
An Ontology-Based Information Retrieval Model

David Vallet, Miriam Fernández, and Pablo Castells

Universidad Autónoma de Madrid
Campus de Cantoblanco, c/ Tomás y Valiente 11, 28049 Madrid

{david.vallet, miriam.fernandez, pablo.castells}@uam.es

Abstract. Semantic search has been one of the motivations of the Semantic Web
since it was envisioned. We propose a model for the exploitation of ontology-
based KBs to improve search over large document repositories. Our approach in-
cludes an ontology-based scheme for the semi-automatic annotation of docu-
ments, and a retrieval system. The retrieval model is based on an adaptation of
the classic vector-space model, including an annotation weighting algorithm, and
a ranking algorithm. Semantic search is combined with keyword-based search to
achieve tolerance to KB incompleteness. Our proposal is illustrated with sample
experiments showing improvements with respect to keyword-based search, and
providing ground for further research and discussion.

1 Introduction

The use of ontologies to overcome the limitations of keyword-based search has been
put forward as one of the motivations of the Semantic Web since its emergence in the
late 90’s. While there have been contributions in this direction in the last few years,
most achievements so far either make partial use of the full expressive power of an
ontology-based knowledge representation, or are based on boolean retrieval models,
and therefore lack an appropriate ranking model needed for scaling up to massive
information sources.

In the former case, ontologies provide a shallow representation of the information
space, equivalent in essence to the taxonomies and thesauri used before the Semantic
Web was envisioned [3,6,7,15]. Rather than an instrument for building knowledge
bases, these light-weight ontologies provide controlled vocabularies for the classifica-
tion of content, and rarely surpass several KBs in size. This approach has brought
improvements over classic keyword-based search through e.g. query expansion based
on class hierarchies and rules on relationships, or multifaceted searching and browsing.
It is not clear though that these techniques alone really take advantage of the full po-
tential of an ontological language, beyond those that could be reduced to conventional
classification schemes.

Other semantic search techniques have been developed that do exploit large knowl-
edge bases in the order of GBs or TBs consisting of thousands of ontology instances,
classes and relations of arbitrary complexity [1,2,4,12]. These techniques typically use
boolean search models, based on an ideal view of the information space as consisting
of non-ambiguous, non-redundant, formal pieces of ontological knowledge. In this
view, the information retrieval problem is reduced to a data retrieval task. A knowl-

edge item is either a correct or an incorrect answer to a given information request, thus
search results are assumed to be always 100% precise, and there is no notion of ap-
proximate answer to an information need. This model makes sense when the whole
information corpus can be fully represented as an ontology-driven knowledge base, so
that search results consist of ontology entities.

However, there are limits to the extent to which knowledge can or should be formal-
ized in this way. First, because of the huge amount of information currently available
to information systems worldwide in the form of unstructured text and media docu-
ments, converting this volume of information into formal ontological knowledge at an
affordable cost is currently an unsolved problem in general.

Second, documents hold a value of their own, and are not equivalent to the sum of
their pieces, no matter how well formalized and interlinked. The replacement of a
document by a bag of information atoms inevitably implies a loss of information value:
the thread of thought behind the order of the sentences in free text, the choice of the
words, etc., are a valuable, relevant, and necessary part of the conveyed message.
Therefore, although it is useful to break documents down into smaller information
units that can be reused and reassembled to serve different purposes, it is yet often
appropriate to keep the original documents in the system.

Third, wherever ontology values carry free text, boolean semantic search systems
do a full-text search within the string values. In fact, if the string values hold long
pieces of free text, a form of keyword-based search is taking place in practice beneath
the ontology-based query model since, in a way, unstructured documents are hidden
within ontology values, whereby the “perfect match” assumption starts to become
arguable, and search results may start to grow in size. While this may be manageable
and sufficient for small knowledge bases, the boolean model does not scale properly
for massive document repositories where searches typically return hundreds or thou-
sands results. Boolean search does not provide clear ranking criteria, without which
the search system may become useless if the search space is too big.

In this paper we propose an ontology-based retrieval model meant for the exploita-
tion of full-fledged domain ontologies and knowledge bases, to support semantic
search in document repositories. In contrast to boolean semantic search systems, in our
perspective full documents, rather than specific ontology values from a KB, are re-
turned in response to user information needs. The search system takes advantage of
both detailed instance-level knowledge available in the KB, and topic taxonomies for
classification. To cope with large-scale information sources, we propose an adaptation
of the classic vector-space model [16], suitable for an ontology-based representation,
upon which a ranking algorithm is defined.

The performance of our proposed model is in direct relation with the amount and
quality of information within the KB it runs upon. The latest advances in automating
ontology population and text annotation are promising [5,9,11,14]. While, if ever,
ontologies and metadata (and the Semantic Web itself) become a worldwide commod-
ity, the lack or incompleteness of available ontologies and KBs is a limitation we shall
likely have to live with in the mid term. In consequence, tolerance to incomplete KBs
has been set as an important requirement in our proposal. This means that the recall
and precision of keyword-based search shall be retained when ontology information is
not available or incomplete.

