Breaking Security Protocols as an Al Planning
Problem

Fabio Massacci

Dipartimento di Informatica e Sistemistica
Universita di Roma I “La Sapienza”
via Salaria 113, Roma
e-mail:massacci@dis.uniromal.it

Abstract. Properties like confidentiality, authentication and integrity
are of increasing importance to communication protocols. Hence the de-
velopment of formal methods for the verification of security protocols.
This paper proposes to represent the verification of security properties as
a (deductive or model-based) logical AT planning problem. The key intu-
ition is that security attacks can be seen as plans. Rather then achieving
“positive” goals a planner must exploit the structure of a security pro-
tocol and coordinate the communications steps of the agents and the
network (or a potential enemy) to reach a security violation.

The planning problem is formalized with a variant of dynamic logic where
actions are explicit computation (such as cryptanalyzing a message) and
communications steps between agents. A theory of computational prop-
erties is then coupled with a description of the particular communication
protocols and an example for a key-distribution protocol is shown.

1 Introduction

The development and formal verification of security protocols is one of the key
requirement for modern distributed systems which face the need of secure com-
munication over an insecure network.

The key idea is to rely on cryptographic primitives (shared and public key
encryption, hashing etc.) to guarantee security properties viz. confidentiality,
integrity or authentication (see [8,11,16,27] for an introduction).

Yet the presence of well designed cryptographic primitives is far from guaran-
teeing such security properties. On the contrary, most “secure” systems are not
broken by cryptographic attacks, but rather by exploiting operational blunders
[4] and logical errors in the protocol design [1,6,17]. The subtlety of logical faults
may even be such that a protocol may become a standard (e.g. a version of the
CCITT X.509) before being proved badly broken [6].

Logical errors can be prevented by formal verification and a number of tech-
niques have been developed for the logical analysis of security protocols [19].
Formal systems abstract away the cryptographic details and develop a theory of
actions (communication and computing) where some messages can be “opened”
by an agent only if she has the corresponding (secret) key.



For a formal analysis one can use logics of knowledge and belief in the same
spirit of the works of Halpern et al [9] for high-level reasoning about commu-
nication protocols. After the seminal paper on the BAN logic [6] those logics
have become a large family, e.g. [2,12,29,30]. At the other end of the spectrum,
researches have described protocols as traces of atomic actions, modeling explic-
itly the properties low-level of the network. The finite states approach (based on
the process algebra CSP and model checking [17,26] or on states enumeration
methods [19,20]) can be used to find attacks whereas the approach based on
induction can be used to prove properties such as secrecy and authenticity [23].

1.1 Security Verification as a Planning Problem

At this stage one may start wondering: this is surely interesting but...what
formal verification has to do with planning?

Undoubtedly the use of logic and theorem proving techniques for reasoning
about action is a backbone of deductive planning [13,25,18,28,5] and the use of
proof tactics borrowed from interactive theorem provers [22] is the basis for both
tactical planning and the verification of security properties [23].

The similarity is tighter for verification systems based on traces: they have a
sophisticated modeling of the actions available to the legitimate participants, of
the computing power of a potential enemy and of his abilities to tamper (read,
destroy or spoof) legitimate messages [17,19,20,23,26]. This is just (low-level)
reasoning about action in disguise.

Yet one may argue that deductive planning and formal verification share
the same tools (logic and theorem proving) but have different objectives. It
is so because we are used to think that in a planning problem we accomplish
something “good”: from stacking blocks on a table to moving a mechanical arm,
from avoiding collisions between a moving robot and other objects, to complex
scheduling of satellites. The second point is that we often assume that multi-
agent planning is cooperative.

To represent the verification of security protocol as a classical Al planning
problem we need to change slightly our perspective: we need a “disruptive”
planner, who wants to exploit the available (legitimate or illegitimate) actions
to achieve unwanted effects and somehow deceive some of the agents. The task
of the planner is then to break the systems.

