
Group Blind Digital Signatures: A ScalableSolution to Electronic CashAnna Lysyanskaya1 and Zul�kar Ramzan1Laboratory for Computer Science,Massachusetts Institute of Technology,Cambridge MA 02139,fanna, zulfikarg@theory.lcs.mit.eduAbstract. In this paper we construct a practical group blind signaturescheme. Our scheme combines the already existing notions of blind signa-tures and group signatures. It is an extension of Camenisch and Stadler'sGroup Signature Scheme [5] that adds the blindness property. We showhow to use our group blind signatures to construct an electronic cashsystem in which multiple banks can securely distribute anonymous anduntraceable e-cash. Moreover, the identity of the e-cash issuing bankis concealed, which is conceptually novel. The space, time, and com-munication complexities of the relevant parameters and operations areindependent of the group size.1 Introduction1.1 Distributed Electronic BankingConsider a scheme in which there is a large group of banks, monitored by thecountry's Central Bank (e.g. the US Treasury), where each bank can dispenseelectronic cash. We want such a scheme to have the following properties:1. No bank should be able to trace any e-cash it issues. Therefore, just as withpaper money, people can spend their e-cash anonymously.2. A vendor only needs to invoke a single universal veri�cation procedure, basedon the group public key, to ensure the validity of any e-cash he receives. Thisprocedure works regardless of which bank issued the e-cash. This makes thevendor's task much easier since he only needs to know the single group publickey.3. There is a single public key for the entire group of banks. The size of thispublic key is independent of the number of banks. Moreover, the public keyshould not be modi�ed if more banks join the group. Thus, the scheme isstill practical even if there are a large number of participating banks.4. Given a valid piece of e-cash only the Central Bank can tell which bank inthe group issued it. No vendor can even determine the bank from which thecustomer got her e-cash even though the vendor can easily check that thee-cash is valid. This restriction gives an extra layer of anonymity since weconceal both the spender's identity and the bank she uses.



5. Neither the Central Bank nor any bank can issue cash on behalf of an-other bank; i.e. no bank or any other entity, including the Central Bank can\frame" another bank.In this paper we implement such a scheme using Group Blind Digital Signa-tures. Many previous electronic cash schemes focus on a model in which a singlebank distributes all the e-cash. In real life, one would like for more than one bankto be able to dispense electronic money. Our scheme is unique since it considersscalability as a criterion in the design of electronic cash systems. Moreover, ourscheme is conceptually novel since we conceal the bank's identity in addition tothe spender's.1.2 Blind Digital SignaturesBlind Digital Signatures were introduced by Chaum [7] to allow for spenderanonymity in Electronic Cash systems. Such signatures require that a signer beable to sign a document without knowing its contents. Moreover, should thesigner ever see the document/signature pair, he should have no recollection ofit (even though he can verify that the signature is indeed his). In the electroniccash scenario, a document corresponds to an electronic coin, and the signer rep-resents a bank. The spender retains anonymity in any transaction that involveselectronic coins since they are blindly signed.Blind Signatures have been looked at extensively in the literature [6, 16, 14].Like some of the previous schemes, the security of our scheme is proven under therandom oracle model [16, 1, 11]. Complexity based proofs of security are, how-ever, considered much stronger. Unfortunately, the only known Blind SignatureScheme with such a proof is far too impractical [14].1.3 Group Digital SignaturesIn a group digital signature scheme, members of a given group are allowed tosign on behalf of the entire group. In addition, the signatures can be veri�edusing a single group public key. Also, once a document is signed, no one, excepta designated group manager, can determine which member of the group signedit. Companies can use group signatures to validate price lists, press releases ordigital contracts; customers would only need to know a single company publickey to verify signatures. Companies can then conceal their internal structure,but can still determine which employee signed a given document. Group DigitalSignatures were �rst introduced and implemented by Chaum and van Heyst [9].Recently, Camenisch and Stadler [5] presented the �rst group signature schemefor which the size of the group public key remains independent of the groupsize, as do the time, space, and, communication complexities of the necessaryoperations; in previous schemes [9,3, 10] the size of the public key grew with thesize of the group which is impractical for large groups. We extend [5] by showinghow to add the blindness property to their scheme. This may have applicationsbesides the electronic cash and voting schemes described below.