We have implemented our model and done some low-scale experimentation with
real documents and data from a digital news archive from a local Spanish newspaper.
The experiments build upon previous work in the Neptuno project [1], where an ontol-
ogy and a knowledge base were built for the description of archive news.

The rest of the paper is organised as follows. An overview of related work is given
in Section 2. After this, our scheme for semantic annotation is described. Section 4
explains the retrieval and ranking algorithms. Some initial experiments with our tech-
niques are reported in Section 5 The strengths, weaknesses, and significance of our
approach are summarized in Section 6, after which some closing conclusions are
given.

2 State of the Art

Our view of the semantic retrieval problem is very close to the latest proposals in KIM
[11,14]. While KIM focuses on automatic population and annotation of documents,
our work focuses on the ranking algorithms for semantic search. Along with TAP [8],
KIM is one of the most complete proposals reported to date, to our knowledge, for
building high-quality KBs, and automatically annotating document collections at a
large scale. In their latest account of progress [11] a ranking model for retrieval is
hinted at but has not been developed in detail and evaluated. In fact, KIM relies on a
keyword-based IR engine for this purpose (indexing, retrieval and ranking). Our work
complements KIM with a ranking algorithm specifically designed for an ontology-
based retrieval model, using a semantic indexing scheme based on annotation weight-
ing techniques.

TAP [8] presents a view of the Semantic Web where documents and concepts are
nodes alike in a semantic network, whereby the separation of contents and metadata is
not as explicit as we propose here. The two main problems addressed by TAP are a)
the development of a distributed query infrastructure for ontology data in the Semantic
Web, and b) the presentation of query execution results, augmenting query answers
with data from surrounding nodes. These issues are complementary to the ones ad-
dressed in this paper. However the expressive power of the TAP query language is
fairly limited compared to ontology query languages such as RDQL, RQL, etc. The
supported search capability is limited to keyword search within the “title properties” of
instances, and no ranking is provided.

Mayfield and Finin [13] combine ontology-based techniques and text-based re-
trieval in sequence and in a cyclic way, in a blind relevance feedback iteration. Infer-
ence over class hierarchies and rules is used for query expansion, and extension of
semantic annotations of documents. Documents are annotated with RDF triples, and
ontology-based queries are reduced to boolean string search, based on matching RDF
statements with wildcards, at the cost of losing expressive power for queries. We share
with Mayfield et al the idea that semantic search should be a complement of keyword-
based search as long as not enough ontologies and metadata are available. Also, we
believe that inferencing is a useful tool to fill knowledge gaps and complete missing
information (e.g. transitivity of the locatedIn relationship over geographical locations).

Semantic Portals [1,2,4,12] typically provide simple search functionalities that may
be better characterised as semantic data retrieval, rather than semantic information
retrieval. Searches return ontology instances rather than documents, and no ranking
method is provided. In some systems, links to documents that reference the instances
are added in the user interface, next to each returned instance in the query answer [4],
but neither the instances, nor the documents are ranked. Maedche et al do provide a
criterion for query result ranking in the SEAL Portal [12], but the principles on which
the method is based – a similarity measure between query results and the original KB
without axioms, is not clearly justified, and no testing of the method is reported.

The ranking problem has been taken up again in [19], and more recently [15]. Ro-
cha et al propose the expansion of query results through arbitrary ontology relations
starting from the initial query answer, where the distance to the initial results is used to
compute a similarity measure for ranking [15]. This method has the advantage of al-
lowing the user to express information needs with simpler, keyword-based queries but,
from our perspective, it introduces an unnecessary loss of precision, since a more accu-
rate result expansion can be achieved by including ontology relations explicitly in a
structured query. From our point of view, Rocha’s techniques would be appropriate in
a more browsing-oriented information seeking context. Stojanovic et al propose a
sentence ranking scheme based on the number of times an instance appears as a term in
a relation type, and the derivation tree by which a sentence is inferred [19]. Whereas
these works are concerned with ranking query answers (i.e. ontology instances), we are
concerned with ranking the documents annotated with these answers. Since our respec-
tive techniques are applied in consecutive phases of the retrieval process, it would be
interesting to experiment the integration of the query result relevance function pro-
posed by Stojanovic et al into our document relevance measures.

3 Knowledge Base and Document Base

In our view of semantic information retrieval, we assume a knowledge base has been
built and associated to the information sources (the document base), by using one or
several domain ontologies that describe concepts appearing in the document text. The
concepts and instances in the KB are linked to the documents by means of explicit,
non-embedded annotations to the documents.

While we do not address here the problem of knowledge extraction from text
[4,5,9,10,11,14], we provide a vocabulary and some simple mechanisms to aid in the
semi-automatic annotation of documents, once ontology instances have been created
(manually or automatically). These are described in Subsection 3.2. Our system can
work with any arbitrary domain ontology with essentially no restrictions, except for
some minimal requirements that are explained next.

