), this allows, for instance, to specify a counter (pictured in figure 15) where the inputs t ick and
reset and the output value have independent clocks. The body of counter consists of one equation that defines
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t2,v2 t3,vg

%@ﬂ@ o (z :=ydefaultz) =z %hﬂ“ tzvz gts,vs
t1,0

:=ywh
(x :=ywhenz) o S P

SIS

Figure 14: The merge operator in Signal

the output signal value. Upon the event reset, it setsthe count to 0. Otherwise, upon a t i ck event, it increments
the count by referring to the previous value of value and adding 1 to it. Otherwise, if the count is solicited in the
context of the counter process (meaning that its clock is active), the counter just returns the previous count without
having to obtain avaluefromthe tick and reset signals.

process counter = (? event tick, reset ! integer value)
(| value := (0 when reset)
default ((value$ init 0 + 1) when tick)
default (value$ init 0)
[);

Figure 15; A resettable counter in Signal

A Signal processis astructuring element akin to a hierarchical block diagram. A process may structurally contain
sub-processes. A process is a generic structuring element that can be specialized to the timing context of its call.
For instance, a definition of the Lustre counter (figure 12) starting from the specification of figure 15 consists of the
refinement depicted in figure 16. The input tick and reset clocks expected by the process counter are sampled from
the boolean input signals t i ck and reset by using the “when tick” and “when reset”expressions. The count
is then synchronized to the inputs by the equation reset "= tick "= count.

process synccounter = (? boolean tick, reset ! integer value)
(| value := counter (when tick, when reset)
| reset "= tick "= value

|);

Figure 16: Synchronization of the counter interface

4.3 Compilation of declarative formalisms

The analysis and code generation techniques of Lustre and Signal are necessarily different, tailored to handle the
specific challenges determined by the different models of computation and programming paradigms.

4.3.1 Compilation of Signal

Sequential code generation starting from a Signal specification starts with an analysis of its implicit synchronization
and scheduling relations. This analysis yields the control and data flow graphs that define the class of sequentially
executabl e specifications and allow to generate code.

Synchronization and scheduling analysis In SIGNAL, the clock ~z of a signal = denotes the set of instants at
which the signal z is present. It isrepresented by a signal that is true when z is present and that is absent otherwise.
Clock expressions (see figure 17) represent control. The clock “when z” (resp. “whennot x”) representsthe time tags
at which a boolean signal « is present and true (resp. false). The empty clock is denoted by 0. Clock expressions
are obtained using conjunction, disjunction and symmetric difference over other clocks. Clock equations (also called
clock relations) are Signal processes. the equation “e”~=e'” synchronizesthe clockse and e’ while“e~< e'” specifies
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the containment of e in e’. Explicit scheduling relations“z — y whene” allow the representation of causality in the
computation of signals (e.g. x after y at the clock e).

= "z |whenz |whennotxz|e"+e'|e”-€ |e”*e |0 (clock expression)
E == ()|e=é|e"<e |z — ywhene|E|E'|E/x (clock relations)

9

Figure 17: The syntax of clock expressions and clock relations (equations)

A system of clock relations E can be easily associated (using the inference system P : E of figure 18) to any
Signal process P, to represent its timing and scheduling structure.

z:=y$linite:"2"="y P:E Q:FE P:E
x :=ywhenz: "z"="ywhenz|y - xwhenz - ; -
z:=ydefaultz: "z"="y "+ "z|y = 2|z - xwhen("z P|Q:E|E Plu: Efx

A~ A~

Y)

Figure 18: The clock inference system of Signal

Hierarchization The clock and scheduling relations E of a process P define the control-flow and data-flow graphs
that hold all necessary information to compile a Signal specification upon satisfaction of the property of endochrony,
as illustrated in figure 19. A process is said endochronous iff given a set of input signals (z and y in figure 19)
and flow-equivalent input behaviors (datagrams on the left of figure 19), it has the capability to reconstruct a unique
synchronous behavior up to clock-equivalence: the datagrams of the input signalsin the middle of figure 19 and of the
output signal on the right of figure 19 are ordered in clock-equivalent ways.

x . .
input endochronous )
y: \‘ooi’o \‘o buffer ;L ° ;L ° Jo’ processp Ut
v NN N input ULl endochronous| -
Yy (1] L J [ bUffer o 0 0 0 0 proce$p -

Figure 19: Endochrony: from flow-equivalent inputs to clock-equivalent outputs

To determinethe order 2 < y in which signals are processed during the period of areaction, clock relations E play
an essential role. The process of determining this order is called hierarchization and consists of an insertion algorithm
which proceedsin three easy steps:

1. First, equivalence classes are defined between signals of same clock: if £ = “z"= "y thenz < y (we write
E = E'iff EimpliesE").

