
Breaking Security Protocols as an AI PlanningProblemFabio MassacciDipartimento di Informatica e SistemisticaUniversit�a di Roma I \La Sapienza"via Salaria 113, Romae-mail:massacci@dis.uniroma1.itAbstract. Properties like con�dentiality, authentication and integrityare of increasing importance to communication protocols. Hence the de-velopment of formal methods for the veri�cation of security protocols.This paper proposes to represent the veri�cation of security properties asa (deductive or model-based) logical AI planning problem. The key intu-ition is that security attacks can be seen as plans. Rather then achieving\positive" goals a planner must exploit the structure of a security pro-tocol and coordinate the communications steps of the agents and thenetwork (or a potential enemy) to reach a security violation.The planning problem is formalized with a variant of dynamic logic whereactions are explicit computation (such as cryptanalyzing a message) andcommunications steps between agents. A theory of computational prop-erties is then coupled with a description of the particular communicationprotocols and an example for a key-distribution protocol is shown.1 IntroductionThe development and formal veri�cation of security protocols is one of the keyrequirement for modern distributed systems which face the need of secure com-munication over an insecure network.The key idea is to rely on cryptographic primitives (shared and public keyencryption, hashing etc.) to guarantee security properties viz. con�dentiality,integrity or authentication (see [8,11,16,27] for an introduction).Yet the presence of well designed cryptographic primitives is far from guaran-teeing such security properties. On the contrary, most \secure" systems are notbroken by cryptographic attacks, but rather by exploiting operational blunders[4] and logical errors in the protocol design [1,6,17]. The subtlety of logical faultsmay even be such that a protocol may become a standard (e.g. a version of theCCITT X.509) before being proved badly broken [6].Logical errors can be prevented by formal veri�cation and a number of tech-niques have been developed for the logical analysis of security protocols [19].Formal systems abstract away the cryptographic details and develop a theory ofactions (communication and computing) where some messages can be \opened"by an agent only if she has the corresponding (secret) key.

For a formal analysis one can use logics of knowledge and belief in the samespirit of the works of Halpern et al [9] for high-level reasoning about commu-nication protocols. After the seminal paper on the BAN logic [6] those logicshave become a large family, e.g. [2,12,29,30]. At the other end of the spectrum,researches have described protocols as traces of atomic actions, modeling explic-itly the properties low-level of the network. The �nite states approach (based onthe process algebra CSP and model checking [17,26] or on states enumerationmethods [19,20]) can be used to �nd attacks whereas the approach based oninduction can be used to prove properties such as secrecy and authenticity [23].1.1 Security Veri�cation as a Planning ProblemAt this stage one may start wondering: this is surely interesting but. . . whatformal veri�cation has to do with planning?Undoubtedly the use of logic and theorem proving techniques for reasoningabout action is a backbone of deductive planning [13,25,18,28,5] and the use ofproof tactics borrowed from interactive theorem provers [22] is the basis for bothtactical planning and the veri�cation of security properties [23].The similarity is tighter for veri�cation systems based on traces: they have asophisticated modeling of the actions available to the legitimate participants, ofthe computing power of a potential enemy and of his abilities to tamper (read,destroy or spoof) legitimate messages [17,19,20,23,26]. This is just (low-level)reasoning about action in disguise.Yet one may argue that deductive planning and formal veri�cation sharethe same tools (logic and theorem proving) but have di�erent objectives. Itis so because we are used to think that in a planning problem we accomplishsomething \good": from stacking blocks on a table to moving a mechanical arm,from avoiding collisions between a moving robot and other objects, to complexscheduling of satellites. The second point is that we often assume that multi-agent planning is cooperative.To represent the veri�cation of security protocol as a classical AI planningproblem we need to change slightly our perspective: we need a \disruptive"planner, who wants to exploit the available (legitimate or illegitimate) actionsto achieve unwanted e�ects and somehow deceive some of the agents. The taskof the planner is then to break the systems.In a nutshell we simply need to model security attacks as plans in a suitableformalism for reasoning about actions, communications and computations. Aplanning task which is interesting for its characteristics:{ the planner must combine legitimate and \illegitimate" steps of the proto-col to construct an attack, somehow coordinating the bad and good agentsinvolved in the communication;{ \illegitimate" steps are strongly constrained: they must \look like" legitimatesteps, for instance the attacker can redirect a message, or modify a messageby replacing the name of the sender with her own name, but must alwaysrespect the format of the messages foreseen by the protocol;