3.1 Root Ontology Classes

Our system requires that the knowledge base be constructed from three main base
classes: DomainConcept, Taxonomy, and Document. DomainConcept should be the
root of all domain classes that can be used (directly or after subclassing) to create in-

stances that describe specific entities referred to in the documents. For example, in the
Arts domain, classes like Artist, Sculptor, ArtWork, Painting, and Museum should be
defined as (probably indirect) subclasses of DomainConcept. A small set of upper-
level open-domain classes like Person, Building, Event, Location, etc., is included in
the base concept ontology, to be extended for specific domains.

Document is used to create instances that act as proxies of documents from the in-
formation source to be searched upon. Two subclasses, TextDocument and MediaCon-
tent, are provided, which can be further subclassed, if appropriate for a particular ap-
plication domain, to provide for different types of documents, such as Report, News,
PurchaseOrder, Invoice, Message, etc., with different fields (e.g. title, date, subject,
price, sender). The class MediaContent is provided in anticipation of future extensions
for multimedia retrieval, which we have not developed yet. Document has a location
property that holds a dereferenceable physical address from which the actual document
contents can be retrieved. In our current implementation, this consists of a URL.

Taxonomy is the root for class hierarchies that are merely used as classification
schemes, and are never instantiated. These taxonomies are expected to be used as a
terminology to annotate documents and concept classes, using them as values of dedi-
cated properties. For instance, in a KB for news, classes like Culture, Politics, Econ-
omy, Sports, etc. (after the IPTC Subject Reference System standard1), could be used
as values of a (probably multivalued) topic property of the News class. Furthermore,
concept classes like Athlete and Tournament could also have the topic property, in this
case with the value Sports, i.e. concepts can also be classified under the same scheme
as documents. Several separate taxonomies can be used simultaneously on the same
documents, thus providing for multifaceted classification.

The distinction between the three root classes DomainConcept, Taxonomy, and
Document, arises from our own experience in previous Semantic Web projects [1,2],
and many other observed information systems where this (or a similar distinction)
seems to be natural, useful and recurrent (see e.g. [17]). In our system, we exploit
taxonomies for multifaceted search, and to solve word ambiguities, as will be de-
scribed later.

3.2 Document Annotation

The predefined base ontology classes described above are complemented with an an-
notation ontology that provides the basis for the semantic indexing of documents with
non-embedded annotations. In many respects, our scheme for semi-automatic annota-
tion is similar to the one recently reported in [11].

Documents are annotated with concept instances from the KB by creating instances
of the Annotation class, provided for this purpose. Annotation has two relational prop-
erties, instance and document, by which concepts and documents are related together.
Reciprocally, DomainConcept and Document have a multivalued annotation property.

Annotations can be created manually by a domain expert, or semi-automatically.
The subclasses ManualAnnotation and AutomaticAnnotation are used respectively, to
differentiate each case. We have found this distinction useful for the system at least

1 http://www.iptc.org/NewsCodes

because a) manual annotations are more reliable than automatic ones, and when avail-
able should prevail, and b) while automatic annotations can be deleted for recalcula-
tion, manual annotations should be preserved.

Our system provides a simple facility for semi-automatic annotation, which works
as follows. DomainConcept instances use a label property to store the most usual text
form of the concept class or instance. This property is multivalued, since instances may
have several textual lexical variants. Close equivalents of our label property are used
in systems like KIM [11] and TAP [8]. In our current experiments, the value of this
property is set by hand by the ontology designer, but it could be set by automatic
means, if an external instance generation system was plugged to our system. Similarly
to KIM, instance labels are used by the automatic annotator to find potential occur-
rences of instances in text documents. Whenever the label of an instance is found, an
annotation is created between the instance and the document. In our system, docu-
ments can be annotated with classes as well, by assigning labels to concept classes.

This basic mechanism is complemented with heuristics to cope with polysemia, i.e.
label coincidence between different instances or classes. First the system always tries
to find the longest label, e.g. “Real Madrid” is preferred to “Madrid”. Second, classifi-
cation taxonomies are used as a source of semantic scope for disambiguation: a simi-
larity measure is defined to compare the respective classification of the document and
candidate synonym instances for annotation, so that the instance that has the closest
classification to the document is chosen. For example, the word “Irises” in a document
classified under Arts would be linked to an instance of Painting that represents Van
Gogh’s famous work, rather than a subclass of Flower, provided that the painting in-
stance exists in the knowledge base and has been correctly classified under Arts, or a
taxonomic subclass thereof, and assuming that Flower is classified under a different
taxonomic branch such as Botany or the like. Of course, if the Painting instance does
not exist, our system fails because it would incorrectly annotate the document with the
botanic sense.

Our semi-automatic annotation mechanisms can be further improved, but this is out
of the extent of our undergoing research. More sophisticated annotation techniques, as
have been reported in the literature [5,9,11,14], would be complementary and benefi-
cial to our system.