2. Second, elementary partial order relations are constructed between sampled signdls: if E = “z"=wheny or
E = "z"=whennoty theny < z.

3. Last, assume apartial order of maximum z suchthat £ = ~z = "y f w (forsome f € { "+, "%, "- })and a
signal « suchthat y < « > w, then insertion consist of attaching z to « by = < z.

The insertion algorithm proposed in [1] yields a canonical representation of the partial order < by observing
that there exists a unique minimum clock = below z such that rule 3 holds. Based on the order <, one can decide
whether E is hierarchical by checking that its clock relation < has a minimum, written min < E' € vars(E), so that
Va € vars(E),Jy € vars(E),y < x. If E isfurthermoreacyclic (i.e. E = x — xzwhene impliesE = =0, for
al x € vars(E)) then the analyzed process is endochronous, as shown in [33].
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Example The implications of hierarchization for code generation can be outlined by considering the specification
of one-place buffer in Signal (figure 20, left). Process buf fer implements two functionalities. One is the process
alternate which desynchronizes the signals i and o by synchronizing them to the true and false values of an
alternating boolean signal b. The other functionality is the process current. It definesacell in which values are
stored at the input clock ~ i and loaded at the output clock ~o. cell isapredefined Signal operation defined by:

z:=ycell zinitv =%/ (m :=2$1initv|z :=ydefault m| "z ="y "+ "2) /m

Clock inference (figure 20, middle) appliesthe clock inference system of figure 18to the processbu f fer to determine
three synchronization classes. We observe that b, c¢b, zb, zo are synchronous and define the master clock
synchronization class of buf fer. There are two other synchronization classes, ¢ 1 and ¢ .o, that correspondsto the
true and false values of the boolean flip-flop variable b, respectively :

b<~c_b<~zb<~zoandb < c_i<~iandb < c.o<~o

This defines three nodes in the control-flow graph of the generated code (figure 20, right). At the main clock ¢ b,
b and c_o are calculated from zb. At the sub-clock b, the input signal i isread. At the sub-clock ¢ .o the output
signal o iswritten. Finally, zb is determined. Notice that the sequence of instructions follows the scheduling relations
determined during clock inference.

process buffer = (? 1 ! o) buffer iterate () {
(| alternate (i, o) (] ¢b "=b b = lzb;
| o := current (i) | o "= zb c o= I!b;
|) where | zb "= zo if (b) {
process alternate = (? i, o ! ) | ¢ i := when b if (!r buffer i(&i))
(| zb := bsl init true | ¢ i "=1 return FALSE;
| b := not zb | ¢ o := when not b }
| o "= when not b | co"=o0 if (c_o) {
| i "= when b | 1 -> zo when "1 o = 1ij;
) / b, zb; | zb -> b w_buffer o(o);
process current = (? 1 ! o) | zo -> o when "o }
(]| zo := i cell "o init false| |) / zb, zo, c_b, zb = b;
| o := zo when "o c o, c_ i, b; return TRUE;
|) / zo; i

Figure 20: Specification, clock analysis and code generation in Signal

4.3.2 Compilation of Lustre

Whereas Signal uses a hierarchization algorithm to find a sequential execution path starting from a system of clock
relations, Lustre leaves this task to engineers, which must provide a sound, fully synchronized program in the first
place: well-synchronized Lustre programs correspond to hierarchized Signal specifications.

The classic compilation of Lustre starts with a static program analysis that checks the correct synchronization
and cycle freedom of signals defined within the program. Then, it essentially partitions the program into elementary
blocks activated upon boolean conditions [35] and focuses on generating efficient code for high-level constructs, such
asiteratorsfor array processing [42].

Recent efforts have been conducted to enhance this compilation scheme by introducing effective activation clocks,
whose soundness is checked by typing techniques. In particular, this was applied to the industrial SCADE version,
with extensions [26, 25].

4.3.3 Certification

The simplicity of the single-clocked model of Lustre eases program analysis and code generation. Therefore, its
commercial implementation — Scade by Esterel Technologies— providesa certified C code generator. Its combination
to Sildex (the commercial implementation of Signal by TNI-Valiosys) asafront-end for architecture mapping and early
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requirement specification is the methodol ogy advocated in the ST project Safeair (URL: http://www.safeair.
org). The formal validation and certification of synchronous program properties has been the subject of numerous
studies. In [44], a co-inductive axiomatization of Signal in the proof assistant Coq [31], based on the calculus of
constructions [57], is proposed.