In a nutshell we simply need to model security attacks as plans in a suitable
formalism for reasoning about actions, communications and computations. A
planning task which is interesting for its characteristics:

— the planner must combine legitimate and “illegitimate” steps of the proto-
col to construct an attack, somehow coordinating the bad and good agents
involved in the communication;

— “illegitimate” steps are strongly constrained: they must “look like” legitimate
steps, for instance the attacker can redirect a message, or modify a message
by replacing the name of the sender with her own name, but must always
respect the format of the messages foreseen by the protocol;



— not all undesirable states correspond to attacks (i.e. valid plans) we are only
interested in attacks where, according to some of the legitimate parties of
the protocol, “everything seems to go smoothly”;

— among possible action we have to make explicit the computational activity
of the agents, and thus we have to cope with knowledge changing actions;

— we want to describe the initial condition sparingly (e.g. only the secrecy of
some long term cryptographic keys) and let the planner figure out the rest;

— not all security violations are possible for a given protocol and thus we may
fail to find a plan in that case.

If we chose a formalism based on dynamic logic [15] which has been successfully
applied to planning (see e.g. [25,28,7]) we can use deduction to show that a plan
(an attack) exists and, most important, use the proof to generate the attack. We
can also try to prove that no plan exists and hence that the particular security
property represented by the negation of the planning goal is attained.

Notice that we are not bound to deductive planning. Model-generation plan-
ning [14] may be equally well suited.

As an aside remark, computational complexity is not an issue here. At first
because protocols are usually short and second and foremost because the plan
construction is once-off. If we can find an attack to a protocol, the protocol
will be revised or the threat model' will be changed. Indeed we are not using
the planner for (repeated) actions but rather for verification and trading time
(ex-ante) for avoiding problems (after implementations) is worth the trouble.

Reusing previous plan (attacks) to check a modified protocol can also be
configured as a problem of re-usable planning: trying to adapt past plans to a
modified description of the environment and available actions.

In the rest of the paper we give a high-level introduction to security pro-
tocols (§2) . On the technical side we introduce a dynamic logic for modeling
communication and computation (§3). Then we explain how to transform it
into a planning problem (§4), model the general communication and computing
properties (§5) and discuss possible extensions (§6).

2 A High Level View of Security Protocols

We sketch some characteristics and goals of security protocols to make the paper
self-contained?. Security protocols can be succinctly described as follows [8]:

What distinguishes a cryptographic protocol from any other algo-
rithm is the underlying model of computation. In a cryptographic pro-
tocol, two or more participants communicate with each other over a
clearly defined communication network. Each participant may function
asynchronously. . . and has access to a basic set of cryptographic utilities.

! The attacks we are worried about and that the protocol guarantee to fight off.
2 An introduction to security protocols can be found in [8,21,16] and an high level
analysis in [6,11]. A practical overview can also be found in [27].



Furthermore each participant has a basic computational power...may
apply cryptographic transformation, make decision and generate mes-
sages. [...] a participant may combine a priori knowledge with the prop-
erties of the messages he generates and receives to determine a property
of the communication system...In a worst case analysis of a protocol
one must assume that a participant may try to subvert the protocol.

As stated above, one of the key aspects of cryptographic protocols is the use of
cryptographic primitives (see [8,6]). Here, we can consider such cryptographic
primitives at an high level of abstraction. The key intuition is to regard them as
computationally hard functions with trapdoors.

For example, consider the case of encryption. At an high level it is simply a
function from strings (messages) to strings which needs a subsidiary string (the
key) to be computed. Inverting the function (getting the original messages from
the encrypted one) without knowing the key is extremely hard (in some cases
even impossible). The knowledge of the key provide us with a trapdoor through
the computational barrier. Thus, if we give an encrypted message to a number
of agents, we may assume than only those who have the key will be able to read
it. We may exploit this assumption to achieve useful properties [21,27] in an
anonymous and untrusted medium such an electronic network, where everybody
can pretend to be anybody else.

For instance, to know whether Alice is alive, Bob can send a message en-
crypted with a key that only she knows. If he gets the original message in reply,
then he can be “sure” that Alice has read it (indeed she has decrypted it). It
seems simple, yet it is easy to get it wrong [6,1]: the key must be secret, it must
not be distributed to the “wrong guys”, Bob text must be difficult to guess etc.

In this framework there is a number of security properties and goals that
we may want to establish. We (informally) describe some of them and refer to
[1,6,11,31] for some of the subtleties involved:

Secrecy: a message is only disclosed to its intended recipients;

Freshness: a certain message is recent, and is not an old replay of a previously
used (and possibly compromised) one;

Authenticity: a message, which should come from a certain participant of the
protocol, did indeed come from its legitimate sender;

Proof of Identity: a certain type message may be uniquely attributed to a
particular participants in the protocols;

Non-repudiation: a participant may not deny of having sent a message or
having received a message.

