1

Group Blind Digital Signatures: A Scalable
Solution to Electronic Cash

Anna Lysyanskaya' and Zulfikar Ramzan'

Laboratory for Computer Science,
Massachusetts Institute of Technology,
Cambridge MA 02139,

{anna, zulfikar}@theory.lcs.mit.edu

Abstract. In this paper we construct a practical group blind signature
scheme. Our scheme combines the already existing notions of blind signa-
tures and group signatures. [t is an extension of Camenisch and Stadler’s
Group Signature Scheme [5] that adds the blindness property. We show
how to use our group blind signatures to construct an electronic cash
system in which multiple banks can securely distribute anonymous and
untraceable e-cash. Moreover, the identity of the e-cash issuing bank
is concealed, which is conceptually novel. The space, time, and com-
munication complexities of the relevant parameters and operations are
independent of the group size.

Introduction

1.1 Distributed Electronic Banking

Consider a scheme in which there i1s a large group of banks, monitored by the
country’s Central Bank (e.g. the US Treasury), where each bank can dispense
electronic cash. We want such a scheme to have the following properties:

1.

2.

No bank should be able to trace any e-cash it issues. Therefore, just as with
paper money, people can spend their e-cash anonymously.

A vendor only needs to invoke a single universal verification procedure, based
on the group public key, to ensure the validity of any e-cash he receives. This
procedure works regardless of which bank issued the e-cash. This makes the
vendor’s task much easier since he only needs to know the single group public
key.

There is a single public key for the entire group of banks. The size of this
public key is independent of the number of banks. Moreover, the public key
should not be modified if more banks join the group. Thus, the scheme is
still practical even if there are a large number of participating banks.
Given a valid piece of e-cash only the Central Bank can tell which bank in
the group issued it. No vendor can even determine the bank from which the
customer got her e-cash even though the vendor can easily check that the
e-cash is valid. This restriction gives an extra layer of anonymity since we
conceal both the spender’s identity and the bank she uses.

5. Neither the Central Bank nor any bank can issue cash on behalf of an-
other bank; i.e. no bank or any other entity, including the Central Bank can
“frame” another bank.

In this paper we implement such a scheme using Group Blind Digital Signa-
tures. Many previous electronic cash schemes focus on a model in which a single
bank distributes all the e-cash. In real life, one would like for more than one bank
to be able to dispense electronic money. Our scheme is unique since it considers
scalability as a criterion in the design of electronic cash systems. Moreover, our
scheme 1s conceptually novel since we conceal the bank’s identity in addition to
the spender’s.

1.2 Blind Digital Signatures

Blind Digital Signatures were introduced by Chaum [7] to allow for spender
anonymity in Electronic Cash systems. Such signatures require that a signer be
able to sign a document without knowing its contents. Moreover, should the
signer ever see the document/signature pair, he should have no recollection of
it (even though he can verify that the signature is indeed his). In the electronic
cash scenario, a document corresponds to an electronic coin, and the signer rep-
resents a bank. The spender retains anonymity in any transaction that involves
electronic coins since they are blindly signed.

Blind Signatures have been looked at extensively in the literature [6, 16, 14].
Like some of the previous schemes, the security of our scheme is proven under the
random oracle model [16,1,11]. Complexity based proofs of security are, how-
ever, considered much stronger. Unfortunately, the only known Blind Signature
Scheme with such a proof is far too impractical [14].

1.3 Group Digital Signatures

In a group digital signature scheme, members of a given group are allowed to
sign on behalf of the entire group. In addition, the signatures can be verified
using a single group public key. Also, once a document is signed, no one, except
a designated group manager, can determine which member of the group signed
it. Companies can use group signatures to validate price lists, press releases or
digital contracts; customers would only need to know a single company public
key to verify signatures. Companies can then conceal their internal structure,
but can still determine which employee signed a given document. Group Digital
Signatures were first introduced and implemented by Chaum and van Heyst [9].
Recently, Camenisch and Stadler [5] presented the first group signature scheme
for which the size of the group public key remains independent of the group
size, as do the time, space, and, communication complexities of the necessary
operations; in previous schemes [9,3, 10] the size of the public key grew with the
size of the group which is impractical for large groups. We extend [5] by showing
how to add the blindness property to their scheme. This may have applications
besides the electronic cash and voting schemes described below.