3.3 Weighting Annotations

The annotations are used by the retrieval and ranking module, as will be explained in
Section 4. The ranking algorithm is based on an adaptation of the classic vector-space
model [16]. In the classic vector-space model, keywords appearing in a document are
assigned weights reflecting that some words are better at discriminating between docu-
ments than others. Similarly, in our system, annotations are assigned a weight that
reflects how relevant the instance is considered to be for the document meaning.
Weights are computed automatically by an adaptation of the TF-IDF algorithm [16],
based on the frequency of occurrence of the instances in each document. More specifi-
cally, the weight wi,j of instance Ii for document Dj is computed as:

,
,

,

 log
max

i j
i j

k k j i

freq N
w

freq n
= ×

Where freqi,j is the number of occurrences of Ii in Dj, maxk freqk,j is the frequency of
the most repeated instance in Dj, ni is the number of documents annotated with Ii, and
N is the total number of documents in the search space.

The number of occurrences of an instance in a document is primarily defined as the
number of times the label of the instance appears in the document text, if the document
is annotated with the instance, and zero otherwise. We realised in our first experiments
that quite a number of occurrences were missed in practice with this approach, since
pronouns, periphrasis, metonymy, and other deixis abound in regular written speech.
Finding all the references to an individual in free text is a very complex natural lan-
guage processing problem far beyond the scope of our current research. Nonetheless
we have achieved significant improvements by extending our labeling scheme and
exploiting class hierarchies, as follows.

First, further instance occurrences are found by adding more labels to instances.
However, the proliferation of labels tends to introduce further polysemic ambiguities
that lead to incorrect annotations. To avoid this negative effect, our system provides a
separate keyword property to be used, in addition to label, for instance frequency com-
putation, but not for automatic annotation. As a general rule, label should be reserved
to clearly instance-specific text forms, leaving more ambiguous ones as keywords.
Since instance occurrences are only computed in the presence of an annotation, very
few or no ambiguities are caused in practice.

Also, synecdoche is a frequent rhetoric figure used to avoid repetition, where an in-
dividual is referred to by its class (e.g. “the painter”), after the individual (e.g. “Pi-
casso”) has already appeared in the text. To cope with this, the list of textual forms
(labels and keywords) of an instance is automatically expanded (just for the computa-
tion of occurrences) with the textual forms of its direct and indirect classes. This intro-
duces a slight occurrence counting imprecision when more than one instance of the
same class are annotating the same document, because the same class references are
counted once for each instance. However, in our experiments the improvements ob-
tained with this technique outweight the effect of the imprecision.

4 Processing Queries

Our approach to ontology-based information retrieval can be seen as an evolution of
classic keyword-based retrieval techniques, where the keyword-based index is replaced
by a semantic knowledge base. The overall retrieval process is illustrated in Fig. 1. Our
system takes as input a formal RDQL query. This query could be generated from a
keyword query, as in e.g. [8,15,18], a natural language query [4], a form-based inter-
face where the user can explicitly select ontology classes and enter property values
[1,11,12], or more sophisticated search interfaces [7]. A number of research works
have undertaken the construction of easy to use user interfaces for ontology query
languages, and we do not address this problem here. The RDQL query is executed
against the knowledge base, which returns a list of instance tuples that satisfy the

query. Finally, the documents that are annotated with these instances are retrieved,
ranked, and presented to the user.

RDQL
Query

Query UI

Query
Engine

Document
Retriever

Ranking

Weighted

annotation links

RDF KB

List of instances

Document
Base

Unordered
Documents

Ranked
Documents

RDQL
Query

Query UI

Query
Engine

Document
Retriever

Ranking

Weighted

annotation links

RDF KB

List of instances

Document
Base

Unordered
Documents

Ranked
Documents

Fig. 1. Our view of ontology-based information retrieval

4.1 Query Encoding and Document Retrieval

The RDQL query can express conditions involving domain ontology instances, docu-
ment properties (such as author, date, publisher, etc.), or classification values. E.g.
“cultural articles published by the Le Monde newspaper about European movies with
Canadian actors in the cast.”

In classic keyword-based vector-space models for information retrieval, the query
keywords are assigned a weight that represents the importance of the concept in the
information need expressed by the query. Analogously, in our model, the variables in
the SELECT clause of the RDQL query can be weighted to indicate the relative inter-
est of the user for each of the variables to be explicitly mentioned in the documents.
For instance, in the previous example, the user might be interested that both the movies
and the Canadian actors are mentioned in the articles, or have a higher priority for
either the movies or the actors. The weights can be set explicitly by the user, or be
automatically derived by the system, e.g. based on frequency analysis, personalisation
techniques, or other strategies [6].

Our system uses inferencing mechanisms for implicit query expansion based on
class hierarchies (e.g. organic pigments can satisfy a query for colorants), and rules
such as one by which the winner of a sports match might be inferred from the scoring.
In fact, in our current implementation, it is the KB which is expanded by adding in-
ferred statements beforehand.