{ not all undesirable states correspond to attacks (i.e. valid plans) we are onlyinterested in attacks where, according to some of the legitimate parties ofthe protocol, \everything seems to go smoothly";{ among possible action we have to make explicit the computational activityof the agents, and thus we have to cope with knowledge changing actions;{ we want to describe the initial condition sparingly (e.g. only the secrecy ofsome long term cryptographic keys) and let the planner �gure out the rest;{ not all security violations are possible for a given protocol and thus we mayfail to �nd a plan in that case.If we chose a formalism based on dynamic logic [15] which has been successfullyapplied to planning (see e.g. [25,28,7]) we can use deduction to show that a plan(an attack) exists and, most important, use the proof to generate the attack. Wecan also try to prove that no plan exists and hence that the particular securityproperty represented by the negation of the planning goal is attained.Notice that we are not bound to deductive planning. Model-generation plan-ning [14] may be equally well suited.As an aside remark, computational complexity is not an issue here. At �rstbecause protocols are usually short and second and foremost because the planconstruction is once-o�. If we can �nd an attack to a protocol, the protocolwill be revised or the threat model1 will be changed. Indeed we are not usingthe planner for (repeated) actions but rather for veri�cation and trading time(ex-ante) for avoiding problems (after implementations) is worth the trouble.Reusing previous plan (attacks) to check a modi�ed protocol can also becon�gured as a problem of re-usable planning: trying to adapt past plans to amodi�ed description of the environment and available actions.In the rest of the paper we give a high-level introduction to security pro-tocols (x2) . On the technical side we introduce a dynamic logic for modelingcommunication and computation (x3). Then we explain how to transform itinto a planning problem (x4), model the general communication and computingproperties (x5) and discuss possible extensions (x6).2 A High Level View of Security ProtocolsWe sketch some characteristics and goals of security protocols to make the paperself-contained2. Security protocols can be succinctly described as follows [8]:What distinguishes a cryptographic protocol from any other algo-rithm is the underlying model of computation. In a cryptographic pro-tocol, two or more participants communicate with each other over aclearly de�ned communication network. Each participant may functionasynchronously. . . and has access to a basic set of cryptographic utilities.1 The attacks we are worried about and that the protocol guarantee to �ght o�.2 An introduction to security protocols can be found in [8,21,16] and an high levelanalysis in [6,11]. A practical overview can also be found in [27].

Furthermore each participant has a basic computational power. . .mayapply cryptographic transformation, make decision and generate mes-sages. [. . .] a participant may combine a priori knowledge with the prop-erties of the messages he generates and receives to determine a propertyof the communication system. . . In a worst case analysis of a protocolone must assume that a participant may try to subvert the protocol.As stated above, one of the key aspects of cryptographic protocols is the use ofcryptographic primitives (see [8,6]). Here, we can consider such cryptographicprimitives at an high level of abstraction. The key intuition is to regard them ascomputationally hard functions with trapdoors.For example, consider the case of encryption. At an high level it is simply afunction from strings (messages) to strings which needs a subsidiary string (thekey) to be computed. Inverting the function (getting the original messages fromthe encrypted one) without knowing the key is extremely hard (in some caseseven impossible). The knowledge of the key provide us with a trapdoor throughthe computational barrier. Thus, if we give an encrypted message to a numberof agents, we may assume than only those who have the key will be able to readit. We may exploit this assumption to achieve useful properties [21,27] in ananonymous and untrusted medium such an electronic network, where everybodycan pretend to be anybody else.For instance, to know whether Alice is alive, Bob can send a message en-crypted with a key that only she knows. If he gets the original message in reply,then he can be \sure" that Alice has read it (indeed she has decrypted it). Itseems simple, yet it is easy to get it wrong [6,1]: the key must be secret, it mustnot be distributed to the \wrong guys", Bob text must be di�cult to guess etc.In this framework there is a number of security properties and goals thatwe may want to establish. We (informally) describe some of them and refer to[1,6,11,31] for some of the subtleties involved:Secrecy: a