1.4 Using Group Blind Signatures for Electronic Cash

If we combine the properties of Blind Signatures and Group Signatures, we get
what we call Group Blind Digital Signatures. We now show how to use group
blind digital signatures to achieve a scheme in which multiple banks can securely
distribute anonymous and untraceable electronic cash. First we give the main
ideas, and then we address some of the relevant problems. The basic techniques
are due to Chaum [7].

All the banks form a group and their manager will be the country’s Central
Bank (e.g. U.S. Treasury or the Federal Reserve). If Alice wants to withdraw
e-cash from her bank, she first creates an electronic coin C'. Her bank applies
a group blind signature to C' and it withdraws the appropriate amount from
Alice’s account. Alice now gives C' and the bank’s signature on C' to a vendor.
The vendor uses the group public key to verify the bank’s signature on the coin.
If the coin is valid, the vendor gives Alice her merchandise, and gives the coin
to his bank. The vendor’s bank double checks the coin’s validity, adds it to a
global list of coins that have already been spent (to prevent Alice from double
spending), and credits the vendor’s account. Now, since Alice’s bank is signing
blindly, it is possible for Alice to trick her bank by having it sign something
other than what it was supposed to sign. We can prevent this by requiring that
the bank have different secret signing keys to authorize different dollar amounts.
For example, one key could correspond to a $5 withdrawal, another to a $10
withdrawal, and so on [15]. There are several other ways to prevent this kind of
fraud [21], but we omit them here.

1.5 Advantages of Our Scheme

Previous work on electronic cash systems focused on models in which a single
bank distributes all the e-cash. We, on the other hand, show how to implement
an efficient multiple bank model. Our scheme is useful for several reasons. First,
the vendor only has to know a single group public key to check the validity of
any e-cash he receives. Second, the spender’s identity is completely anonymous
to both the vendor and his bank since the signature is blind. Third, neither the
vendor nor the vendor’s bank can determine the user’s bank (thus providing
an extra layer of anonymity). Fourth, the bank which receives the e-cash just
needs to check it with the group public key. Finally, if there are any conflicts
regarding which bank issued some piece of e-cash, the group manager (e.g. the
U.S. Treasury) can intervene and establish the identity of that bank.

1.6 Disadvantages of Our Scheme

Our scheme is an online scheme. That is, the vendor must engage in a protocol
with the bank each time he receives an e-coin from Alice. Otherwise Alice could
potentially use the same electronic coin for several different transactions because
her identity is concealed. This extra interaction between the vendor and bank
each time a transaction is made is a disadvantage. It is especially costly for small

transactions. We can convert our scheme into an offline scheme if we make a
minor modification to our underlying model. We outline this modification later
in the paper. Another important drawback of our scheme is that Alice must
engage in an expensive several round interactive protocol with her bank each
time she wants a new e-coin. Also, our scheme requires O(!) exponentiations per
signature, where [1s the security parameter. Unfortunately, this parameter must
be set to at least 64 for the scheme to be secure. Finally, our scheme does not
address issues such as divistbility and transferability. We leave these issues as
open problems.