1.4 Using Group Blind Signatures for Electronic CashIf we combine the properties of Blind Signatures and Group Signatures, we getwhat we call Group Blind Digital Signatures. We now show how to use groupblind digital signatures to achieve a scheme in which multiple banks can securelydistribute anonymous and untraceable electronic cash. First we give the mainideas, and then we address some of the relevant problems. The basic techniquesare due to Chaum [7].All the banks form a group and their manager will be the country's CentralBank (e.g. U.S. Treasury or the Federal Reserve). If Alice wants to withdrawe-cash from her bank, she �rst creates an electronic coin C. Her bank appliesa group blind signature to C and it withdraws the appropriate amount fromAlice's account. Alice now gives C and the bank's signature on C to a vendor.The vendor uses the group public key to verify the bank's signature on the coin.If the coin is valid, the vendor gives Alice her merchandise, and gives the cointo his bank. The vendor's bank double checks the coin's validity, adds it to aglobal list of coins that have already been spent (to prevent Alice from doublespending), and credits the vendor's account. Now, since Alice's bank is signingblindly, it is possible for Alice to trick her bank by having it sign somethingother than what it was supposed to sign. We can prevent this by requiring thatthe bank have di�erent secret signing keys to authorize di�erent dollar amounts.For example, one key could correspond to a $5 withdrawal, another to a $10withdrawal, and so on [15]. There are several other ways to prevent this kind offraud [21], but we omit them here.1.5 Advantages of Our SchemePrevious work on electronic cash systems focused on models in which a singlebank distributes all the e-cash. We, on the other hand, show how to implementan e�cient multiple bank model. Our scheme is useful for several reasons. First,the vendor only has to know a single group public key to check the validity ofany e-cash he receives. Second, the spender's identity is completely anonymousto both the vendor and his bank since the signature is blind. Third, neither thevendor nor the vendor's bank can determine the user's bank (thus providingan extra layer of anonymity). Fourth, the bank which receives the e-cash justneeds to check it with the group public key. Finally, if there are any conictsregarding which bank issued some piece of e-cash, the group manager (e.g. theU.S. Treasury) can intervene and establish the identity of that bank.1.6 Disadvantages of Our SchemeOur scheme is an online scheme. That is, the vendor must engage in a protocolwith the bank each time he receives an e-coin from Alice. Otherwise Alice couldpotentially use the same electronic coin for several di�erent transactions becauseher identity is concealed. This extra interaction between the vendor and bankeach time a transaction is made is a disadvantage. It is especially costly for small



transactions. We can convert our scheme into an o�ine scheme if we make aminor modi�cation to our underlying model. We outline this modi�cation laterin the paper. Another important drawback of our scheme is that Alice mustengage in an expensive several round interactive protocol with her bank eachtime she wants a new e-coin. Also, our scheme requires O(l) exponentiations persignature, where l is the security parameter. Unfortunately, this parameter mustbe set to at least 64 for the scheme to be secure. Finally, our scheme does notaddress issues such as divisibility and transferability. We leave these issues asopen problems.1.7 Making Our Scheme O�ineWe can make our scheme o�ine under a slight compromise in spender anonymity.In this case we allow for a passive trustee who can revoke the anonymity of thespender. To start with, in addition to the banks forming a group, all the spendersin our system form a group { and a trusted third party (passive trustee) canact as the group manager of the spender group. The spender engages in thewithdrawal protocol as speci�ed earlier. In addition, after she receives a piece ofe-cash, she applies the spender group signature to it. Now, no one, except thegroup mangager (trusted third party) can determine the identity of the spender,so her identity is still somewhat anonymous. The vendor veri�es the validity ofe-cash he receives just like he did before, except he must also check that thespender's group signature is authentic. Now, because the identity of the spenderis encoded into the cash via a group signature, the vendor doesn't have to worryabout dealing with the bank whenever he receives an electronic coin. He canwait until the end of the day and cash all his coins in one shot. If there are anyconicts, then the trusted third party can intervene and determine the identityof the spender. These trusted third parties are commonly refered to as passivetrustees because they only have to be present when the user opens her bankaccount, and when there is a dispute [4].2 The Group Blind Signature ModelOur group blind signature model extends Camenisch and Stadler's [5] groupsignature model by adding blindness. Our scheme consists of several signers(members of the group), their group manager, and several users. We combinetwo concepts: blind signatures [6, 16, 14] and group signatures [5, 9, 3, 10]. Ourmodel allows the members of a group to sign messages on behalf of the groupsuch that the following properties hold for the resulting signature:1. Blindness of Signatures: The signer is unable to view the messages hesigns. Moreover, the signer should have no recollection of having signed aparticular document even though he can verify that he did indeed sign it.This is new with our scheme.2. Unforgeablitiy: Only group members can issue valid signatures.