message is only disclosed to its intended recipients;Freshness: a certain message is recent, and is not an old replay of a previouslyused (and possibly compromised) one;Authenticity: a message, which should come from a certain participant of theprotocol, did indeed come from its legitimate sender;Proof of Identity: a certain type message may be uniquely attributed to aparticular participants in the protocols;Non-repudiation: a participant may not deny of having sent a message orhaving received a message.Such properties are usually determined by the use of some cryptographic prim-itives. For instance proof of identity can be determined by using electronic sig-natures (e.g. public and private key cryptography).2.1 A Practical Example: Challenge ResponseTo show some practical examples we use the standard notation [6] for represent-ing security protocols. Principals (agents) involved in the communications are

denoted by A;B;C;E : : :. Typically E represents the environment (or a possibleenemy) whereas A and B the legitimate parties of the protocol.Messages, denoted by M , are constructed from unspeci�ed atomic strings,principals' names, cryptographic keys etc. using functions f(M1; : : : ;Mn). Somefunctions, e.g. encryption, are denoted by special symbols and we follow suchuse in the sequel.Nonces3 are denoted by N (possibly with mnemonic indices) whereas keysfor symmetric encryption are denoted by K and the corresponding encryptionof message M is fMgK . Private and public keys are sometimes denoted bySK and PK and the corresponding encryptions are eSKfMg and ePKfMg,following [11] in the use of ISO notation. Messages concatenation is denoted bythe standard fM;M 0g.A protocol is a sequence of steps A!B :M , where M is a message:1: A!B :M12: B!A :M23: A!B :M3corresponds to a protocol where A starts by sending M1 to B. After B hasreceived M1 he can send M2 to A which �nally replies with M3.Below are some challenge-response protocols from the ISO-10181 standard:protocol 1 - Nonce-Crypto1: A!B : Na2: B!A : eSKBfNag protocol 2 - Crypto-Nonce1: A!B : ePKBfNag2: B!A : NaLoosely speaking, the \task" of both protocols is to \convince" A that B is\alive" or, more properly, that somebody which can use B's signature is alive.Here the underlying cryptographic primitive is public key cryptography. Theidea is that there are two keys: one secret (the private key SKB), and one widelyavailable (the public key PKB). The high-level functioning of the cryptographicprimitive can be easily described: if you encrypt a message with one key youneed the other to decrypt it, and viceversa.The left protocol is initiated by A which sends a nonce (i.e. a random chal-lenge) to B which reply by encrypting the nonce with his private secret key (i.e.signing the challenge). The intuition is that only B knows his secret key andthus only B can \sign" Na. Still A can easily verify it since the public key PKBis known. So she takes the message that she receives back and tries to decrypt itwith PKB . If she gets back Na than she can be \sure" that only B could havedone it. So, if she gets it quickly, she could conclude that B is alive.In the second protocol, A encrypts the nonce Na with B's public key. Then Bdecrypts this message with his secret private key and sends back Na. The samereasoning seems to apply here, but what happens if somebody else can guessNa? For instance, if A just use a sequence of integers generated by a counter forsubsequent Nas? The second protocol can therefore be broken by anybody whocan guess A challenges (see [30]).3 A nonce=\number used once" is (usually) just a random number, see [16,27].

3 A Dynamic Logic for Security ProtocolsTo represent formally the actions and the communication properties involvedin a security protocols we use a variant of dynamic logic [15], since its use forplanning is simple and well-known [25,28] and it suits well to such problem.The basic components are four: principals, messages, protocols and formulae.In comparison with standard dynamic logic [15] protocols play the role of actionsand messages could be compared to �rst order terms.Principals and messages have been already introduced in x2.Formulae, denoted by ', , are constructed from the atomic componentsA madeM (A synthesized message M), A recvM (A received message M or Mis a sub message in a message received by A), A sentM , A hasM or A hasMwith the obvious meaning.Composed formulae are obtained with the boolean connectives :', ') and the modal one [�]', whose meaning is that after any possible run of protocol�, property ' holds. Other connectives are abbreviations such as ^;_ or h�i' �:[�]:' which says that is it possible to run � and end in state where ' holds.Protocols are formed as programs [15] from atomic actions: A!B :M whichmeans that principal A attempted to sends a messageM to B; AmakesM whenA tries to compose message M ; and A reads M if A tries to cryptanalyze M .The use of \attempt" in the intuitive explanations above is due to the par-ticular nature of the problem (x2): A may try to send the message to B, but Bmay not actually receive it because the \enemy" intercepted it.The (standard) operators are sequential