The query execution returns a set of tuples that satisfy the query. It is the document
retriever’s task to obtain all the documents that correspond to the instance tuples. If the
tuples are only made up of instances of domain concepts, the retriever follows all out-
going annotation links from the instances, and collects all the documents in the reposi-
tory that are annotated with the instances. If the tuples contain instances of document

classes (because the query included direct conditions on the documents), the same
procedure is followed, but restricted to the documents in the result set, instead of the
whole repository.

4.2 Ranking Algorithm

Once the list of documents is formed, the search engine computes a semantic similarity
value between the query and each document, as follows. Let { } 1

M
i iO I

=
= be the set of

all instances in the ontology, and { } 1

N
i i

D
=

 be the set of all documents in the search
space. Let ()1,..., kv v be the weights of the variables in the SELECT clause of the
RDQL query Q, and let T = { } 1

n
i iT

=
 be the list of tuples in the query result set, where

{ }, 1

k

i i j j
T T

=
= , with ,i jT O∈ .
We define the document vector of Di as id

G
 = (di,1, …, di,M), where di,j is the weight

of the annotation of document Di with Ij, if such annotation exists, and zero otherwise.
We define the extended query vector as ()1,..., Mq q q=

G , where
,| l i j

l j
i I T

q v
∃ =

= ∑ , i.e. the

query vector element corresponding to Il is added the variable weight vj if Il is a value
of the variable j in some tuple Ti that satisfies the query Q. Note that the sum rarely has
more than one term, since this would mean that the same instance appears more than
once in the same result set tuple. If Il does not appear in any tuple, ql = 0.

Now the similarity measure of Di for the query Q is computed as:

(,)
| | | |

i
i

i

d q
sim D Q

d q
=

×

G GiG G

Because of the way qG is constructed, | qG | is usually quite large, and as a conse-
quence the values of the similarity function are too low. For example, if the user que-
ries for special offers for summer holidays in the Aegean Islands, a document that
shows one such offer will get a similarity value in the order of 1/n, where n is the total
number of registered offers in the knowledge base that match the query. Only a docu-
ment that displays nearly all offers could get close to similarity 1. To compensate for
this, in practice we use the following normalization factor instead of | qG |:

()2

1
max #

k
l

j l j
j

v T
=

×∑ , where { },| annotates , l
j l i jT I O I D i I T= ∈ ∧ ∃ = .

If the knowledge in the KB is incomplete (e.g. there are documents about travel of-
fers in the knowledge source, but the corresponding instances are missing in the KB),
the semantic ranking algorithm performs very poorly: RDQL queries will return less
results than expected, and the relevant documents will not be retrieved, or will get a
much lower similarity value than they should. As limited as might be, keyword-based
search could perform better in these cases. To cope with this, our ranking model com-
bines the semantic similarity measure with the similarity measure of a keyword-based
algorithm. The final value for ranking is computed as t × sim (Di,Q) + (t – 1) ×
ksim (Di,Q), where ksim is computed by a keyword-based algorithm. We have taken t
= 0.5, which seems to perform well in our experiments. As a further adjustment, if

ksim returns 0, we take t = 1, and if sim returns 0, we take t = 0.2. For further testing,
we have implemented a user interface where this parameter can be freely set by the
user with a slider after the search has been executed, so that the user can see dynami-
cally how the results are reranked as the value of t is moved.

The keywords for the ksim algorithm could be extracted directly from the user
query, if a keyword-based or even natural language interface was used. In our current
implementation we extract the keywords from the RDQL query, which is suitable for
testing, and would be appropriate for a form-based interface as well. More specifically,
the value of the label property of a) the class of all query variables for which a rdf:type
clause is included in the query, and b) any instances explicitly appearing within the
RDQL query, are taken as query keywords. In practice, since the label property can be
multivalued, a separate property is used, which stores one of the label values, desig-
nated as a unique most common lexical form. For example, the following query:

SELECT ?player ?team
WHERE (?player rdf:type sports:Player)
 (?player sports:sport sports:Basketball)
 (?player general:nationality geog:USA)
 (?player sports:playsIn ?team)
 (?team rdf:type sports:SportsTeam)
 (?team geog:locatedIn geog:Catalonya)

would yield the query keywords “player”, “basketball” , “USA”, “team”, “Catalonia”.
In sum, our method improves keyword-based search (actually outperforms it, as is

shown in the next section) when the relevant information is available in the KB, and
relies on keyword-based search otherwise.

5 Early Experiments

We have tested our system with a document base taken from an online newspaper
archive [2]. For this application, the document class hierarchy includes News (subclass
of TextDocument), Photograph and CustomGraphic (subclasses of MediaDocument).
Only one classification taxonomy is used, based on the IPTC Subject Reference Sys-
tem, with which all documents and domain classes are classified, as explained in Sec-
tion 3.1. Our current implementation is compatible with both RDF and OWL.