1.7 Making Our Scheme Offline

We can make our scheme offline under a slight compromise in spender anonymity.
In this case we allow for a passtve trustee who can revoke the anonymity of the
spender. To start with, in addition to the banks forming a group, all the spenders
in our system form a group — and a trusted third party (passive trustee) can
act as the group manager of the spender group. The spender engages in the
withdrawal protocol as specified earlier. In addition, after she receives a piece of
e-cash, she applies the spender group signature to it. Now, no one, except the
group mangager (trusted third party) can determine the identity of the spender,
so her identity is still somewhat anonymous. The vendor verifies the validity of
e-cash he receives just like he did before, except he must also check that the
spender’s group signature is authentic. Now, because the identity of the spender
is encoded into the cash via a group signature, the vendor doesn’t have to worry
about dealing with the bank whenever he receives an electronic coin. He can
wait until the end of the day and cash all his coins in one shot. If there are any
conflicts, then the trusted third party can intervene and determine the identity
of the spender. These trusted third parties are commonly refered to as passive
trustees because they only have to be present when the user opens her bank
account, and when there is a dispute [4].

2 The Group Blind Signature Model

Our group blind signature model extends Camenisch and Stadler’s [5] group
signature model by adding blindness. Our scheme consists of several signers
(members of the group), their group manager, and several users. We combine
two concepts: blind signatures [6,16,14] and group signatures [5,9,3,10]. Our
model allows the members of a group to sign messages on behalf of the group
such that the following properties hold for the resulting signature:

1. Blindness of Signatures: The signer is unable to view the messages he
signs. Moreover, the signer should have no recollection of having signed a
particular document even though he can verify that he did indeed sign it.
This is new with our scheme.

2. Unforgeablitiy: Only group members can issue valid signatures.

3. Undeniable Signer Identity: The group manager can always establish
the identity of the member who issued a valid signature.

4. Signer Anonymity: It is easy to check that a message/signature pair was
signed by a group member, but only the group manager can determine which
member issued the signature.

5. Unlinkability: Two message-signature pairs where the signature was ob-
tained from the same signer cannot be linked.

6. Security Against Framing Attacks: Neither the group manager, nor the
group members can sign on behalf of other group members.

A group blind signature scheme allows the following five procedures:

Setup: a probabilistic algorithm that generates the group’s public key Y and a
secret administration key § for the group manager.

Join: an interactive protocol between the group manager and the new group
member Alice that produces Alice’s secret key x, her membership certificate
v, and her public key z.

Sign: an interactive protocol between group member Alice and an external user,
which, on input message m from the user and Alice’s secret key x produces
a signature s on m that satisfies the properties above.

Verify: an algorithm which on input (m, s,)), determines if s is a valid signa-
ture for the message m with respect to the group public key).

Open: an algorithm which, on input (s,S) returns the identity of the group
member who issued the signature s together with a proof of this fact.

Our scheme is the first to extend group signatures to allow for blind signing.
As in [5], the following parameters are of interest; all but the last one are constant
in the size of the group, but linear in the security parameters:

— the size of the group public key Y.
— the length of signatures.
the efficiency of the protocols Setup, Join, Sign, Verify.

— the efficiency of the protocol Open.

Just as in [5] the protocol Open can be made to execute in constant time
with a compromise in security of the scheme; the basic scheme’s Open takes
time linear in the size of the group.

3 Techniques

In this section, we present some well-studied techniques for proving knowledge
of discrete logarithms and related problems. We show how they can be extended
to serve as blind signatures of knowledge, which are the building blocks of our
group blind signature scheme.

3.1 Preliminaries, Assumptions, Notation

Basic Notation We use “” to denote the concatenation of two (binary) strings,
or of binary representations of integers and group elements. We use ¢[i] to denote
the ¢-th leftmost bit of the string c¢. For aset A, “a €gr A” means that a is chosen
uniformly at random from A. For an integer n, Z, denotes the ring of integers
modulo n, and Z), denotes the multiplicative group modulo n.