composition (�1;�2), non determin-istic choice (�1 [�2), iteration (��), converse (��) and test ('?), where ' isa formula. Nondeterministic choice can be used to model the possibility of anopponent to replace some of the legitimate steps of the protocol and the converseoperator �� can be interpreted as \before running �".Notice that the whole system could be reformulated using the notation andsemantics of [28] in particular is su�cient to use the relations add � r anddelete� r of [28] where r is instantiated to the relations � made �, � recv � etc.The semantics can be given by using Kripke models as done in [28] or usingruns and interpreted systems [2,9,29]. There is not substantial di�culties exceptfor the enforcement of the constraints due to cryptographic primitives.4 The Design of the Planning ProblemTo map our problem into a planning problem we need to:{ de�ne explicitly the computational properties of principals i.e. de�ne theactions for composition and (crypt)analysis of messages (and also what in-formation the agents gain from these operations);{ represent the communications between agents by actions which can eithersatisfy general properties or be tailored to the particular protocol;

{ formalize the ability and the behavior of a potential enemy (sometimes thenetwork itself), which may interfere with the regular running of the commu-nications protocols;{ identify the typology of security violations which we may consider as relevantgoals G for planning attacks;{ �nally the initial conditions IC will be typically determined by the (informal)assumptions of the protocol (e.g. private keys are secret, honest principalsgenerates fresh nonces etc.).Remark 1. De�ning the (disruptive) behavior of the network or the \enemy" isessential for the problem to make sense and indeed any attacking plan to exists.Indeed legitimate agents will try to follow the protocol as closely as possibleunless they are mislead by somebody. Thus, for any (attacking) plan to existswe must devise this somebody which can deviate from the rules. The key pointis that meaningful deviations must not be so arbitrary to be unmanageable: theattacker may destroy, replay or change messages but only to the extent that hermessages still look like those of the original protocol.The global properties of the network GC, viz. the computational properties,the communications possibilities and the behavior of the network (or the po-tential enemy), will be the classical post - and pre-conditions for the planningproblem [25,28]. We sometimes also use the terminology of [24] and refer to con-straints of the form ') [�] as successor state axioms and to those of the formh�i , ' as preconditions.Once we have set the logical framework, the plan is the �? such that GC j=IC) h�?iG as in [28].4.1 Security Violations as GoalsA number of possible planning goals, i.e. security violations, can be devised interm of con�dentiality, authenticity and freshness.For instance a violation of con�dentiality is represented by the goal E hasMswhere Ms is a message supposed to be secret, such as the session key of a keyKab of the Needham-Schroeder protocol (x2).We can also represent impersonation either from the point of view of theinitiator (A received a message apparently from B who is not there) or the re-spondent. In this case somebody can impersonate B and yet mislead A intothinking that everything went smoothly: she have sent all its messages and re-ceived all \right" messages \coming" from B, yet none of such message evercome from be. So she may simple have achieved the result of giving her creditcard number to some villain. . . This state of a�airs can be easily described withthe following formula:î A sentMai ^ ĵ A recvMbj ^ ĵ :B sentMbjWhere Mai are the messages A is supposed to send B during a correct run ofthe protocol and Mbj are the one she is supposed to receive from B. We can

weaken the bad e�ects we are planning by changing the Vk into a disjunctionsor by dropping some conjuncts etc.In some cases we may require something stronger than simply sending amessages: for instance, for cash protocols , it is not only important that A sent amessage but she has actually made it (in practice has signed the main message).In this case we can replace A sentM with A sentM ^ A madeM and similarlyreplace :B sentM with :B madeM .Another issue is freshness: we may reach a state where everything is �ne forA, who receives a new key, while B received an old compromised key.A recvMa ^ :A hadMa ^ B recvMb ^ B hadMbIt is worth noting that also here we have to cope with the frame problem.Moreover we can also use a formalization based on planning as model generationrather than deduction as in [14]. We leave further details to the full paper.5 Modeling the Communication EnvironmentWe inherit directly all the axioms and properties of standard dynamic logic withconverse [15]. If we wanted to rede�ne the basic primitives in terms of the addand delete operator of [28] then we would have to import also their axioms.5.1 Computational Abilities of Agents: SynthesisThe next step is the de�nition of the computational properties of the principalsinvolved in the communication wrt the