
A Library Implementation of the
Nano-Threads Programming Model

Xavier Martorell, Jesus Labarta, Nacho Navarro, Eduard Ayguade

Departament d'Arquitectura de Computadors (DAC)

Universitat Politecnica de Catalunya (UPC)

Gran Capita s/n, Campus Nord, Modul D6, 08071, Barcelona, Spain

{xavim, jesus, nacho, eduard}@ac.upc.es

Abstract. In this paper we describe the design and implementation of

a user-level thread package based on the nano-threads programming

model, whose goal is to efficiently manage the application parallelism

at user-level. Nano-thread applications work close to the operating

system to quickly adapt to resource availability.

The goal is to obtain an efficient parallel execution of the nano-

threads by appropriately balancing the work assigned to each thread

and the thread management overhead. Early experiments let us

determine that the appropriate number of operations spread out

among the threads to ensure less than 10% of overhead is around 800.

Recent experiments show that this nano-thread granularity is fine

enough to adapt easily to the system conditions, granting a reduced

response time.

1. Introduction
Traditional user-level thread packages are used by programmers to

parallelize by hand their applications. Those packages are mostly oriented

to coarse-grain structured parallelism [7][12]. Nowadays, new thread

packages evolve to give support to compiler generated parallel code.

Compilers mainly manage one-level of structured parallelism (do-loops)

and also coarse-grain parallelism. Research on new programming models

is a topic of great interest for the success of general purpose parallel

computing. The goal is that new thread packages could offer efficient

execution of several level parallelism, less structured, more fine-grained

and flexible than current ones.

In this paper we are going to describe the design and implementation

of a user-level thread package based on the nano-threads model [10]. Our

environment assumes that applications (e.g., C or FORTRAN programs)

are automatically decomposed by a parallelizing compiler. The compiler

identifies the maximum parallelism of the application through data and

control dependence analysis and generates an intermediate representation

of the parallel application in the form of a hierarchical task graph

This work has been supported by the Ministry of Education of Spain

(CICYT) under contracts TIC95-0492 and TIC94-0439.



(HTG)[2][6]. We plan to use the Parafrase-2 compiler [9] to generate

executable code from the HTG intermediate representation.

2. Objectives
Objectives of this paper are to study the viability of the nano-threads

parallel programming model demonstrating that

+ It is possible to build an efficient implementation of a nano-thread

package to manage the application parallelism at user level.

+ The run-time overhead related to the creation and management of

parallel threads can be kept very low, so that efficiency of parallel

processing at fine-granularity levels does not depend on library

management.

+ The supported granularity is fine-grained enough to ensure a good

adaptation to the resource availability.

Section 3 outlines the design of the nano-threads package. Section 4

presents its evaluation. Finally, section 5 outlines some future work.

3. The Nano-threads Library
The execution of a nano-threaded application consists in the execution, in

some order and preserving dependencies, of the functions generated from

the HTG. An approach is to build a user-level library of routines grouping

the services needed by these functions: the nano-threads library.

In the library, the required simplicity in thread management is

obtained by managing only one fixed size structure (the nano-thread

structure). It contains all the nano-thread information including its

descriptor and its stack. Among other attributes, the nano-thread

descriptor contains a counter of unresolved dependencies for the nano-

thread and a reference to a successor nano-thread.

The nano-thread creation primitive allocates (or recycles) and

initializes the nano-thread structure. The library also offers simple

primitives to control the (already) unresolved dependencies, to manage the

user-level ready queue, and to help in the implementation of parallel loops.

The core of the library contains the nano-thread scheduling loop that

searches for work in the ready queue. This loop is executed by as many

kernel threads as processors are allocated to the application. Also, the

library is able to adapt to variations in the number of processors allocated

to it.

More information about the current implementation of the nano-

threads library can be found in [5].

4. Evaluation
We have implemented the nano-threads library on top of the Mach 3.0

microkernel [1]. We use a 4 i486 (33 Mhz) multiprocessor architecture



(DEC433MP) with 32 Mb. of main memory and 256 Kb. of coherent cache

at each processor. Our implementation of the nano-threads library is based

on the Quick Threads package [3].

Execution times for the basic nano-thread library primitives remain

below 15 us. Starting a nano-thread costs 25 us. in the given architecture.