The Discrete Logarithm Problem and Some Variations Let GG be a cyclic
group of order n generated by some g € G (hence G = (g)). Let a € Z,. The
discrete logarithm of y € GG to the base g is the smallest positive integer x such
that ¢ = y. The double discrete logarithm of y € G to the bases g and a is the
smallest positive integer z satisfying:

g =y, (1)

if such an z exists. (G, g, n, and @ can be chosen such that the double discrete
logarithm problem is infeasible to solve. An e-th root of the discrete logarithm
of y € GG to the base g 1s an integer z satisfying

g(xe) =y, (2)

if such an x exists. If the factorization of n is unknown, computing e-th roots in

Z; is assumed to be infeasible [17].

Use of a Hash Function We also assume the existence of an ideal hash
function H: {0, 1}* — {0, 1}* satisfying the following properties (H; denotes the
first { bits of H):

1. For a specified parameter {, H;(#) contains an equal number of 0’s and 1’s.
2. 'H; 1s collision-resistant.
3. 'H hides all partial information about its input.

If we have a hash function that satisfies the second and third properties,
we can convert 1t into one which satisfies the first property as well: suppose H
satisfies properties two and three. Consider H'(z) = H(x) o H(xz) where H(z)
is the bitwise complement of H(z) and o denotes the concatenation operator.
Then H'(x) has an equal number of 0’s and 1’s.

We use these assumptions to prove security in the random oracle model [16,

1,11].

3.2 Blind Signatures of Knowledge

A signature of knowledge is a construct that uniquely corresponds to a given
message m that cannot be obtained without the help of a party that knows a
secret such as the discrete logarithm of a given y € G to the base ¢ ({9) =

(). A proof of knowledge is a way for one person to convince another person
that he knows some fact without actually revealing that fact. In a signature of
knowledge, the signer ties his knowledge of a secret to the message being signed.
A signature of knowledge is used both for the purpose of signing a message and
proving knowledge of a secret. Signatures of knowledge were used by Camenisch
and Stadler [5]. Their construction is based on the Schnorr signature scheme
[19] to prove knowledge. All the signatures of knowledge proposed by [5] can
be proved secure in the random oracle model and their interactive versions are
zero-knowledge.

To construct blind signatures of knowledge, we modify some of the signatures
of knowledge constructs proposed by [5]. The proofs of security that work for [5]
also work for our signatures of knowledge.

The first signature of knowledge we consider, both in the regular and blind
settings, is the signature of knowledge of the discrete logarithm of a given y € G
to a given base ¢ ({g) = G).

Definition 1. An (I + 1)-tuple (c,s1,...,51) € {0, 1}* x ZL satisfying
Olgezy gyt (3)

15 a signature of knowledge of the discrete logarithm of y € G to the base g on a
message m, with respect to security parameter |, denoted

¢ =Hi(m,y,9,9°y"

SKLOGI[a |y = g](m) (4)

In general we use Greek letters to represent values whose knowledge will be
proven by the signer, and Roman letters to denote values that are known to both
the signer and the user.

If the signer does not know the discrete logarithm of y to the base G it is infea-
sible for him to construct the [+ 1 tuple (¢, s1, ..., s;) satisfying the above equa-
tion. We can think of the above definition as an interactive protocol in which the
c[i]’s represent challenges; the hash function H serves to remove the interaction.
If the prover knows « such that z = logs(y), he computes r1,79,...,71 Er Z,,
plugs m.,y,9,9" "2, ..., to hash function H to obtain random challenge c,
and obtains s1, 82, ..., s by setting

5 = {ri if e[d] =0 (5)

r; — #(modn) otherwise

The signature of knowledge constructed above is not blind. There is, however,
a way to construct a blind signature that would satisfy Defintion 3.1. Consider
the following interactive protocol between a signer and a user:

User Round 0: User wants message m signed and sends a sign request to the signer.
Signer Round 1:

1. Obtain {r; €r Z,}, 1 <1< L.

2.8t Pri=g", 1 <1<,

3. Send {P;} to the user, thus commiting to the {P;’s}.

User Round 2:
1. Obtain a random permutation o : {1,...,{} — {1,...,{} and set @Q; := Py,
1 <i <1 (o will be used to blind the result of H.)
2. Obtain random as, ..., a;, and set R; := Q;¢9** 1 <i < I ({a;} are used to blind
the inputs to H.)
3. Calculate ¢ := Hi(m,y,g,R1,...,Ri).
4. Calculate ¢’ such that ¢'[i] = ¢[o ™" (3)].
5. Send ¢’ to the signer.
Signer Round 3:
1. Using secret @ (recall # = log, y) compute for

i if[i]=0
r; — x(mod n) otherwise

lgigl,ti:{

2. Send {¢;} to the user.
User Round 4:
1. Verify that P; = gt’ycl[i].
2. Compute s; 1=ty + ai (mod n).
3. Output (c, s1,...,81).

Lemma 1. The protocol described above produces a blind signature, that is,
(¢,81,...,81) is a signature on m that cannot be linked to the signer’s view of
the protocol.

Informal proof:

1. (e, 81, ..., 81) is a signature on m, because ¢ = Hi(m,y,q,R1,...,Ri, ..., Ri),
where Rz = Qiga’ = a(i)gal = gt,(,)yc'[a(i)]ga, — gsz—azga,yc'[a(i)] —
gs,yc’[a(i)] — gs,yc[i].

2. (¢, s1,...,s1) cannot be linked to the signer’s view of the protocol, because ¢

blinds ¢ and {a;} blind {s;}.

Also note that since in the proposed protocol the signer does not provide
more information than in the regular proof of knowledge, our protocol is zero-
knowledge.

We now define signatures of knowledge based on variations of the discrete
logarithm problem and extend the protocol above to construct blind versions of
these signatures.

One important variation is the representation problem, studied in [2,5]. Tt is
a direct generalization of the signature of knowledge discussed above, except we
have y1, ..., y 1nstead of just one y, and ¢, ..., g, instead of just one g. We omit
a more formal treatment of signatures of knowledge based on the representation
problem due to space limitations.

We also employ signatures of knowledge of the double discrete logarithm and
of the roots of discrete logarithms introduced in [5] and show how to make them
blind signatures.

Definition 2. A signature of knowledge of a double discrete logarithm of y
to the bases g and a, on message m, with security parameter | < k denoted

SKLOGLOG [a | y = ¢t*](m), is an (I + 1)-tuple (c,s1,...,51) € {0, 1} x YA
satisfying the equation

(a®) 1 —

¢ =Hi(m,y,g,a,P1,....P), where P; = {Z(asl) Z;EZAMSS (7)

It can be shown, in the random oracle model, that a SKLOGLOG [« | y =
g(aa)](m) can be computed only if a double discrete logarithm z € Z,, of the
group element y € G to the bases g € G and a € Z), is known (where G = {g)
and |G| = n). One does not necessarily know the order of a € Z, but it is
easy to find A such that |Z| < 2* — 1). Knowing z, A, and a g > 0 compute
the signature as follows (we use p to make sure that the distribution of r; is

indistinguishable from the distribution of r; — z, for a secret = < 2% —1):

1. For 1 < i <[, generate random 2* < r; < 22+# — 1.
2. Set P; = ¢(?"*) and compute ¢ = Hi(m,y,9,a,Py, ..., P).
3. Set s; — {ri if e[i] =0

r; — x otherwise

To obtain a blind SK LOGLOG,[a | y = ¢{™)](m), we propose the following
protocol, quite similar to the one we use for SK LOG:

User Round 0: User wants message m signed and sends a sign request to the signer.
Signer Round 1:

1. For 1 < i < I, generate random 2* < r; < 22TH — 1,

2. Set P; := g(arl).

3. Send {P;} to the user, commiting to them.
User Round 2:

1. Obtain a random permutation o :{1l,... I} — {1,...,1} and set @; := Py;.

. For 1 < i <1, generate random 2**#* < b; < 2*2% _ 1 and set R; := anbl).
. Calculate ¢ := Hi(m,y,9,R1,...,Ri).
. Calculate ¢’ such that ¢'[i] = ¢[o ™" (3)].
5. Send ¢’ to the signer.
Signer Round 3:

= W Do

. T if [i]=0
. < < i = .
1. Compute, for 1 <7<, ¢ { r; — x(mod n) otherwise

2. Send {¢;} to the user.
User Round 4:

(ati) sp 7 _
1. Verify that P; = {9 if [i]=0

y(“t’) otherwise
2. Compute s; 1=ty +ai, 1 <1 <L
3. Output (c, s1,...,81).

Lemma 2. The protocol described above produces a blind SKLOGLOG(« |
— g(a®)
y=4g'"").

Informal proof:

1. (e, 81, ..., 81) is a signature on m, because ¢ = H;(m,y,9,a,R1, ... ,R;) where

a, a, (a'"(0)(a®) — (@) if ()] = clil =
Ri= Q") = Pi?n e ife [U(f)] C[f] 0
Yl 7)) = @) if o(i)] = c[i] = 1
which satisfies the definition of SK LOGLOG.
2. (¢, s1,...,s1) cannot be linked to the signer’s view of the protocol, because ¢

blinds ¢ and ay, ..., a; blind s1, ..., s;.

Definition 3. A signature of knowledge of an e-th root of the discrete logarithm
of y to the base g, on message m, denoted SK ROOTLOG [| y = ¢'®](m) ,

is an (I+1)-tuple (¢, s1,...,51) € {0,1}* x Z’:Ll satisfying the following equation:

= Py, .. P hereP; = e .
=it Proe). wherer, = {900 el

It can be shown that such signature can only be computed if the e-th root
of the discrete logarithm z of y to the base g is known; where x € Z,, y € G,
|G| =n, {9) =G, e € Z,,. When z is known, construct SKROOTLOG[a |y =
¢ (m) as follows:

1. For 1 < i <, generate random r; € Z.
2. Set P; = gU"") and compute ¢ = Hi(m,y,g.¢,P1, ..., P).
IR if e[d] =0
3. Set s = {m/x (mod n) otherwise
The SKROOTLOG; can also be constructed blindly, by applying a similar
protocol to the one outlined for SK LOG; and SK LOGLOG;. We omit this here
due to lack of space.

4 Our Group Blind Signature Scheme

Camenisch and Stadler [5] have two schemes for group signatures: their basic
scheme and their efficient scheme. Their efficient scheme is less secure and there-
fore in this extended abstract we concentrate on extending their basic scheme to
allow for blind signatures. However, our techniques apply to both.

4.1 Setup

To set up the group signature scheme, as in [5], the group manager chooses a
security parameter [and computes the following values:

1. An RSA Public Key (n,e), where the length of n is at least 2/ bits.

2. A cyclic group G = {g) of order n for which computing discrete logarithms
is hard. In particular, we can choose (G to be a cyclic subgroup of Z; where
p is a prime and n|(p — 1).

3. An element a € Z; where a has large multiplicative order modulo all the
prime factors of n.

4. An upper bound A on the length of the secret keys and a constant g > 1.

The group’s public key is ¥ = (n,e,G, g,a, A, p).

4.2 Join

Asin [5], if Alice wants to join the group she picks a secret key x € {0,1,...,2*—
1} and calculates y = a” (mod n) and the membership key z = g¥. Alice commits
to y and sends (y,z) to the group manager and proves to him that she knows
z (without actually revealing x) using techniques similar to the signature of
knowledge of discrete logarithm. If the group manager is convinced that Alice
knows he gives her a membership certificate v = (y 4+ 1)Y/¢ (mod n). It is an
additional security assumption due to [5] that computing v without factoring n

1s hard.