Such properties are usually determined by the use of some cryptographic prim-
itives. For instance proof of identity can be determined by using electronic sig-
natures (e.g. public and private key cryptography).

2.1 A Practical Example: Challenge Response

To show some practical examples we use the standard notation [6] for represent-
ing security protocols. Principals (agents) involved in the communications are



denoted by A, B,C, E .. .. Typically E represents the environment (or a possible
enemy) whereas A and B the legitimate parties of the protocol.

Messages, denoted by M, are constructed from unspecified atomic strings,
principals’ names, cryptographic keys etc. using functions f(M,..., M,). Some
functions, e.g. encryption, are denoted by special symbols and we follow such
use in the sequel.

Nonces? are denoted by N (possibly with mnemonic indices) whereas keys
for symmetric encryption are denoted by K and the corresponding encryption
of message M is {M}g. Private and public keys are sometimes denoted by
SK and PK and the corresponding encryptions are eSK{M} and ePK{M},
following [11] in the use of ISO notation. Messages concatenation is denoted by
the standard {M, M'}.

A protocol is a sequence of steps A— B: M, where M is a message:

1. A— B: M]
2. B A: M2
3. A—>B: M3

corresponds to a protocol where A starts by sending M; to B. After B has
received M, he can send M, to A which finally replies with Mj3.
Below are some challenge-response protocols from the ISO-10181 standard:

protocol 1 - Nonce-Crypto protocol 2 - Crypto-Nonce
1. A—»B: N, 1. A—»B:ePKg{N,}
2. B A:eSKg{N,} 2. B—>A: N,

Loosely speaking, the “task” of both protocols is to “convince” A that B is
“alive” or, more properly, that somebody which can use B’s signature is alive.

Here the underlying cryptographic primitive is public key cryptography. The
idea is that there are two keys: one secret (the private key SKg), and one widely
available (the public key PKg). The high-level functioning of the cryptographic
primitive can be easily described: if you encrypt a message with one key you
need the other to decrypt it, and viceversa.

The left protocol is initiated by A which sends a nonce (i.e. a random chal-
lenge) to B which reply by encrypting the nonce with his private secret key (i.e.
signing the challenge). The intuition is that only B knows his secret key and
thus only B can “sign” N,. Still A can easily verify it since the public key PKp
is known. So she takes the message that she receives back and tries to decrypt it
with PK pg. If she gets back N, than she can be “sure” that only B could have
done it. So, if she gets it quickly, she could conclude that B is alive.

In the second protocol, A encrypts the nonce N, with B’s public key. Then B
decrypts this message with his secret private key and sends back N,. The same
reasoning seems to apply here, but what happens if somebody else can guess
N,? For instance, if A just use a sequence of integers generated by a counter for
subsequent N,s? The second protocol can therefore be broken by anybody who
can guess A challenges (see [30]).

# A nonce=“number used once” is (usually) just a random number, see [16,27].



3 A Dynamic Logic for Security Protocols

To represent formally the actions and the communication properties involved
in a security protocols we use a variant of dynamic logic [15], since its use for
planning is simple and well-known [25,28] and it suits well to such problem.

The basic components are four: principals, messages, protocols and formulae.
In comparison with standard dynamic logic [15] protocols play the role of actions
and messages could be compared to first order terms.

Principals and messages have been already introduced in §2.

Formulae, denoted by ¢, ¢, are constructed from the atomic components
Amade M (A synthesized message M), Arecv M (A received message M or M
is a sub message in a message received by A), Asent M, Ahas M or Ahas M
with the obvious meaning.

Composed formulae are obtained with the boolean connectives -, @ = ¥
and the modal one [7]y, whose meaning is that after any possible run of protocol
7, property ¢ holds. Other connectives are abbreviations such as A,V or (7)¢ =
=[m]=p which says that is it possible to run 7 and end in state where ¢ holds.

Protocols are formed as programs [15] from atomic actions: A— B: M which
means that principal A attempted to sends a message M to B; A makes M when
A tries to compose message M; and A reads M if A tries to cryptanalyze M.

The use of “attempt” in the intuitive explanations above is due to the par-
ticular nature of the problem (§2): A may try to send the message to B, but B
may not actually receive it because the “enemy” intercepted it.