3. Undeniable Signer Identity: The group manager can always establishthe identity of the member who issued a valid signature.4. Signer Anonymity: It is easy to check that a message/signature pair wassigned by a group member, but only the group manager can determine whichmember issued the signature.5. Unlinkability: Two message-signature pairs where the signature was ob-tained from the same signer cannot be linked.6. Security Against Framing Attacks: Neither the group manager, nor thegroup members can sign on behalf of other group members.A group blind signature scheme allows the following �ve procedures:Setup: a probabilistic algorithm that generates the group's public key Y and asecret administration key S for the group manager.Join: an interactive protocol between the group manager and the new groupmember Alice that produces Alice's secret key x, her membership certi�catev, and her public key z.Sign: an interactive protocol between group member Alice and an external user,which, on input message m from the user and Alice's secret key x producesa signature s on m that satis�es the properties above.Verify: an algorithm which on input (m; s;Y), determines if s is a valid signa-ture for the message m with respect to the group public key Y.Open: an algorithm which, on input (s;S) returns the identity of the groupmember who issued the signature s together with a proof of this fact.Our scheme is the �rst to extend group signatures to allow for blind signing.As in [5], the following parameters are of interest; all but the last one are constantin the size of the group, but linear in the security parameters:{ the size of the group public key Y.{ the length of signatures.{ the e�ciency of the protocols Setup, Join, Sign, Verify.{ the e�ciency of the protocol Open.Just as in [5] the protocol Open can be made to execute in constant timewith a compromise in security of the scheme; the basic scheme's Open takestime linear in the size of the group.3 TechniquesIn this section, we present some well-studied techniques for proving knowledgeof discrete logarithms and related problems. We show how they can be extendedto serve as blind signatures of knowledge, which are the building blocks of ourgroup blind signature scheme.