4.3 Sign and Verify

Unlike [5], our signature construction protocol is blind. When responding to a
sign request, the signer does the following:

1. Obtain q €g Z;, and set

2=

2y @y
Il
Qé‘Q
—~
[o2e)
s

2. Obtain random 2* < u; < 2**T# — 1, for 1 < i <[and set

PSKLOGLOG Ja I 1<i<l (9)
3. Obtain random v; € Z, for 1 < ¢ <[and set

PSKROOTLOG O 1<i<li (10)
4. Send (g, 7, {PFELOGLOGY [pSKEROOTLOGYY ¢4 the user.

In turn, the user does the following:

1. Obtains b€ {1...2* — 1}, and f €g Z, and sets w := (af)** (mod n).
2. Set

i=q
F:=3"
FIRLOGLOG (PSKLOGLOG yu (11)
piiROOTLOG (PSKROOTLOG u
3. Execute rounds 2, 3, 4 of the blind SK LOGLOG and blind SK ROOTLOG
, ~SKLOGLOG ~SKROOTLOG ,
protocols, taking { P; }and {P; } as commitment values

and adjusting the responses {t7ELOGLOGY and [P EROOTLOGY by adding

eb for SK LOGLOG and multiplying by (af)® for SK ROOTLOG to obtain

Vi = SKLOGLOG [
Va = SKROOTLOG [

z

gi”) (12)

The resulting signature on the message m consists of (g, 7, V1, V2) and can be
verified by checking correctness of V4 and V5.

Informal proof of the unforgeability of the signature: It is impossible
to construct the signature without the help of a group member, because V}
proves that the signer must know a membership key, and V5 proves that the
signer also knows the membership certificate that corresponds to that key. That
is, Vi shows that 2 = §%°, and therefore:

=gty (13)
for an integer o that the signer knows. On the other hand, V> proves that
(a® +1) = §° (14)

for some g that the signer knows. That can only happen if the signer 1s a group
member, « 18 his secret key, and 3 is his membership certificate.

Informal proof of the blindness of the signature: The signer’s input
into the protocol has been blinded by blinding ¢ and Z into random § and 2,
and constructing two blind signatures of knowledge. Therefore, the resulting
signature (4, 2 V1, Va) cannot be linked to the signer’s view of the protocol.

4.4 Open

Given a signature (g, %, V1, Va) for a message m, the group manager can de-
termine the signer by testing if g¥7 = Z for every group member P (where
yp = log, zp and zp 1s P’s membership key). The group manager can establish
the 1dentity of the signer without giving away yp using the signer’s member-
ship key zp, the signer’s commitment to zp, and a non-interactive proof that
log, » = log; z. Since it is considered difficult to test if log; z = log;, 2’ members’
signatures are anonymous and unlinkable. Thus the running time of this scheme
is linear in the size of the group.

4.5 Efficiency of the Proposed Scheme

The proposed scheme is as efficient as the basic group signature scheme proposed
by Camenisch and Stadler. That is, for a fixed security parameter [, all of the
described operations, except Open, take constant time, and the time Open
takes is linear in the size of the group. All signatures take constant space, and
communication complexity per signature 1s constant. Computational, space, and
communication complexities are linear in the security parameter [.

4.6 Security of the Proposed Scheme

Our scheme is exactly as secure as Camenisch and Stadler’s Basic Group Signa-
ture Scheme [5]. The security of the scheme is based on the assumptions that the
discrete logarithm, double discrete logarithm, and the roots of discrete logarithm
problems are hard. In addition, it is based on the security of the Schnorr and
the RSA signature schemes and on the additional assumption due to [5] that
computing membership certificates is hard.

4.7 Improvements on the Efficiency

Camenisch and Stadler [5] also proposed a group signature scheme in which the
computational complexity of the Open algorithm is constant in the size of the
group. This scheme can also be extended to a group blind signature scheme. We
chose to omit the details, because the more efficient group signature scheme is
also less secure and is known to be broken for certain values of 1ts parameters.