This can be compared with the time required to perform a floating point

addition (0.15 us) and a floating point multiplication (0.27 us).

4.1. Granularity Experiments

A first evaluation of the nano-threads package was done using a matrix by

vector product application. Figure 1 shows the application execution times

and speed-up on 2, 3 and 4 processors. The main goals of the experiments

were the study of the nano-thread granularity and its effect on the

execution time and speedup of the application.

Figure 1: Execution time and speed-up for the matrix by vector product.

The application we used worked with a big matrix and a small vector (9

elements). The chunk size assigned to each nano-thread lets the

application to span a wide range of granularity levels. It can use chunks

containing from 1 to 11250 matrix rows (with 18 fp-ops for each row).

In terms of operations executed by each nano-thread, the results

indicate that the minimum number of floating point operations to be

performed by a nano-thread should be greater than 800 (43 iterations * 18

fp-ops/iteration = 774 fp-ops) to ensure an overhead lower than 10% of the

sequential execution time.

Application speedups reflect the cache influence. Four processors

provide four times more cache than a single one. This reduces the number

of cache misses in the overall execution, thus producing a super-linear

speedup in some experiments.

16 26 32 43 65 1406 11250

chunk size

0

1000

2000

3000

4000

5000

6000

7000

8000

ex
ec

u
ti

on
 t

im
e 

(m
s.

)

Effect

1 processor
2 processors

3 processors
4 processors

sequential version on 1 processor

1 cpu 2 cpus 3 cpus 4 cpus

processors

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

sp
ee

d-
up

Speed-up using the complete version

chunk size = 16
chunk size = 43
chunk size = 65
chunk size = 87
chunk size = 1406
chunk size = 11250



4.2. Adaptability Experiments

The nano-threads programming model is defined to adapt to the

underlying number of processors. This means that the operating system

can add and remove processors to/from applications. The steps followed by

the kernel preemption mechanism are:

+ The operating system decides to reassign a processor from an

application to another. It requests a processor to the source

application and waits for the response (the reaction time).

+ The application detects the request and it releases a processor at a

safe point (at the end of a nano-thread), avoiding the preemption of

work, which may be in the critical path.

+ The operating system transfers the processor to the destination

application.

+ In case the source application does not respond in the given reaction

time, the operating system steals a processor from it, independently

of the work it is doing.

Two different techniques to release and return processors have been

implemented: first, using the thread suspend/resume primitives; and

second, modifying the priority of the kernel threads associated to the

application. The measurements presented here are taken using the first

technique.

We have used a Jacobi iteration based on a matrix of 480 rows. The

resolution spends 250 iterations. Two work generation schemes are tested:

first, a fixed chunk size (2 and 24 rows); and second, varying the chunk size

in a guided self-scheduling style. Elapsed execution times are given in

figure 2. Observe the overhead introduced by the fixed small chunk size (2)

compared with the gss generation style, using 1, 2 and 3 processors.

We have implemented a high-priority user-level process which

simulates the operating system scheduling, stealing and returning

processors from/to the application. Shared memory is used for

communication between the kernel simulator and the application. In the

experiments, one processor is preempted from the application and

assigned to it periodically for the same amount of time (t-ncpuchange). A

wide range in t-ncpuchange is explored to cover from quick movement of

processors (40 ms.), to larger periods used in other scheduling works (4 s.)

[12]. The system simulator is configured to set no reaction time or a

reaction time of 3 ms.

In general, applications that react in time always perform better than

applications that do not. A small chunk size (2 rows ) is a good warranty of

response. Gss applications do not respond because they generate some too

large chunks for each iteration.

When the t-ncpuchange is small, fixed chunk size (2 or 24) performs

better than gss because the latter generates bigger chunks. Generally,



preemption can occur in the middle of the execution of the chunk, and not

only the application looses one processor, but a great amount of work

blocks until the processor returns. Also, this is the reason why applications

with big chunk sizes perform worse when the t-ncpuchange is larger.

Figure 2: Effect of the processor assignment in the execution time.

5. Future Work
More experiments, measurements and behavioural studies are needed. We

plan to trace the execution of applications based on the library to

determine where and when the processors become idle or the management

done by the library does not fit the application requirements. We are

implementing an instrumented version of the library that interfaces to a

visualization tool (PARAVER [8]). This tool will enable us to see the actual

run-time behaviour. It will also be interesting the study of the influence of

the operating system virtual memory management mechanism in the

performance of the applications.