Building appropriate domain ontologies and a complete KB for a newspaper archive
is an enormous undertaking, or would need very advanced semi-automatic knowledge
extraction techniques that are not available yet in current state of the art. However, as
stated in previous sections, our system tolerates incomplete ontologies and KBs. We
have built three reduced domain ontologies for testing purposes, corresponding to the
Culture, Economy, and Sports domains, with classes such as Artist, Painter, Monu-
ment, Company, Bank, Sportsman, SportsTeam, Stadium, etc., and a few instances of
each class. These ontologies were built by reading 200 news articles, and defining
classes and instances by hand for concepts found in the documents. In total, 143 do-
main classes and 1,144 instances were created. We have also manually set labels and
keywords for concept classes and instances. Then we have run the automatic annota-

tion and weighting algorithm over a subset of the archive comprising 2,039 news arti-
cles, which generated 3,471 annotations, of which 349 were manually created.

Once the KB was built, we tested the retrieval algorithm with some examples, and
compared it to a keyword-only search, using the Jakarta Lucene library.2 We report
next the observed results in four examples, showing different levels of performance of
our method in different cases. The metrics are based on a manual ranking of all docu-
ments for each query, on a scale from 0 to 5. In the experiments, all the query variables
were given a weight of 1. The measurments are subjective and limited, yet indicative
of the degree of improvement that can be expected, and in what cases, with respect to a
keyword-based engine. The retrieval times are too low to draw any significant obser-
vation regarding efficiency. The results are shown in Fig. 2.

 a b c d

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

Pr
ec

is
io

n

Keyword search
Semantic search

0 20 40 60 80 100 120
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

Pr
ec

is
io

n

Keyword search
Semantic search

0 100 200 300
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00
Pr

ec
is

io
n

Keyword search
Semantic search

0 20 40 60 80 100 120 140
Documents Retrieved

2,0

3,0

4,0

5,0

R
el

ev
an

ce
E

[0
-5

]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

Pr
ec

is
io

n

Keyword search
Semantic search

0 10 20 30 40
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

Fig. 2. Evaluation of ontology-based search (combined with keyword-based) against keyword-
based only. The performance of both algorithms are shown for four different queries a, b, c, and
d. The graphics on top show the precision vs. recall figures (as defined in e.g. [16]), and the
graphics below show the average relevance at different document cutoff values, for each query

Query a. “News about players from USA playing in basketball teams of Catalonia.”
In this example the semantic retrieval algorithm outperforms keyword-based search
because the KB contains many instances of basketball players and teams, some of
which match the query. Keyword-based search only recognizes a document as relevant
if it contains words like “player”, “USA”, “Catalonia”, whereas the semantic search
retrieves news about players and teams as soon as the name of the player or the team
are mentioned in the document.

These are typical results when a search query involves a region of the ontology with
some degree of completeness in terms of instances and annotations. These cases yield
a high precision up to almost maximum recall. On the other hand, the relevance graph
shows that here the semantic search gives high ranks to the relevant documents. For
instance, the top 20 retrieved documents have a mean relevance value of 4.2 upon 5,
versus 2.7 in the keyword search.

2 http://lucene.apache.org

However, the KB does not contain all teams and players, which explains the col-
lapse of the precision at 100% recall. If more instances were created, precision values
would stand at high levels for all the recall values.

Query b. “News about sports team presidents.”
In this example, the ontology KB has only a few instances of sports team presidents, so
not all documents relevant to the query are annotated. This causes precision to drop to
lower values when recall increases. Although the total recall of semantic search is low,
it still has a good precision for the top-ranked documents, which are the few ones an-
notated with instances in the KB. A few more documents where semantic search alone
fails are still given a high ranking thanks to the combination with keyword-search,
which shows here a comparable behavior to example a.

Query c. “News about basketball players.”
In this case the performance of the two algorithms is similar. For this example, we
have intentionally removed most instances of players from the KB, leaving a relatively
low number. Moreover, we have removed all lexical variants in the label and keyword
properties of player instances, except the player’s surname. As a consequence, many
annotations are missing. Under these conditions, the semantic model alone performs
much worse than keyword-based search. However, the combined search yields a simi-
lar final behavior to keyword-based search.

Query d. “News about the European Union.”
This example shows a case where our method fails. The KB contains an instance for
the European Union, with all the possible syntactic variants (in Spanish “UE”, “U.E.”,
etc.). The problem is that many Catalan sports teams have the word “UE” (acronym for
“Sports Union” in Catalan) in their names. If the KB contained these teams, the disam-
biguation algorithm would solve the problem by favoring the sports interpretation,
whenever appropriate, because “UE” is part of a longer matching string (the team
name). In other examples where the labels could be totally coincident, the system
would use the classification of news and instances as context information for disam-
biguation. But because many such teams are missing in the KB, the automatic annota-
tor incorrectly annotates the sports news with the European Union concept, and the
retriever returns them. So far, the keyword-based search behaves similarly. But the
semantic ranking places these wrong documents in a top position, whereas the key-
word-based model does not rank them particularly higher than the correct documents.