5 Conclusion

We have proposed a group blind digital signature scheme that is secure and
efficient, and therefore practical. Our result is an extension of the group signature
scheme recently prosposed by Camenisch and Stadler in [5]. We showed how our
construction could be used to set up an electronic cash system in which more
than one bank can dispense anonymous e-cash.

Acknowledgements

The first author would like to acknowledge the support of DARPA grant DABT63-
96-C-0018, the NSF Graduate Research Fellowship and a Lucent Technologies
GRPW Program. The second author would like to acknowledge the support of
DARPA grant DABT63-96-C-0018. In addition, we thank Ron Rivest for helping
us shape our random ideas into a coherent paper. We would never be able to
manage without his encouragement. Also, we give many thanks to Eric Lehman,
Tal Malkin, Daniele Micciancio, and Amit Sahai for helpful and greatly appre-
ciated discussions. Finally, we thank the anonymous referees for their helpful
comments and suggestions.

References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In First ACM Conference on Computer and Commu-
nications Security, pages 62-73, Fairfax, 1993. ACM.

2. Stefan Brands. An efficient off-line electronic cash system based on the represen-
tation problem. Technical Report CS-R9323, CWI, April 1993.

3. Jan Camenisch. Efficient and generalized group signatures. In Proc. EUROCRYPT
97, pages 465-479. Springer-Verlag, 1997. Lecture Notes in Computer Science No.
1233.

4. Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital payment systems with
passive anonymity-revoking trustees. Journal of Computer Security, 5(1), 1997.

5. Jan Camenisch and Markus Stadler. Efficient group signatures for large groups.
In Proc. CRYPTO 97, pages 410-424. Springer-Verlag, 1997. Lecture Notes in
Computer Science No. 1294.

6. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser,
editor, Proc. CRYPTO 88, pages 319-327. Springer-Verlag, 1988. Lecture Notes
in Computer Science No. 403.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sher-

man, and D. Chaum, editors, Proc. CRYPTO 82, pages 199-203, New York, 1983.
Plenum Press.

David Chaum. Blind signature system. In D. Chaum, editor, Proc. CRYPTO 83,
pages 153-153, New York, 1984. Plenum Press.

. David Chaum and Eugéne van Heyst. Group signatures. In Proc. FUROCRYPT

91, pages 257-265. Springer-Verlag, 1991. Lecture Notes in Computer Science No.
547.

L. Chen and T. P. Pedersen. New group signature schemes (extended abstract).
In Proc. EUROCRYPT 94, pages 171-181. Springer-Verlag, 1994. Lecture Notes
in Computer Science No. 547.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In A.M. Odlyzko, editor, Proc. CRYPTO 86, pages
186—194. Springer-Verlag, 1987. Lecture Notes in Computer Science No. 263.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. SIAM. J. Computing, 18(1):186-208, February 1989.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281—
308, April 1988.

A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In Proc.
CRYPTO 97, Lecture Notes in Computer Science, pages 150-164. Springer-Verlag,
1997. Lecture Notes in Computer Science No. 1294.

Laurie Law, Susan Sabett, and Jerry Solinas. How to make a mint: the cryptogra-
phy of anonymous electronic cash. National Security Agency, Office of Information
Security Research and Technology, Cryptology Division, June 1996.

David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
M.Y. Rhee and K. Kim, editors, Advances in Cryptology-ASIACRYPT '96, pages
252-265. Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1163.
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, New York, 1993.

C. P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-
sard, editor, Proc. CRYPTO 89, pages 239-252. Springer-Verlag, 1990. Lecture
Notes in Computer Science No. 435.

Daniel R. Simon. Anonymous communication and anonymous cash. In Neal
Koblitz, editor, Proc. CRYPTO 96, pages 61-73. Springer-Verlag, 1996. Lecture
Notes in Computer Science No. 1109.

Peter Wayner. Digital Cash: Commerce on the Net. Academic Press, 1996.