3.1 Preliminaries, Assumptions, NotationBasic Notation We use \;" to denote the concatenation of two (binary) strings,or of binary representations of integers and group elements. We use c[i] to denotethe i-th leftmost bit of the string c. For a set A, \a 2R A" means that a is chosenuniformly at random from A. For an integer n, ZZn denotes the ring of integersmodulo n, and ZZ�n denotes the multiplicative group modulo n.The Discrete LogarithmProblem and Some Variations Let G be a cyclicgroup of order n generated by some g 2 G (hence G = hgi). Let a 2 ZZ�n. Thediscrete logarithm of y 2 G to the base g is the smallest positive integer x suchthat gx = y: The double discrete logarithm of y 2 G to the bases g and a is thesmallest positive integer x satisfying:g(ax) = y ; (1)if such an x exists. G, g, n, and a can be chosen such that the double discretelogarithm problem is infeasible to solve. An e-th root of the discrete logarithmof y 2 G to the base g is an integer x satisfyingg(xe) = y ; (2)if such an x exists. If the factorization of n is unknown, computing e-th roots inZZ�n is assumed to be infeasible [17].Use of a Hash Function We also assume the existence of an ideal hashfunction H: f0; 1g� 7! f0; 1gk satisfying the following properties (Hl denotes the�rst l bits of H):1. For a speci�ed parameter l, Hl(x) contains an equal number of 0's and 1's.2. Hl is collision-resistant.3. H hides all partial information about its input.If we have a hash function that satis�es the second and third properties,we can convert it into one which satis�es the �rst property as well: suppose Hsatis�es properties two and three. Consider H0(x) = H(x) � H(x) where H(x)is the bitwise complement of H(x) and � denotes the concatenation operator.Then H0(x) has an equal number of 0's and 1's.We use these assumptions to prove security in the random oracle model [16,1, 11].3.2 Blind Signatures of KnowledgeA signature of knowledge is a construct that uniquely corresponds to a givenmessage m that cannot be obtained without the help of a party that knows asecret such as the discrete logarithm of a given y 2 G to the base g (hgi =



G). A proof of knowledge is a way for one person to convince another personthat he knows some fact without actually revealing that fact. In a signature ofknowledge, the signer ties his knowledge of a secret to the message being signed.A signature of knowledge is used both for the purpose of signing a message andproving knowledge of a secret. Signatures of knowledge were used by Camenischand Stadler [5]. Their construction is based on the Schnorr signature scheme[19] to prove knowledge. All the signatures of knowledge proposed by [5] canbe proved secure in the random oracle model and their interactive versions arezero-knowledge.To construct blind signatures of knowledge, we modify some of the signaturesof knowledge constructs proposed by [5]. The proofs of security that work for [5]also work for our signatures of knowledge.The �rst signature of knowledge we consider, both in the regular and blindsettings, is the signature of knowledge of the discrete logarithm of a given y 2 Gto a given base g (hgi = G).De�nition 1. An (l + 1)-tuple (c; s1; :::; sl) 2 f0; 1gk � ZZln satisfyingc = Hl(m;y;g;gs1yc[1];gs2yc[2]; : : : ;gslyc[l] ) (3)is a signature of knowledge of the discrete logarithm of y 2 G to the base g on amessage m, with respect to security parameter l, denotedSKLOGl [� j y = g�](m) (4)In general we use Greek letters to represent values whose knowledge will beproven by the signer, and Roman letters to denote values that are known to boththe signer and the user.If the signer does not know the discrete logarithmof y to the base G it is infea-sible for him to construct the l+1 tuple (c; s1; : : : ; sl) satisfying the above equa-tion. We can think of the above de�nition as an interactive protocol in which thec[i]'s represent challenges; the hash function H serves to remove the interaction.If the prover knows x such that x = logg(y), he computes r1; r2; :::; rl 2R ZZn,plugs m;y;g;gr1 ;gr2 ; : : : ;grl to hash function H to obtain random challenge c,and obtains s1; s2; : : : ; sl by settingsi = � ri if c[i] = 0ri � x(modn) otherwise (5)The signature of knowledge constructed above is not blind. There is, however,a way to construct a blind signature that would satisfy De�ntion 3.1. Considerthe following interactive protocol between a signer and a user:User Round 0: User wants message m signed and sends a sign request to the signer.Signer Round 1:1. Obtain fri 2R ZZng, 1 � i � l.2. Set Pi := gri , 1 � i � l.3. Send fPig to the user, thus commiting to the fPi'sg.