The (standard) operators are sequential composition (7;m2), non determin-
istic choice (w1 U m), iteration (7*), converse (7w~ ) and test (?), where ¢ is
a formula. Nondeterministic choice can be used to model the possibility of an
opponent to replace some of the legitimate steps of the protocol and the converse
operator 7~ can be interpreted as “before running 7”.

Notice that the whole system could be reformulated using the notation and
semantics of [28] in particular is sufficient to use the relations add — r and
delete — r of [28] where r is instantiated to the relations -made-, - recv- etc.

The semantics can be given by using Kripke models as done in [28] or using
runs and interpreted systems [2,9,29]. There is not substantial difficulties except
for the enforcement of the constraints due to cryptographic primitives.

4 The Design of the Planning Problem

To map our problem into a planning problem we need to:

— define explicitly the computational properties of principals i.e. define the
actions for composition and (crypt)analysis of messages (and also what in-
formation the agents gain from these operations);

— represent the communications between agents by actions which can either
satisfy general properties or be tailored to the particular protocol;



— formalize the ability and the behavior of a potential enemy (sometimes the
network itself), which may interfere with the regular running of the commu-
nications protocols;

— identify the typology of security violations which we may consider as relevant
goals G for planning attacks;

— finally the initial conditions IC will be typically determined by the (informal)
assumptions of the protocol (e.g. private keys are secret, honest principals
generates fresh nonces etc.).

Remark 1. Defining the (disruptive) behavior of the network or the “enemy” is
essential for the problem to make sense and indeed any attacking plan to exists.

Indeed legitimate agents will try to follow the protocol as closely as possible
unless they are mislead by somebody. Thus, for any (attacking) plan to exists
we must devise this somebody which can deviate from the rules. The key point
is that meaningful deviations must not be so arbitrary to be unmanageable: the
attacker may destroy, replay or change messages but only to the extent that her
messages still look like those of the original protocol.

The global properties of the network GC', viz. the computational properties,
the communications possibilities and the behavior of the network (or the po-
tential enemy), will be the classical post - and pre-conditions for the planning
problem [25,28]. We sometimes also use the terminology of [24] and refer to con-
straints of the form ¢ = [r]¢ as successor state axioms and to those of the form
(m)1) < ¢ as preconditions.

Once we have set the logical framework, the plan is the 7?7 such that GC |=
IC = (n?)G as in [28].

4.1 Security Violations as Goals

A number of possible planning goals, i.e. security violations, can be devised in
term of confidentiality, authenticity and freshness.

For instance a violation of confidentiality is represented by the goal E has M
where M is a message supposed to be secret, such as the session key of a key
K of the Needham-Schroeder protocol (§2).

We can also represent impersonation either from the point of view of the
initiator (A received a message apparently from B who is not there) or the re-
spondent. In this case somebody can impersonate B and yet mislead A into
thinking that everything went smoothly: she have sent all its messages and re-
ceived all “right” messages “coming” from B, yet none of such message ever
come from be. So she may simple have achieved the result of giving her credit
card number to some villain. .. This state of affairs can be easily described with
the following formula:

/\Asent M N /\ArecvMbj A /\ —B sent Mjy;
i J J

Where M,; are the messages A is supposed to send B during a correct run of
the protocol and Mp; are the one she is supposed to receive from B. We can



weaken the bad effects we are planning by changing the A, into a disjunctions
or by dropping some conjuncts etc.

In some cases we may require something stronger than simply sending a
messages: for instance, for cash protocols, it is not only important that A sent a
message but she has actually made it (in practice has signed the main message).
In this case we can replace A sent M with Asent M A Amade M and similarly
replace =B sent M with ~Bmade M.

Another issue is freshness: we may reach a state where everything is fine for
A, who receives a new key, while B received an old compromised key.

Arecv M, N—=Ahad M, A Brecv M, A Bhad M,

It is worth noting that also here we have to cope with the frame problem.
Moreover we can also use a formalization based on planning as model generation
rather than deduction as in [14]. We leave further details to the full paper.

5 Modeling the Communication Environment

We inherit directly all the axioms and properties of standard dynamic logic with
converse [15]. If we wanted to redefine the basic primitives in terms of the add
and delete operator of [28] then we would have to import also their axioms.

5.1 Computational Abilities of Agents: Synthesis

The next step is the definition of the computational properties of the principals
involved in the communication wrt the synthesis of messages.