synthesis of messages.In traditional security analysis, either based on authentication logics such as[6] or traces and states enumeration [20,26], it is assumed that all principals,including the potential enemy E, have the same computational power w.r.t.cryptographic primitives. For simplicity we follow the same approach here butwe could also devise di�erentiate principals with di�erent computational powerby changing the applicable axioms.The �rst part regards the ability of composing messages: we have traditionalsuccessor state axioms of the form ') [�] [24,25] and local constraints::A hasM) [AmakesM]A madeMA madeM) A hasMNotice that we put the negation of � has � in the precondition of the successorstate axioms because we want to be conservative: we want to derive that A\constructed" M only if this was really necessary.The next set of axioms depends on the particular function we need to use inour protocols and are just preconditions:hAmakes f(M1; : : : ;Mn)i> , �fmake(A hasM1; : : : ; A hasMn)

Typically �f will be a boolean conjunction of its arguments, thus matching theintuition that for constructing a function we need to have all its arguments.For instance in the case of encryption and concatenation:hAmakes fMgKi> , A hasM ^ A hasKhAmakes fM1;M2gi> , A hasM1 ^ A hasM2This is equivalent to say that to encrypt a message one, of course, need both themessage and the key.Atomic messages, such as nonces and keys, may have particular properties.For instance we may want private key of the challenge response protocols (x2)to be unguessable by the enemy:hEmakes PKBi> , ?If we use deductive planning just to look for the existence of plans, we can dropthe axiom altogether.On the contrary the nonces of the Crypto-Nonce challenge response protocolmay or may not be guessable according the axiom we choose:A madeNa) hEmakes Nai>implies that it is possible for E to guess the nonce generated by A. For instancethis may happen if A uses simply a counter to generate her nonces.On the contrary the formula below implies that nobody can guess A nonces4.A madeNa) :hEmakes Nai>5.2 Computational Abilities of Agents: CryptanalysisThe ability of analyzing messages is essential. We have some general successorstate axioms and some local conditions such as>) [A reads f(M1; : : : ;Mn)](A hasM1 ^ : : : ^ A hasMn)A recvM) A hasMNotice that the axiom just state if A can analyze a function f then she canrecover its components and we can well have functions which she cannot analyze.The precondition axioms for the cryptanalysis of a functions depends of courseon the function itself and has the general form:hA reads f(M1 : : :Mn)i> , A has f(M1 : : :Mn)^�fread(A hasM1 : : : A hasMn)For the limited version of public key cryptography we used in our challengeresponse protocol (x2) we can de�ned the following properties:hA reads eSKfMgi> , A has eSKfMg ^ A hasPKhA reads ePKfMgi> , A has ePKfMg ^ A hasSK4 In theory the possibility of guessing the right answer is never zero but, for practicalpurposes, we may be satis�ed that it is negligible.

We have the property of agents to remember the data they have got. We canrepresent it as follows (�0 is any atomic action):A hasM) [�0]A hasM A madeM) [�0]A madeMA hadM) [�0]A hadM A recvM) [�0]A recvMRemark 2. Properties of key and nonces must be carefully added since they mayeasily lead to inconsistency.We can also assume that all principals have the names of other principals,i.e.that A hasB is an axiom.5.3 Modeling the Communication, the Network and the EnemySome postconditions and some preconditions are independent of the protocol.The �rst axioms provide us with a simple mechanism for handling freshness:A hasM 0) [A!B :M]A hadM 0A hasM 0) [B!A :M](A recvM) A hadM 0):C hadM 0) [A!B :M]:C hadM 0 for C 6= A;B;EIn the second implication we impose that A must have receivedM . IfM is goingto be intercepted by E then A may not realize that \time is passing" (i.e. someexternal event is happening).Next we have non-interference among principals (only the intended recipientof a message can receive it) and sending, where C 6= B;E::C recvM) [A!B :M]:C recvM>) [A!B :M]A sentMThe other communication properties depends on the protocol and the choiceof the explicit or implicit encoding of the enemy as the network.We can choose to explicitly model the enemy as she were in charge of thenetwork. This is usually done in traced based systems [17,19,26] and is commonin the informal analysis of protocols. In this case, for each step A!B : M wemust add the following preconditionshE!B :Mi> , E recvfB;MghA!E : fB;Mgi> , A hasM ^ �send(A;M; protocol)In a nutshell, the enemy (the network) can forward any message that she hasreceived, while \good" principals should follow the protocol (or at least believethat they are following it).The formula �send(A;M; protocol) states that this is the correct time for A tosendM . So, ifM is supposed to be the n-th message in the \normal"protocol runthen �send(A;M; protocol) describes A's viewpoint up to the n�1th message: Ahas sent all message she was supposed to sent and she has received all messagesshe was supposed to receive (if the protocol was followed by all parties involved).