User Round 2:1. Obtain a random permutation � : f1; : : : ; lg 7! f1; : : : ; lg and set Qi := P�(i),1 � i � l. (� will be used to blind the result of H.)2. Obtain random a1; :::; al, and set Ri := Qigai 1 � i � l. (faig are used to blindthe inputs to H.)3. Calculate c := Hl(m;y;g;R1; : : : ;Rl):4. Calculate c0 such that c0[i] = c[��1(i)].5. Send c0 to the signer.Signer Round 3:1. Using secret x (recall x = logg y) compute for1 � i � l; ti = � ri if c0[i] = 0ri � x(mod n) otherwise (6)2. Send ftig to the user.User Round 4:1. Verify that Pi = gtiyc0[i].2. Compute si := t�(i) + ai (mod n).3. Output (c; s1; :::; sl).Lemma 1. The protocol described above produces a blind signature, that is,(c; s1; :::; sl) is a signature on m that cannot be linked to the signer's view ofthe protocol.Informal proof:1. (c; s1; :::; sl) is a signature on m, because c = Hl(m;y;g;R1; : : : ;Ri; : : : ;Rl),where Ri = Qigai = P�(i)gai = gt�(i)yc0 [�(i)]gai = gsi�aigaiyc0 [�(i)] =gsiyc0 [�(i)] = gsiyc[i]:2. (c; s1; :::; sl) cannot be linked to the signer's view of the protocol, because �blinds c and faig blind fsig.Also note that since in the proposed protocol the signer does not providemore information than in the regular proof of knowledge, our protocol is zero-knowledge.We now de�ne signatures of knowledge based on variations of the discretelogarithm problem and extend the protocol above to construct blind versions ofthese signatures.One important variation is the representation problem, studied in [2, 5]. It isa direct generalization of the signature of knowledge discussed above, except wehave y1; :::; yw instead of just one y, and g1; :::; gv, instead of just one g. We omita more formal treatment of signatures of knowledge based on the representationproblem due to space limitations.We also employ signatures of knowledge of the double discrete logarithm andof the roots of discrete logarithms introduced in [5] and show how to make themblind signatures.De�nition 2. A signature of knowledge of a double discrete logarithm of yto the bases g and a, on message m, with security parameter l � k denoted



SKLOGLOGl[� j y = g(a�)](m), is an (l + 1)-tuple (c; s1; :::; sl) 2 f0; 1gl � ZZlsatisfying the equationc = Hl(m;y;g;a;P1; : : : ;Pl); where Pi = � g(asi ) if c[i] = 0y(asi ) otherwise (7)It can be shown, in the random oracle model, that a SKLOGLOGl [� j y =g(a�)](m) can be computed only if a double discrete logarithm x 2 ZZn of thegroup element y 2 G to the bases g 2 G and a 2 ZZ�n is known (where G = hgiand jGj = n). One does not necessarily know the order of a 2 ZZ�n, but it iseasy to �nd � such that jZZ�nj � 2� � 1). Knowing x, �, and a � > 0 computethe signature as follows (we use � to make sure that the distribution of ri isindistinguishable from the distribution of ri � x, for a secret x � 2� � 1):1. For 1 � i � l, generate random 2� � ri � 2�+� � 1.2. Set Pi = g(ari ) and compute c = Hl(m;y;g;a;P1; : : : ;Pl).3. Set si = � ri if c[i] = 0ri � x otherwiseTo obtain a blind SKLOGLOGl[� j y = g(a�)](m), we propose the followingprotocol, quite similar to