In traditional security analysis, either based on authentication logics such as
[6] or traces and states enumeration [20,26], it is assumed that all principals,
including the potential enemy F, have the same computational power w.r.t.
cryptographic primitives. For simplicity we follow the same approach here but
we could also devise differentiate principals with different computational power
by changing the applicable axioms.

The first part regards the ability of composing messages: we have traditional
successor state axioms of the form ¢ =[]y [24,25] and local constraints:

- Ahas M = [A makes M]Amade M
Amade M = Ahas M

Notice that we put the negation of -has- in the precondition of the successor
state axioms because we want to be conservative: we want to derive that A
“constructed” M only if this was really necessary.
The next set of axioms depends on the particular function we need to use in
our protocols and are just preconditions:
(Amakes f(My,...,M,))T & &/

make

(Ahas M, ..., Ahas M,)



Typically ¢/ will be a boolean conjunction of its arguments, thus matching the
intuition that for constructing a function we need to have all its arguments.
For instance in the case of encryption and concatenation:

(Amakes {M}K)T < AhasM A Ahas K
(Amakes {M]‘Mz})—r < AhasM1 /\AhasMg

This is equivalent to say that to encrypt a message one, of course, need both the
message and the key.

Atomic messages, such as nonces and keys, may have particular properties.
For instance we may want private key of the challenge response protocols (§2)
to be unguessable by the enemy:

(F'makes PKg)T & —

If we use deductive planning just to look for the existence of plans, we can drop
the axiom altogether.

On the contrary the nonces of the Crypto-Nonce challenge response protocol
may or may not be guessable according the axiom we choose:

Amade N, = (E makes N,)T

implies that it is possible for E to guess the nonce generated by A. For instance
this may happen if A uses simply a counter to generate her nonces.
On the contrary the formula below implies that nobody can guess A nonces®.

Amade N, = - (E makes N,)T

5.2 Computational Abilities of Agents: Cryptanalysis

The ability of analyzing messages is essential. We have some general successor
state axioms and some local conditions such as

T = [Areads f(M,,...,M,)](Ahas My A ...\ Ahas M,,)
ArecvM = Ahas M

Notice that the axiom just state if A can analyze a function f then she can
recover its components and we can well have functions which she cannot analyze.
The precondition axioms for the cryptanalysis of a functions depends of course
on the function itself and has the general form:

(Areads f(M; ... M,))T < Ahas f(M, ... M,)A®’ (Ahas M, ... Ahas M,,)

For the limited version of public key cryptography we used in our challenge
response protocol (§2) we can defined the following properties:

(Areads eSK{M})T < AhaseSK{M} A Ahas PK
(Areads ePK{M})T < AhasePK{M} A Ahas SK

* In theory the possibility of guessing the right answer is never zero but, for practical
purposes, we may be satisfied that it is negligible.



We have the property of agents to remember the data they have got. We can
represent it as follows (mq is any atomic action):

Ahas M = [ng]Ahas M Amade M = [rg]Amade M
Ahad M = [mg]Ahad M Arecv M = [mg]Arecv M

Remark 2. Properties of key and nonces must be carefully added since they may
easily lead to inconsistency.

We can also assume that all principals have the names of other principals,i.e.
that Ahas B is an axiom.

5.3 Modeling the Communication, the Network and the Enemy

Some postconditions and some preconditions are independent of the protocol.
The first axioms provide us with a simple mechanism for handling freshness:

AhasM' = [A—B: M]Ahad M’
AhasM' = [B—A: M|(Arecv M = Ahad M')
~ChadM' = [A—B: M]-Chad M' for C # A,B,E

In the second implication we impose that A must have received M. If M is going
to be intercepted by E then A may not realize that “time is passing” (i.e. some
external event is happening).

Next we have non-interference among principals (only the intended recipient
of a message can receive it) and sending, where C # B, E:

~CrecvM = [A—B: M]-Crecv M
T=[A—>B: M]Asent M

The other communication properties depends on the protocol and the choice
of the explicit or implicit encoding of the enemy as the network.

We can choose to ezplicitly model the enemy as she were in charge of the
network. This is usually done in traced based systems [17,19,26] and is common
in the informal analysis of protocols. In this case, for each step A — B: M we
must add the following preconditions

(E—-B: M)T & FErecv{B,M}
(A= E:{B,M}T & Ahas M A ®,.,q4(A, M, protocol)

In a nutshell, the enemy (the network) can forward any message that she has
received, while “good” principals should follow the protocol (or at least believe
that they are following it).