For instance in the Crypto-Nonce challenge (x2) we have:hB!A : Nai> , B hasNa ^ B recv ePKfNagWe must also add the following state successor axioms:>) [A!E :M]E recvM >) [E!B :M]B recvMIn this case we can assume that, once that the enemy has decided to deliver themessage, she will deliver it, and similarly that all messages sent to the networkat least arrive there. Then the enemy may decide not to pass them forward.If we choose the implicit modeling of the enemy then our formalization re-quires more care. At �rst we may assume that the enemy is tapping the lines thenetwork and sending spoof messages :>) [A!B :M]E recvM E hasM) hE!A :Mi>Remark 3. The axioms for spoof messages is too general. Indeed we are only in-terested inM which respects the format of the messages of the desired protocols.It can be replaced by a series of more de�nite axioms.With this replacement, if we limit the number of nonces, keys and agents, wecan map the system into PDL and make it decidable. We must transform theprecondition axioms for the steps of the protocol into a set of axioms of the form:hA!B : Mi�irec(A;M; protocol) , A hasM ^ �send(A;M; protocol)The di�erent i = 1; : : :m will determine the possible outcomes of the actions:they could be A recvM or :A recvM . If also the enemy may and may notreceive messages then we may have more cases.In alternative we can assume that messages are always delivered, replace �irecwith >, add then axiom [A!B :M]B recvM and then model the \blocking"of messages as agents that do not respond5.Finally, following an idea of [23], we can also add oops messages where aprincipal \accidentally" looses the session key at the end of the protocol.6 DiscussionIn this paper we have shown how the formal veri�cation of security protocolscan be naturally represented as an interesting AI planning problem.Using a dynamic logic one can represent the communication and comput-ing actions which can be used by legitimate and illegitimate participants in aprotocol. Then �nding an attack is equivalent to �nd a plan which leads toa state which violates some security requirement. In the present formalizationall conditions are (implicitly) universally quanti�ed and, by setting the number5 Notice that we have a possibility formula for the precondition axiom so we mayvalidate �send without actually choosing the subsequent step.

of di�erent nonces, keys and principals we could transform it into a problemin dynamic propositional logic by grounding the properties on a subset of theHerbrand universe, in a fashion similar to the technique used in [14], and thusgetting a decidable problem.For a full modeling of protocols with potentially in�nite participants or runs,such as [23] further developments are necessary. The simplest way is to introduceactions for generating new nonces. Such actions would also make the model closerto the semantics of [2,29]. The (necessary) trade o� is that \term-creating"actions will a�ect the decidability of the planning problem.A further step towards a full-
edge modeling is the introduction of time: anumber of protocols use time-stamps rather than nonces and reasoning aboutactions and time becomes essentials. Also in this direction AI techniques areavailable [3] and the corresponding planning methods could be applied.AcknowledgmentsA large part of this work has been carried while the author was at the Com-puter Laboratory, University of Cambridge (UK). Discussions with A. Gordon,R. Needham and L. Paulson on security protocols and L. Carlucci Aiello, G. DeGiacomo and D. Nardi on planning were invaluable. A special thank to theComputer Laboratory and Larry Paulson for their hospitality in Cambridge.This work have been partly supported by MURST-40% grant.References1. M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-tocols. IEEE Trans. on Software Engineering, 22(1):6{15, 1996.2. M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proc. of the10th ACM Symp. on Principles of Distributed Computing, pp. 201{216, 1991.3. J. Allen. Towards a general theory of action and time. AIJ, 23:123{154, 1984.4. R. Anderson. Why cryptosystems fail. In Proc. of the 1st ACM Conf. on Commu-nications and Computer Security, pp. 217{227. ACM Press, 1993.5. S. Biundo. Present-day deductive planning. In C. B�ackstrom and E. Sandewall,editors, Current Trends in AI Planning, pp. 1{5. ISO Press, 1994.6. M. Burrows, M. Abadi, and R. Needham. A logic for authentication. ACM Trans.on Computer Systems, 8(1):18{36, 1990. Also available as Res. Rep. SRC-39, DEC- System Research Center, 1989.7. G. De Giacomo and M. Lenzerini. PDL-based Framework for Reasoning aboutActions In Proc. of the Italian Conf. on Arti�cial Intelligence (AI*IA-95), vol. 992of LNAI, pp. 103{114. Springer-Verlag, 1995.8. R. De Millo, L. Lynch, and M. Merrit. Cryptographic protocols. In Proc. of the14th ACM Symp. on Theory of Computing (STOC-82), pp. 383{400, 1982.9. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. TheMIT Press, 1995.10. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.11. D. Gollmann. What do we mean by entity authentication. In Proc. of the 15thIEEE Symp. on Security and Privacy, pp. 46{54. IEEE Comp. Society Press, 1996.