the one we use for SKLOG:User Round 0: User wants message m signed and sends a sign request to the signer.Signer Round 1:1. For 1 � i � l, generate random 2� � ri � 2�+� � 1.2. Set Pi := g(ari ).3. Send fPig to the user, commiting to them.User Round 2:1. Obtain a random permutation � : f1; : : : ; lg 7! f1; : : : ; lg and set Qi := P�(i).2. For 1 � i � l, generate random 2�+� � bi � 2�+2� � 1, and set Ri := Q(abi )i .3. Calculate c := Hl(m;y;g;R1; : : : ;Rl).4. Calculate c0 such that c0[i] = c[��1(i)].5. Send c0 to the signer.Signer Round 3:1. Compute, for 1 � i � l, ti = � ri if c0[i] = 0ri � x(mod n) otherwise2. Send ftig to the user.User Round 4:1. Verify that Pi = � g(ati ) if c0[i] = 0y(ati ) otherwise2. Compute si := t�(i) + ai, 1 � i � l.3. Output (c; s1; :::; sl).Lemma 2. The protocol described above produces a blind SKLOGLOGl(� jy = g(a�)).Informal proof:



1. (c; s1; :::; sl) is a signature on m, because c = Hl(m;y;g;a;R1; : : : ;Rl) whereRi = Q(aai )i = P (aai )�(i) = (g(at�(i) )(aai ) = g(asi ) if c0[�(i)] = c[i] = 0y(at�(i) )(aai ) = y(asi ) if c0[�(i)] = c[i] = 1which satis�es the de�nition of SKLOGLOGl.2. (c; s1; :::; sl) cannot be linked to the signer's view of the protocol, because �blinds c and a1; :::; al blind s1; :::; sl.De�nition 3. A signature of knowledge of an e-th root of the discrete logarithmof y to the base g, on message m, denoted SKROOTLOGl[� j y = g(�e)](m) ,is an (l+1)-tuple (c; s1; : : : ; sl) 2 f0; 1gk�ZZ�nl satisfying the following equation:c = Hl(m;y;g;e;P1; : : : ;Pl); wherePi = �g(sei ) if c[i] = 0y(sei ) otherwiseIt can be shown that such signature can only be computed if the e-th rootof the discrete logarithm x of y to the base g is known; where x 2 ZZ�n, y 2 G,jGj = n, hgi = G, e 2 ZZn. When x is known, construct SKROOTLOGl[� j y =g(�e)](m) as follows:1. For 1 � i � l, generate random ri 2 ZZ�n.2. Set Pi = g(rei ) and compute c = Hl(m;y;g;e;P1; : : : ;Pl).3. Set si = � ri if c[i] = 0ri=x (mod n) otherwiseThe SKROOTLOGl can also be constructed blindly, by applying a similarprotocol to the one outlined for SKLOGl and SKLOGLOGl. We omit this heredue to lack of space.4 Our Group Blind Signature SchemeCamenisch and Stadler [5] have two schemes for group signatures: their basicscheme and their e�cient scheme. Their e�cient scheme is less secure and there-fore in this extended abstract we concentrate on extending their basic scheme toallow for blind signatures. However, our techniques apply to both.4.1 SetupTo set up the group signature scheme, as in [5], the group manager chooses asecurity parameter l and computes the following values:1. An RSA Public Key (n,e), where the length of n is at least 2l bits.2. A cyclic group G = hgi of order n for which computing discrete logarithmsis hard. In particular, we can choose G to be a cyclic subgroup of ZZ�p wherep is a prime and nj(p� 1).3. An element a 2 ZZ�p where a has large multiplicative order modulo all theprime factors of n.4. An upper bound � on the length of the secret keys and a constant � > 1.The group's public key is Y = (n; e;G; g; a; �; �).