It can be seen that it is the automatic annotator, and not the retrieval system, which
is failing here in the absence of the appropriate instances needed to solve ambiguities.
One way to reduce the negative impact of incorrect annotations would be to introduce
a factor in the automatic weighting algorithm that accounts for the proximity of the
respective classifications of the documents and the instances. In this example, although
it is difficult to avoid annotating with the European Union concept the news about
Catalan teams whose name contains “UE” (in fact, some sports news could properly
mention the EU), at least the weight of the annotation would be reduced because the
classifications (Geography and Politics vs. Sports) do not match. Testing this and other
possible improvements to the automatic annotation strategies are one of our planned
tasks for the immediate future.

6 Discussion

The added value of semantic information retrieval with respect to traditional keyword-
based retrieval, as envisioned in our approach, relies on the additional explicit informa-
tion – type, structure, relations, classification, and rules, about the concepts referenced
in the documents, represented in an ontology-based KB, as opposed to classic flat
keyword-based indices. Semantic search introduces an additional step with respect to
classic information retrieval models: instead of a simple keyword index lookup, the
semantic search system processes a semantic query against the KB, which returns a set
of instances. This can be seen as a form of query expansion, where the set of instances
represent a new set of query terms, leading to higher recall values. Further implicit
query expansion is achieved by inference rules, and exploiting class hierarchies. The
rich concept descriptions in the KB provide useful information for disambiguating the
meaning of documents.

In summary, our proposal achieves the following improvements with respect to key-
word-based search:

 Better recall when querying for class instances. For example, querying for “presi-
dents of the Spanish government” would return documents that mention José
Luis Rodríguez Zapatero and other former presidents, even if the words
“president”, “Spanish” and “government” are not present in the documents.

 Better precision by using structured semantic queries. Structured queries allow
expressing more precise information needs, leading to more accurate answers.
For instance, in a keyword-based system, it is not possible to distinguish a query
for USA players in Catalan basket teams vs. Catalan players in USA teams,
which is possible with a semantic query.

 Better precision by using query weights. Variables with low weights are only
used to impose conditions on the variables which really matter. For example, the
user can search for news about USA players in Catalan teams, regardless of
whether the news mention the team at all, or the nationality of the player.

 Better recall by using class hierarchies and rules. For example, a query for Wa-
terSports in Spain would return results in ScubaDiving, Windsurf, and other sub-
classes, in Cádiz, Málaga, Almería, and other Spanish locations (by transitivity
of locatedIn).

 Better precision by reducing polysemic ambiguities using instance labels and
classifications of concepts and documents.

As explained and shown along this paper, the degree of improvement of our seman-
tic retrieval model depends on the completeness and quality of the ontology, the KB,
and the concept labels. For the sake of robustness, the system resorts to keyword-based
search when the KB returns poor results.

The combination of keyword ranking and semantic ranking is tricky. We have ob-
served that occasionally a good semantic ranking score is spoiled by a low keyword-
based value. A simple solution would be to set a minimum threshold for the keyword-
based score to be counted. Anyhow, these cases, albeit infrequent, suggest that more
sophisticated methods than the linear combination of both values should be researched
to improve our initial results.

7 Conclusion

The research presented here started as a continuation of our previous work on the con-
struction, exploitation, and maintenance of domain-specific KBs using Semantic Web
technologies [1,2]. While some basic semantic search facilities were included in these
prior proposals, room for improvement was acknowledged, because the level of se-
mantic detail was insufficient, since it was essentially based on types of documents and
taxonomic classifications. The aim of our current work is to provide better search ca-
pabilities which yield a qualitative improvement over keyword-based full-text search,
by introducing and exploiting finer-grained domain ontologies.

Our approach can be seen as an evolution of the classic vector-space model, where
keyword-based indices are replaced by an ontology-based KB, and a semi-automatic
document annotation and weighting procedure is the equivalent of the keyword extrac-
tion and indexing process. We show that it is possible to develop a consistent ranking
algorithm on this basis, yielding measurable improvements with respect to keyword-
based search, subject to the quality and critical mass of metadata. Our proposal is an
adaptation of the vector-based ranking model that takes advantage of an ontology-
based knowledge representation.

Our proposal inherits all the well-known problems of building and sharing well-
defined ontologies, populating knowledge bases, and mapping keywords to concepts.
Recent research on these areas is yielding promising results [5,11]. It is our aim to
provide a consistent model by which any advancement on these problems is played to
the benefit of semantic search improvements.

Further experimentation, larger KBs, and larger document sets are needed to test
and improve our model. For instance, our annotation weighting scheme is not taking
advantage yet of the different relevance of structured document fields (e.g. title is more
important than body). Annotating documents with statements, besides instances, is
another interesting possibility to experiment with. Also, we are currently extending our
model with a profile of user interests for personalised search [6].

8 Acknowledgements

This research was supported by the European Commission under contract FP6-001765
aceMedia. The expressed content is the view of the authors but not necessarily the
view of the aceMedia project as a whole. The authors would like to thank the review-
ers for their detailed, accurate and helpful coments.