The formula @44 (A, M, protocol) states that this is the correct time for A to
send M. So, if M is supposed to be the n-th message in the “normal” protocol run
then @g.pnq(A, M, protocol) describes A’s viewpoint up to the n — 1th message: A
has sent all message she was supposed to sent and she has received all messages
she was supposed to receive (if the protocol was followed by all parties involved).



For instance in the Crypto-Nonce challenge (§2) we have:
(B—A: N,)T & BhasN, A BrecvePK{N,}
We must also add the following state successor axioms:
T=[A—-E: M]|Erecv M T=|[E—>B: M|BrecvM

In this case we can assume that, once that the enemy has decided to deliver the
message, she will deliver it, and similarly that all messages sent to the network
at least arrive there. Then the enemy may decide not to pass them forward.

If we choose the implicit modeling of the enemy then our formalization re-
quires more care. At first we may assume that the enemy is tapping the lines the
network and sending spoof messages:

T=[A—>B: M|ErecvM EhasM = (E—A: M)T

Remark 3. The axioms for spoof messages is too general. Indeed we are only in-
terested in M which respects the format of the messages of the desired protocols.
It can be replaced by a series of more definite axioms.

With this replacement, if we limit the number of nonces, keys and agents, we
can map the system into PDL and make it decidable. We must transform the
precondition axioms for the steps of the protocol into a set of axioms of the form:

(A= B: M)®!_ (A, M,protocol) < Ahas M A $,.nq(A, M, protocol)

rec

The different ¢ = 1,...m will determine the possible outcomes of the actions:
they could be Arecv M or = Arecv M. If also the enemy may and may not
receive messages then we may have more cases.

In alternative we can assume that messages are always delivered, replace &%,
with T, add then axiom [A— B: M]|Brecv M and then model the “blocking”
of messages as agents that do not respond®.

Finally, following an idea of [23], we can also add oops messages where a
principal “accidentally” looses the session key at the end of the protocol.

6 Discussion

In this paper we have shown how the formal verification of security protocols
can be naturally represented as an interesting Al planning problem.

Using a dynamic logic one can represent the communication and comput-
ing actions which can be used by legitimate and illegitimate participants in a
protocol. Then finding an attack is equivalent to find a plan which leads to
a state which violates some security requirement. In the present formalization
all conditions are (implicitly) universally quantified and, by setting the number

5 Notice that we have a possibility formula for the precondition axiom so we may
validate ®.,q without actually choosing the subsequent step.



of different nonces, keys and principals we could transform it into a problem
in dynamic propositional logic by grounding the properties on a subset of the
Herbrand universe, in a fashion similar to the technique used in [14], and thus
getting a decidable problem.

For a full modeling of protocols with potentially infinite participants or runs,
such as [23] further developments are necessary. The simplest way is to introduce
actions for generating new nonces. Such actions would also make the model closer
to the semantics of [2,29]. The (necessary) trade off is that “term-creating”
actions will affect the decidability of the planning problem.

A further step towards a full-fledge modeling is the introduction of time: a
number of protocols use time-stamps rather than nonces and reasoning about
actions and time becomes essentials. Also in this direction AI techniques are
available [3] and the corresponding planning methods could be applied.

Acknowledgments

A large part of this work has been carried while the author was at the Com-
puter Laboratory, University of Cambridge (UK). Discussions with A. Gordon,
R. Needham and L. Paulson on security protocols and L. Carlucci Aiello, G. De
Giacomo and D. Nardi on planning were invaluable. A special thank to the
Computer Laboratory and Larry Paulson for their hospitality in Cambridge.
This work have been partly supported by MURST-40% grant.

References

1. M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Trans. on Software Engineering, 22(1):6-15, 1996.

2. M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proc. of the
10th ACM Symp. on Principles of Distributed Computing, pp. 201 216, 1991.

3. J. Allen. Towards a general theory of action and time. AILJ, 23:123-154, 1984.

4. R. Anderson. Why cryptosystems fail. In Proc. of the 1st ACM Conf. on Commu-
nications and Computer Security, pp. 217-227. ACM Press, 1993.

5. S. Biundo. Present-day deductive planning. In C. Backstrom and E. Sandewall,
editors, Current Trends in AI Planning, pp. 1 5. ISO Press, 1994.