4.2 JoinAs in [5], if Alice wants to join the group she picks a secret key x 2R f0; 1; : : :; 2��1g and calculates y = ax (mod n) and the membership key z = gy. Alice commitsto y and sends (y,z) to the group manager and proves to him that she knowsx (without actually revealing x) using techniques similar to the signature ofknowledge of discrete logarithm. If the group manager is convinced that Aliceknows x he gives her a membership certi�cate v � (y + 1)1=e (mod n). It is anadditional security assumption due to [5] that computing v without factoring nis hard.4.3 Sign and VerifyUnlike [5], our signature construction protocol is blind. When responding to asign request, the signer does the following:1. Obtain q 2R ZZ�n and set ~g := gq~z := ~gy (8)2. Obtain random 2� � ui � 2�+� � 1, for 1 � i � l and setPSKLOGLOGi := ~g(aui ); 1 � i � l (9)3. Obtain random vi 2 ZZ�n, for 1 � i � l and setPSKROOTLOGi := ~g(vei ); 1 � i � l (10)4. Send (~g, ~z; fP SKLOGLOGi g; fP SKROOTLOGi g) to the user.In turn, the user does the following:1. Obtains b 2R f1 : : :2� � 1g, and f 2R ZZ�n, and sets w := (af)eb (mod n).2. Set ĝ := ~gwẑ := ~zwP̂SKLOGLOGi := (P SKLOGLOGi )wP̂SKROOTLOGi := (P SKROOTLOGi )w (11)3. Execute rounds 2, 3, 4 of the blind SKLOGLOG and blind SKROOTLOGprotocols, taking fP̂SKLOGLOGi g and fP̂SKROOTLOGi g as commitment valuesand adjusting the responses ftSKLOGLOGi g and ftSKROOTLOGi g by addingeb for SKLOGLOG and multiplying by (af)b for SKROOTLOG to obtainV1 = SKLOGLOGl[� j ẑ = ĝa� ](m)V2 = SKROOTLOGl[� j ẑĝ = ĝ�e ](m) (12)



The resulting signature on the message m consists of (ĝ; ẑ; V1; V2) and can beveri�ed by checking correctness of V1 and V2.Informal proof of the unforgeability of the signature: It is impossibleto construct the signature without the help of a group member, because V1proves that the signer must know a membership key, and V2 proves that thesigner also knows the membership certi�cate that corresponds to that key. Thatis, V1 shows that ẑ = ĝa� , and therefore:ẑĝ = ĝ(a�+1) (13)for an integer � that the signer knows. On the other hand, V2 proves that(a� + 1) = �e (14)for some � that the signer knows. That can only happen if the signer is a groupmember, � is his secret key, and � is his membership certi�cate.Informal proof of the blindness of the signature: The signer's inputinto the protocol has been blinded by blinding ~g and ~z into random ĝ and ẑ,and constructing two blind signatures of knowledge. Therefore, the resultingsignature (ĝ; ẑ; V1; V2) cannot be linked to the signer's view of the protocol.4.4 OpenGiven a signature (ĝ; ẑ; V1; V2) for a message m, the group manager can de-termine the signer by testing if ĝyP = ẑ for every group member P (whereyP = logg zP and zP is P 's membership key). The group manager can establishthe identity of the signer without giving away yP using the signer's member-ship key zP , the signer's commitment to zP , and a non-interactive proof thatlogg z = logĝ ẑ. Since it is considered di�cult to test if logĝ ẑ = logĝ0 ẑ0 members'signatures are anonymous and unlinkable. Thus the running time of this schemeis linear in the size of the group.4.5 E�ciency of the Proposed SchemeThe proposed scheme is as e�cient as the basic group signature scheme proposedby Camenisch and Stadler. That is, for a �xed security parameter l, all of thedescribed operations, except Open, take constant time, and the time Opentakes is linear in the size of the group. All signatures take constant space, andcommunication complexity per signature is constant. Computational, space, andcommunication complexities are linear in the security parameter l.4.6 Security of the Proposed SchemeOur scheme is exactly as secure as Camenisch and Stadler's Basic Group Signa-ture Scheme [5]. The security of the scheme is based on the assumptions that thediscrete logarithm, double discrete logarithm, and the roots of discrete logarithmproblems are hard. In addition, it is based on the security of the Schnorr andthe RSA signature schemes and on the additional assumption due to [5] thatcomputing membership certi�cates is hard.