40 400 4000

t-ncpuchanges (ms.)

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

105

107

109

111
ex

ec
ut

io
n 

ti
m

e 
(s

ec
s.

)

Effect of the processor assignment in the execution time (sc & gss)

nano-threads, chunk size 2, 2.5 cpus, no reaction time
nano-threads, gss style, 2.5 cpus, no reaction time
nano-threads, chunk size 2, 2.5 cpus, 3 ms. reaction time
nano-threads, gss style, 2.5 cpus, 3 ms. reaction time
nano-threads, chunk size 24, 2.5 cpus, 3 ms. reaction time

pure sequential version

nano-threads, chunk size 2, 1 cpu

nano-threads, gss style, 1 cpu

nano-threads, chunk size 2, 2 cpus

nano-threads, gss style, 2 cpus

nano-threads, chunk size 2, 3 cpus

nano-threads, gss style, 3 cpus



We want to test new user-level scheduling policies; for example,

dynamic chunk sizes based on trapezoid self-scheduling, affinity

scheduling, etc. [4], and to determine the quality of adaptability of the

library to larger variations in the number of processors. The results will be

very useful to apply to a multi-user environment.

The nano-threads library is now being ported to other architectures: in

particular the SGI Power Challenge and the DEC Alpha AXP. We also plan

to port the library on top of the Chorus microkernel [11].

6. Acknowledgements
We would like to thank Constantine D. Polychronopoulos for the initial

discussions about nano-threads and the possibilities of implementation.

7. References
1. Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., Young, M.: Mach: A New

Kernel Foundation for UNIX Development. Proc. of the Summer 1986 USENIX
Conference, July 1986.

2. Girkar, M., Polychronopoulos, C. D.: Automatic Extraction of Functional Parallelism from
Ordinary Programs. IEEE Trans. on Parallel and Distr. Systems, Vol. 3, No. 2, March 1992.

3. Keppel, D.: Tools and Techniques for Building Fast Portable Threads Packages. Technical
Report UWCSE 93-05-06, University of Washington, 1993.

4. Markatos, E. P., LeBlanc, T. J.: Using Processor Affinity in Loop Scheduling on Shared-
Memory Multiprocessors. Proc. of the Supercomputing-92, 1992, pp. 104-113.

5. Martorell, X., Labarta, J., Navarro, N., Ayguadé, E.: Nano-Threads Library Design,
Implementation and Evaluation. Dept. d’Arquitectura de Computadors - Universitat
Politècnica de Catalunya. Technical Report: UPC-DAC-1995-33, September 1995.

6. Moreira, J. E.: On the Implementation and Effectiveness of Autoscheduling for Shared-
Memory Multiprocessors. PhD. thesis, Department of Electrical and Computer Engineering,
Univ. of Illinois at Urbana-Champaign, 1995.

7. Mueller, F.: A Library Implementation of POSIX Threads under UNIX. 1993 Winter
USENIX, January 25-29, 1993, San Diego, CA.

8. Pillet, V., Labarta, J., Cortés, T., Girona, S.: PARAVER: A Tool to Visualize and Analyse
Parallel Code, WoTUG-18, pp 17-31, Manchester, April 95.

9. Polychronopoulos, C. D., Girkar, M., Haghighat, M. R., Chia Ling Lee, Leung, B., and
Schouten, D.: Parafrase-2: An Environment for Parallelizing, Partitioning, Synchronizing,
and Scheduling Programs on Multiprocessors. International Journal of High Speed
Computing, Vo. 1, No. 1, 1989.

10. Polychronopoulos, C. D.:nano-Threads: Compiler-Driven Multithreading. CSRD Technical
Report, 1993.

11. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Herrman, F.,
Kaiser, C., et al.: Overview of the Chorus Distributed Operating System. Proc. of the
USENIX Workshop on Micro-kernels and Other Kernel Architectures, April 1992.

12. Tucker, A., Gupta, A.: Process Control and Scheduling Issues for Multiprogrammed
Shared-Memory Multiprocessors. ACM Operating Systems Rev., Vol 23 Num 5, Dec. 1989.