9 References

1. Castells, P., Foncillas, B., Lara, R., Rico, M., Alonso, J. L.: Semantic Web Technologies for
Economic and Financial Information Management. In: Davies, J., Fensel, D., Bussler, C.,
Studer, R. (eds.): The Semantic Web: Research and Applications – 1st European Semantic
Web Symposium (ESWS 2004). Lecture Notes in Computer Science, Vol. 3053. Springer
Verlag, Berlin Heidelberg New York (2004) 473-487

2. Castells, P., Perdrix, F., Pulido, E., Rico, M., Benjamins, V. R., Contreras, J., Lorés, J.:
Neptuno: Semantic Web Technologies for a Digital Newspaper Archive. In: Davies, J.,
Fensel, D., Bussler, C., Studer, R. (eds.): The Semantic Web: Research and Applications –
1st European Semantic Web Symposium (ESWS 2004). Lecture Notes in Computer Science,
Vol. 3053. Springer Verlag, Berlin Heidelberg New York (2004) 445-458

3. Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M. and Tourtounis, S.: Opti-
mizing taxonomic semantic web queries using labeling schemes. Journal of Web Sematics 1,
Issue 2, Elsevier (2003) 207-228

4. Contreras, J., Benjamins, V. R., Blázquez, M., Losada, S., Salla, R. et al: A Semantic Portal
for the International Affairs Sector. In: Motta, E., Shadbolt, N., Stutt, A., Gibbins, N. (eds.):
Engineering Knowledge in the Age of the Semantic Web – 14th Intl. Conference on Knowl-
edge Engineering and Knowledge Management (EKAW 2004). Lecture Notes in Computer
Science, Vol. 3257. Springer Verlag, Berlin Heidelberg New York (2004) 203-215

5. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R. et al: A Case for Automated Large Scale
Semantic Annotation. Journal of Web Sematics 1, Issue 1, Elsevier (2003) 115-132

6. Gauch, S., Chaffee, J., and Pretschner, A.: Ontology-based personalized search and brows-
ing. Web Intelligence and Agent System 1, Issue 3-4 (2003) 219-234

7. Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based Access to the Web. IEEE
Intelligent Systems 14, Issue 3 (1999) 70-80

8. Guha, R. V., McCool, R., Miller, E.: Semantic search. In Proc. of the 12th Intl. World Wide
Web Conference (WWW 2003), Budapest, Hungary, (2003) 700-709

9. Handschuh, S., Staab, S., and Ciravegna, F.: S-cream – Semi-automatic Creation of Meta-
data. In: A. Gómez-Pérez , V. Richard Benjamins (eds.): 13th Intl. Conf. on Knowledge En-
gineering and Knowledge Management – Ontologies and the Semantic Web (EKAW’02).
LNCS, Vol. 2473. Springer Verlag, Berlin Heidelberg New York (2002) 358-372

10. Järvelin, K., Kekäläinen, J., and Niemi, T.: ExpansionTool: Concept-based query expansion
and construction. Information Retrieval 4, Issue 3-4 (2001) 231-255

11. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,
Indexing, and Retrieval. Journal of Web Sematics 2, Issue 1, Elsevier (2004) 47-49

12. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: SEmantic portAL: The SEAL
Approach. In: Fensel, D., Hendler, J. A., Lieberman, H., Wahlster, W. (eds.): Spinning the
Semantic Web. MIT Press, Cambridge London (2003) 317-359

13. Mayfield, J., and Finin, T.: Information retrieval on the Semantic Web: Integrating inference
and retrieval. In: Workshop on the Semantic Web at the 26th Intl. ACM SIGIR Conference
on Research and Development in Information Retrieval, Toronto, Canada (2003)

14. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM – A Semantic Plat-
form for Information Extaction and Retrieval. Journal of Natural Language Engineering 10,
Issue 3-4, Cambridge University Press (2004) 375-392

15. Rocha, C., Schwabe, D., de Aragão, M. P.: A Hybrid Approach for Searching in the Seman-
tic Web. In Proc. of 13h Intl. World Wide Web Conf. (WWW 2004), NY (2004) 374-383

16. Salton, G. and McGill, M. Introduction to Modern Information Retrieval. McGraw-Hill,
New York (1983)

17. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., and Warke, Y.: Managing
Semantic Content for the Web. IEEE Internet Computing 6, Issue 4 (2002) 80-87

18. Stojanovic, N.: On Analysing Query Ambiguity for Query Refinement: The Librarian Agent
Approach. In: Song, I.-Y.; Liddle, S.W.; Ling, T.W.; Scheuermann, P. (eds.): Conceptual
Modeling – ER 2003, 22nd Intl. Conf. on Conceptual Modeling. Lecture Notes in Computer
Science, Vol. 2813. Springer Verlag, Berlin Heidelberg New York (2003) 490-505

19. Stojanovic, N., Studer, R., and Stojanovic, L.: An Approach for the Ranking of Query Re-
sults in the Semantic Web. In: Fensel, D., Sycara, K. P., Mylopoulos, J. (eds.): The Semantic
Web – ISWC 2003, 2nd Intl. Semantic Web Conference. Lecture Notes in Computer Science,
Vol. 2870. Springer Verlag, Berlin Heidelberg New York (2003) 500-516