4.7 Improvements on the E�ciencyCamenisch and Stadler [5] also proposed a group signature scheme in which thecomputational complexity of the Open algorithm is constant in the size of thegroup. This scheme can also be extended to a group blind signature scheme. Wechose to omit the details, because the more e�cient group signature scheme isalso less secure and is known to be broken for certain values of its parameters.5 ConclusionWe have proposed a group blind digital signature scheme that is secure ande�cient, and therefore practical. Our result is an extension of the group signaturescheme recently prosposed by Camenisch and Stadler in [5]. We showed how ourconstruction could be used to set up an electronic cash system in which morethan one bank can dispense anonymous e-cash.AcknowledgementsThe �rst author would like to acknowledge the support of DARPA grant DABT63-96-C-0018, the NSF Graduate Research Fellowship and a Lucent TechnologiesGRPW Program. The second author would like to acknowledge the support ofDARPA grant DABT63-96-C-0018. In addition, we thank Ron Rivest for helpingus shape our random ideas into a coherent paper. We would never be able tomanage without his encouragement. Also, we give many thanks to Eric Lehman,Tal Malkin, Daniele Micciancio, and Amit Sahai for helpful and greatly appre-ciated discussions. Finally, we thank the anonymous referees for their helpfulcomments and suggestions.References1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm fordesigning e�cient protocols. In First ACM Conference on Computer and Commu-nications Security, pages 62{73, Fairfax, 1993. ACM.2. Stefan Brands. An e�cient o�-line electronic cash system based on the represen-tation problem. Technical Report CS-R9323, CWI, April 1993.3. Jan Camenisch. E�cient and generalized group signatures. In Proc. EUROCRYPT97, pages 465{479. Springer-Verlag, 1997. Lecture Notes in Computer Science No.1233.4. Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital payment systems withpassive anonymity-revoking trustees. Journal of Computer Security, 5(1), 1997.5. Jan Camenisch and Markus Stadler. E�cient group signatures for large groups.In Proc. CRYPTO 97, pages 410{424. Springer-Verlag, 1997. Lecture Notes inComputer Science No. 1294.6. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser,editor, Proc. CRYPTO 88, pages 319{327. Springer-Verlag, 1988. Lecture Notesin Computer Science No. 403.



7. David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sher-man, and D. Chaum, editors, Proc. CRYPTO 82, pages 199{203, New York, 1983.Plenum Press.8. David Chaum. Blind signature system. In D. Chaum, editor, Proc. CRYPTO 83,pages 153{153, New York, 1984. Plenum Press.9. David Chaum and Eug�ene van Heyst. Group signatures. In Proc. EUROCRYPT91, pages 257{265. Springer-Verlag, 1991. Lecture Notes in Computer Science No.547.10. L. Chen and T. P. Pedersen. New group signature schemes (extended abstract).In Proc. EUROCRYPT 94, pages 171{181. Springer-Verlag, 1994. Lecture Notesin Computer Science No. 547.11. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�-cation and signature problems. In A.M. Odlyzko, editor, Proc. CRYPTO 86, pages186{194. Springer-Verlag, 1987. Lecture Notes in Computer Science No. 263.12. S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactiveproof-systems. SIAM. J. Computing, 18(1):186{208, February 1989.13. Sha� Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature schemesecure against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281{308, April 1988.14. A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In Proc.CRYPTO 97, Lecture Notes in Computer Science, pages 150{164. Springer-Verlag,1997. Lecture Notes in Computer Science No. 1294.15. Laurie Law, Susan Sabett, and Jerry Solinas. How to make a mint: the cryptogra-phy of anonymous electronic cash. National Security Agency, O�ce of InformationSecurity Research and Technology, Cryptology Division, June 1996.16. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. InM.Y. Rhee and K. Kim, editors, Advances in Cryptology{ASIACRYPT '96, pages252{265. Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1163.17. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtainingdigital signatures and public-key cryptosystems. Communications of the ACM,21(2):120{126, 1978.18. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.John Wiley & Sons, New York, 1993.19. C. P. Schnorr. E�cient identi�cation and signatures for smart cards. In G. Bras-sard, editor, Proc. CRYPTO 89, pages 239{252. Springer-Verlag, 1990. LectureNotes in Computer Science No. 435.20. Daniel R. Simon. Anonymous communication and anonymous cash. In NealKoblitz, editor, Proc. CRYPTO 96, pages 61{73. Springer-Verlag, 1996. LectureNotes in Computer Science No. 1109.21. Peter Wayner. Digital Cash: Commerce on the Net. Academic Press, 1996.