The application of this model istwo-fold. It alows, first of al, for the exhaustive verification of formal properties
of infinite-state systems. Two case studies have developed. In [36], a faithful model of the steam-boiler problem was
given in Signal and its properties proved with Signal’s Coq model. In [37], it is applied to proving the correctness
of real-time properties of a protocol for loosely time-triggered architectures, extending previous work proving the
correctness of its finite-state approximation [8].

Another important application of modeling Signal in the proof assistant Coq is being explored: the development of
areference compiler translating Signal programsinto Coq assertions. Thistranslation allows to represent model trans-
formations performed by the Signal compiler as correctness-preserving transformations of Coq assertions, yielding a
costly yet correct-by-construction synthesis of the target code.

Other approaches to the certification of generated code have been investigated. In [46], validation is achieved by
checking a model of the C code generated by the Signal compiler in the theorem prover PV S with respect to a model
of its source specification (translation validation).

Related work on modeling Lustre have equally been numerous and started in [45] with the verification of a se-
quential multiplier using amodel of stream functionsin Coq. In[21], the verification of Lustre programsis considered
under the concept of generating proof obligations and by using PVS. In [19], a semantics of Lucid-Synchrone, an
extension of Lustre with higher-order stream functions, is given in Cog.

5 Successstories—a viable approach for system design

Synchronous and reactive formalisms appeared in the early nineties and the theory matured and expanded since then
to cover al the topics presented in this article. Research groups were active mostly in France, but also notably in
Germany and in the US. Several large academic projects were completed, including the IST Syrf, Sacres and Safeair
projects, aswell asindustrial early-adopters ones.

S/R modeling and programming environments are today marketed by two French software houses, Esterel Tech-
nologiesfor Esterel and SCADE/Lustre, and TNI-Valiosysfor Sildex/Signal. The influence of S/R systems tentatively
pervaded to hardware CAD products such as Synopsys CoCentric Studio and Cadence V CC, despite the omnipotence
of classical HDLs there. The Ptolemy co-simulation environment from UC Berkeley comprises a /R domain based
on the synchronous hypothesis.

There have been a number of industrial take-ups on S/R formalisms, most of them in the aeronautics industry.
Airbus Industriesis now using Scade for the real design of parts of the new Airbus A-380 aircraft. S/R languages are
also used by Dassault Aviation (for the next-generation Rafale fighter jet) and Snecma ([ 7] gives an in-depth coverage
of these prominent collaborations). Car and phone manufacturers are also paying increasing attention (for instance at
Texas Instruments), as well as advanced devel opment teams in embedded hardware divisions of prominent companies
(such as Intel).

6 Intothefuture: perspectivesand extensions

Future advancesin and around synchronous languages can be predicted in several directions:

Certified compilers. As already seen, this is the case for the basic SCADE compiler. But as the demand becomes
higher, due to the critical-safety aspects of applications (in transportation fields notably), the impact of full-
fledged operational semantics backing the actual compilers should increase.

Formal models and embedded code targets. Following the trend of exploiting formal models and semantic prop-
erties to help define efficient compilation and optimization techniques, one can consider the case of targeting
distributed platforms (but still with a global reaction time). Then, the issues of spatial mapping and temporal
scheduling of elementary operations composing the reaction inside a given interconnect topology become afas-
cinating (and NP-complete) problem. Heuristics for user guidance and semi-automatic approaches are the main
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topic of the SynDEXx environment [39, 32]. Of course this requires an estimation of the time budgets for the
elementary operations and communications.

Desynchronized systems. In larger designs, the full global synchronous assumption is hard to maintain, especially
if long propagation chains occur inside a single reaction (in hardware, for instance, the clock tree cannot be
distributed to the whole chip). Severa types of answers are currently being brought to this issue, trying to
instill a looser coupling of synchronous modules in a desynchronised network (one then talks of “Globally-
Asynchronous Locally-Synchronous®’ systems). In the theory of latency-insensitive design, all processes are
supposed to be able to stall until the full information is synchronously available. The exact latency duration
meant to recover a (slower) synchronous model are computed afterwards, only after functional correctness
on the more abstract level is achieved [22, 49]. Fancier approaches, trying to save on communications and
synchronizations, are introduced in section 6.1.

Relations between transactional and cycle-accuratelevels. If synchronous formalisms can be seen as a global at-
tempt at transferring the notion of cycle-accurate modeling to the design of SW/HW embedded systems, then the
existing gap between these levels must also be reconsidered in the light of formal semantics and mathematical
models. Currently, there exists virtually no automation for the synthesis of RTL from TLM levels. The previous
item, with its well-defined relaxation of synchronous hypothesisat specification time, could be adefinite step in
thisdirection (of formally linking two distinct levels of modeling).