12. L. Gong, R. Needham, and R. Yahalom. Reasonign about belief in cryptographicprotocols. In Proc. of the 9th IEEE Symp. on Security and Privacy, pp. 234{248.IEEE Comp. Society Press, 1990.13. C. Green. Application of theorem proving to problem solving. In Proc. of the 1stInternat. Joint Conf. on Arti�cial Intelligence (IJCAI-69), pp. 219{239, 1969.14. H. Kautz and B. Selman. Planning as satis�ability. In Proc. of the 10th EuropeanConf. on Arti�cial Intelligence (ECAI-92), pp. 359{363. John Wiley & Sons, 1992.15. D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, vol. II, chap. 14, pp. 789{840. Elsevier Science,1990.16. A. Liebl. Authentication in distributed system: A bibliography. Operating SystemsReview, 27(4):31{41, October 1993.17. G. Lowe. Some new attacks upon security protocols. In Proc. of the 10th IEEEComputer Security Foundations Workshop, pp. 162{169. IEEE Comp. SocietyPress, 1996.18. Z. Manna and R. Waldinger. How to clear a block: Plan formation in situationallogic. J. of Automated Reasoning, 3:343{377, 1987.19. C. Meadows. Formal veri�cation of cryptographic protocols: A survey. In Advancesin Cryptology - Asiacrypt 94, vol. 917 of LNCS, pp. 133{150. Springer-Verlag, 1995.20. C. Meadows. Analyzing the Needham-Schroeder public key protocol: A comparisonof two approaches. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors,Proc. of the 4th European Symp. on Research in Computer Security, vol. 1146 ofLNCS, pp. 351{364. Springer-Verlag, 1996.21. R. Needham and M. Schroeder. Using encryption for authentication in large net-works of computers. Communications of the ACM, 21(12):993{999, 1978.22. L. Paulson. Isabelle: A Generic Theorem Prover, vol. 828 of LNCS. Springer-Verlag, 1994.23. L. Paulson. Proving properties of security protocols by induction. Technical ReportTR409, Computer Laboratory, Univ. of Cambridge (UK), 1996.24. R. Reiter. The frame problem in the situation calculus: A simple solution (some-times) and a completeness result for goal regression. In V. Lifschitz, ed., Arti�cialIntelligence and Mathematical Theory of Computation: Papers in Honor of JohnMcCarthy, pp. 359{380. Academic Press, 1991.25. S. Rosenschein. Plan synthesis: A logical perspective. In Proc. of the 7th Internat.Joint Conf. on Arti�cial Intelligence (IJCAI-81), pp. 331{337, 1981.26. S. Schneider. Security properties and CSP. In Proc. of the 15th IEEE Symp. onSecurity and Privacy, pp. 174{187. IEEE Comp. Society Press, 1996.27. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.John Wiley & Sons, 1994.28. W. Stephan and S. Biundo. A new logical framework for deductive planning. InProc. of the 13th Internat. Joint Conf. on Arti�cial Intelligence (IJCAI-93), pp.32{38. Morgan Kaufmann, 1993.29. P. Syverson and P. van Oorschot. On unifying some cryptographic protocols logics.In Proc. of the 13th IEEE Symp. on Security and Privacy. 1994.30. G. Wedel and V. Kessler. Formal semantics for authentication logics. In ElisaBertino, Helmut Kurth, Giancarlo Martella, and Emilio Montolivo, editors, Proc.of the 4th European Symp. on Research in Computer Security, vol. 1146 of LNCS,pp. 219{241. Springer-Verlag, 1996.31. J. Zhou and D. Gollmann. Observations on non-repudiation. In Kim Kwangjo andMatsumoto Tsutomu, editors, Advances in Cryptology - Asiacrypt 96, vol. 1163 ofLNCS, pp. 133{144. Springer-Verlag, 1996.