6. M. Burrows, M. Abadi, and R. Needham. A logic for authentication. ACM Trans.
on Computer Systems, 8(1):18 36, 1990. Also available as Res. Rep. SRC-39, DEC
- System Research Center, 1989.

7. G. De Giacomo and M. Lenzerini. PDL-based Framework for Reasoning about
Actions In Proc. of the Italian Conf. on Artificial Intelligence (AI*IA-95), vol. 992
of LNAI pp. 103 114. Springer-Verlag, 1995.

8. R. De Millo, L. Lynch, and M. Merrit. Cryptographic protocols. In Proc. of the
14th ACM Symp. on Theory of Computing (STOC-82), pp. 383 400, 1982.

9. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The
MIT Press, 1995.

10. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.

11. D. Gollmann. What do we mean by entity authentication. In Proc. of the 15th
IEEE Symp. on Security and Privacy, pp. 46 54. IEEE Comp. Society Press, 1996.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

L. Gong, R. Needham, and R. Yahalom. Reasonign about belief in cryptographic
protocols. In Proc. of the 9th IEEE Symp. on Security and Privacy, pp. 234 248.
IEEE Comp. Society Press, 1990.

C. Green. Application of theorem proving to problem solving. In Proc. of the 1st
Internat. Joint Conf. on Artificial Intelligence (IJCAI-69), pp. 219 239, 1969.

H. Kautz and B. Selman. Planning as satisfiability. In Proc. of the 10th European
Conf. on Artificial Intelligence (ECAI-92), pp. 359-363. John Wiley & Sons, 1992.
D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. 11, chap. 14, pp. 789-840. Elsevier Science,
1990.

A. Liebl. Authentication in distributed system: A bibliography. Operating Systems
Review, 27(4):31 41, October 1993.

G. Lowe. Some new attacks upon security protocols. In Proc. of the 10th IEEFE
Computer Security Foundations Workshop, pp. 162 169. IEEE Comp. Society
Press, 1996.

Z. Manna and R. Waldinger. How to clear a block: Plan formation in situational
logic. J. of Automated Reasoning, 3:343-377, 1987.

C. Meadows. Formal verification of cryptographic protocols: A survey. In Advances
in Cryptology - Asiacrypt 94, vol. 917 of LNCS, pp. 133-150. Springer-Verlag, 1995.
C. Meadows. Analyzing the Needham-Schroeder public key protocol: A comparison
of two approaches. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors,
Proc. of the 4th European Symp. on Research in Computer Security, vol. 1146 of
LNCS, pp. 3561-364. Springer-Verlag, 1996.

R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12):993 999, 1978.

L. Paulson. Isabelle: A Generic Theorem Prover, vol. 828 of LNCS. Springer-
Verlag, 1994.

L. Paulson. Proving properties of security protocols by induction. Technical Report
TR409, Computer Laboratory, Univ. of Cambridge (UK), 1996.

R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, ed., Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pp- 359-380. Academic Press, 1991.

S. Rosenschein. Plan synthesis: A logical perspective. In Proc. of the 7th Internat.
Joint Conf. on Artificial Intelligence (IJCAI-81), pp. 331 337, 1981.

S. Schneider. Security properties and CSP. In Proc. of the 15th IEEE Symp. on
Security and Privacy, pp. 174 187. IEEE Comp. Society Press, 1996.

B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 1994.

W. Stephan and S. Biundo. A new logical framework for deductive planning. In
Proc. of the 13th Internat. Joint Conf. on Artificial Intelligence (IJCAI-93), pp.
32-38. Morgan Kaufmann, 1993.

P. Syverson and P. van Qorschot. On unifying some cryptographic protocols logics.
In Proc. of the 13th IEEE Symp. on Security and Privacy. 1994.

G. Wedel and V. Kessler. Formal semantics for authentication logics. In Elisa
Bertino, Helmut Kurth, Giancarlo Martella, and Emilio Montolivo, editors, Proc.
of the 4th European Symp. on Research in Computer Security, vol. 1146 of LNCS,
pp- 219 241. Springer-Verlag, 1996.

J. Zhou and D. Gollmann. Observations on non-repudiation. In Kim Kwangjo and
Matsumoto Tsutomu, editors, Advances in Cryptology - Asiacrypt 96, vol. 1163 of
LNCS, pp. 133 144. Springer-Verlag, 1996.