Relations between cycle-accurate and timed models. Physical timing is of course a big concern in synchronous
formalisms, if only to validate the synchronous hypothesis and establish converging stabilization of al values
across the system before the next clock tick. Whilein traditional software implementations one can decide that
the instant is over when all treatments were effectively completed, in hardware or other real-time distributed
settings a true compile-time timing analysis is in order. Several attempts have been made in this direction
[41, 24].

6.1 Asynchronousimplementation of synchronous specifications

The relations between synchronous and asynchronous models have long remained unclear, but investigationsin this
direction have recently received an boost due to demands coming from the engineering world. The problem is that
many classes of embedded applicationsare best modeled (at least in part) under the cycle-based synchronous paradigm,
while their desired implementation is not. This problem covers implementation classes that become increasingly
popular (such as distributed software or even complex digital circuits like the Systems-on-a-Chip), hence the practical
importance of the problem. Such implementations are formed of componentsthat are only loosely connected through
communication lines that are best modeled as asynchronous. At the same time, the existing synchronous tools for
specification, verification, and synthesis are very efficient and popular, meaning that they should be used for most of
the design process.

In distributed software, the need for global synchronization mechanisms always existed. However, in order to be
used in aerospace and automotive applications, an embedded system must also satisfy very high requirementsin the
areas of safety, availability, and fault tolerance. These needs prompted the devel opment of integrated platforms, such
as TTA [38], which offer higher-level, proven synchronization primitives, more adapted to specification, verification,
and certification. The same correctness and safety goals are followed in a purely synchronous framework by two
approaches: The AAA methodology and the SynDEXx software of Sorel et al.[32] and the Ocrep tool of Girault
et al.[23]. Both approaches take as input a synchronous specification, an architecture model, and some real-time
and embedding constraints, and produce a distributed implementation that satisfies the constraints and the synchrony
hypothesis (supplementary signals simulate at run-time the global clock of the initial specification). The difference
is that Ocrep is rather tailored for control-dominated synchronous programs, while SynDEx works best on data-flow
specifications with simple control.

In the (synchronous) hardware world, problems appear when the clock speed and circuit size becomelarge enough
to make global synchrony unfeasible (or at least very expensive), most notably in what concerns the distribution of
the clock and the transmission of data over long wires between functional components. The problem is to insure that
no communication error occurs due to the clock skew or due to the interconnect delay between the emitter and the
receiver. Given the high cost (in area and power consumption) of precise clock distribution, it appears in fact that
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the only long-term solution is the division of large systemsinto several clocking domains, accompanied by the use of
novel on-chip communication and synchronization techniques.

When the multiple clocks are strongly correlated, we talk about mesochronous or plesiochronous systems. How-
ever, when the different clocks are unrelated (e.g. for power saving reasons), the resulting circuit is best modeled
as a Globally Asynchronous Locally Synchronous (GALS) system where the synchronous domains are connected
through asynchronous communication lines (e.g. FIFOs). Such approaches are pausible clocking by Yun and Dono-
hue [58], or, in a framework where a global, reference clock is still preserved, latency-insensitive design by Carloni
and Sangiovanni-Vincentelli[22]. A multi-clock extension of the Esterel language[15] has been proposed for the de-
scription of such systems. A more radical approach to the hardware implementation of a synchronous specification
is desynchronization[16], where the clock subsystem is entirely removed and replaced with asynchronous handshake
logic. The advantages of such implementations are those of asynchronouslogic: smaller power consumption, average-
case performance, smaller electro-magnetic interference.

At an implementation-independent level, several approaches propose solutions to various aspects of the problem
of GALS implementation. The loosely time-triggered architectures[8] of Benveniste et al. define a sampling-based
approach to (inter-process) FIFO construction. More important, Benveniste et al.[5] define semantics preservation —
an abstract notion of correct GALS implementation of a synchronous specification (asynchronous communication is
model ed here as message passing). Latency insensitivity insuresin avery smple, highly constrained way the semantics
preservation. Less constraining and higher-level conditions are the compositional criteria of finite flow-preservation
of Tapin et al. [54, 53] and of weak endo-isochrony of Potop, Caillaud, and Benveniste [48]. While finite-flow-
preservation focuses on checking equival ence through finite desynchronization protocol s, weak endo-isochrony allows
to exploit the internal concurrency of synchronous systems in order to minimize signalization, and to handle infinite
behaviors.
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