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Abstract

Today's software design methodologies are aimeazhatof-a-kind applications, designs are expressed i
terms of objects and classes, and software musbdbed manually. We argue that future software dmprel
ment will be very different and will center arouptbduct-line architectures (i.e., designs for faesilof
related applications), refinements (a generalimatibtoday’s components), and software plug-ang-fda
codeless form of programming).

1 Introduction

In the 1500'’s, it was common and obvious knowletlge the Earth was the center of the Universe; all
heavenly bodies — moon, sun, planets, stars — adealgwd the Earth’s dominance by revolving around
the Earth. For the most part, geocentricity prodlidgen adequate model of the Universe. Predictions of
lunar eclipses were amazingly accurate. (Geocdiytieas correct). So too were predictions of thaipo
tions of “fixed” stars. (They didn’'t move). But timeotion of planets was problematic because theydid
traverse the sky in simple ways; planets wouldqukcally move backwards against the background of
stars before continuing their forward motion. (Tepdee call this retrograde motion). Scientists aftthra
proposed inscrutable models that utilized rotatmegted spheres to explain retrogrades; but ultijmate
these models failed to predict planetary motiorueately.

In 1543, Copernicus proposed a radically differexpplanation of the Universe by recognizing the dieli
centric nature of our solar system. Not only ditideentricity explain retrograde motions in a sim@ind
elegant manner, it laid the foundation for todayslerstanding of planetary systems. Copernicussltre

is an extreme, but clear, illustration of how scemprogresses. That is, by negating commonly held
“truths” yields models of the Universe that are aoly consistent with known facts, but are more pdul

and lead to deeper understandings and resultsitngty could not be obtained otherwise. The sciienti
results that | and many others have made in owecarare more common examples of this paradigm, i.e
results that led to incremental advances.

Today we live in a universe of software. Softwaseelegantly explained in terms of objects that are
instances of classes, classes are related to ddeses via inheritance, and webs of interconneagetts
accurately model run-time executions of applicatio®bject-orientation has revolutionized our under-
standing of software. We have abandoned a funcéttric view of software where functional decomposi
tion guided our understanding of appropriate englapions to a data-centric view where object/class
encapsulations reign supreme. The OO view of soévsindeed very powerful and will remain current
for some time. But years from now, will we haveadternative view of software? The answer, of copise
yes. But what will it be? What will replace the @hstions of objects and classes? How will we poadu
and specify software? Our clairvoyance is guidechbgating some obvious contemporary “truths” and
seeing if a consistent explanation of our softwareerse remains.

Consider the following three “truths”:
* contemporary OO design methodologies are aimedoalping one-of-a-kind applications,

* application designs are expressed in terms of tbpwd classes, and

e we manually code our implementations given sucligdes



Each of these points belabors the obvious. At #mestime, it is not difficult to envision changeutére
design methodologies will not focus on unique aggtions but rather on families of related applicasi,
calledproduct-line architectures (PLAsDesigns of PLAs will not be expressed purelyemts of objects
and classes, but rather in terms of componentsiallgt expressing software designs in terms of comp
nents is already a contemporary phenomenon; sasrpaper we anticipate the next step beyond teday’
components calletefinementsAnd finally, application development will explaibdeless programming
Both industry and academia are moving towsoftware plug-and-play— i.e., the ability to assemble
applications of a product-line quickly and cheaigrely through component composition; no sourcescod
has to be written.

These ideas are further motivated and clarifiethafollowing sections.

1.1 Product-Line Architectures

A product-line architecture (PLA)s a blue-print for creating families of relategptications. PLAs
acknowledge the fact that companies don't buildviiddial products, but instead create families afelly
related products. The importance of PLAs is evideaftware complexity is growing at an alarmingerat
and the costs of software development and maintenarust be restrained. PLAs enable companies to
amortize the effort of software design and develepimover multiple products, thereby substantially
reducing costs.

Recognizing the need for PLAs is ancient historgllikdy motivated PLAs in 1969 [Mcl69] and Parnas
described the benefits of software families inthid-1970s [Par79]. What has changed from the tifne o
these pioneering predictions is that proven methagdes for building and understanding PLAs are hvai
able. In fact, the first steps in evolving contemgpy one-of-a-kind OO design methodologies toward
PLAs has occurred. Jacobson, Griss, and Jonssc@/JJdor example, advocat@riation pointsi.e., one

or more locations at which variations will occurtiin a class, type, or use case. Different appboat
instances will utilize different variations, whithclearly the beginning of a product-line architee.

1.2 Generalizing Components to Refinements

Today’s newest object-oriented methodologies atdaeed purely on objects and classes, but on compo
nents. Acomponents an encapsulated suite of interrelated clagtsepurpose is to scale the unit of design
and software construction from an individual clasthat of a package or OO framework. The mostiece
design methodologies from Catalysis [D’S98] andidtetl [Rat98], for example, are explicitly named
“Component-Based Software Designs”, where companemiild be OO packages, COM or CORBA com-
ponents, Java Beans, and so on.

To give readers a perspective of where work onasaoft componentry is headed, let me share my experi-
ences of working for fifteen years on componentedagroduct-line architecture methodologies. | have
encountered many domains where components simplyotde implemented as OO packages or as COM
or CORBA components. The reason is one of perfoomaapplications that were constructed with these
components were so horrendously inefficient thasamoe person would ever use them. Does this maan th
components can't exist for these domains? Certaiaty— if anything, building applications from compo
nents is a goal that we want to achievedibrdomains. What it actually means is that the coreptsof
these domains must be implemented differently. é&m@ntations must break component encapsulations
for domain-specific optimizations. Instead of egugcomponents with “concrete” source code thatlaou
be statically or dynamically linked into an apptioa, a more appropriate implementation might beas
metaprogram— i.e., a program that generates the source thkcagion is to execute by composing pre-
written code fragmentsOr if metaprograms are not sophisticated enougbraouce efficient source, a
component might be implemented as a set of rulesgrogram transformation system [Par83, Bax92]. (A
program transformation systeis a technology by which program specificatiors @mansformed into effi-



cient source by applying semantically-correct pamgmrewrite rules; code motion and complex optimiza-
tions are examples).

Given this observation, | realized that today’sioxes of components are simply too implementatian-or
ented or implementation-specific. We need to sépaaomponent’abstractionfrom its possiblemple-
mentations where OO packages, COM, metaprograms, programsfoemation systems are merely
different component implementation technologieghewith their own competing strengths and weak-
nesses. The component abstraction that we seelritiis this wide spectrum of technologies is tbfaa
(data) refinement

What is a refinement? I'll give an informal examplew and a more precise definition later. Have goer
added a new feature to an existing application?tWba discover is that changes aren’t localizedltimu

ple classes of an application must be simultangoustiated (e.g., adding new data members, methods,
replacing existing methods with new methods, efdl)of these modifications must be made consisyent
and simultaneously if the resulting application isaork correctly. It is this collection of modificatns —
called a refinement — that defines a “componentbaiilding-block” for that feature. By analogy, remo

ing this component/feature from an application rezpiall of its modifications to be simultaneouslyd
consistently removed. (How such refinements arapsulated and realized is considered in Section 4.2)

This line of reasoning led me to conclude thatneiients are central to a general theory of protinet-
architectures. Abstracting away component implertgim details reveals a common set of concepts that
underlie the building blocks of domains and prodiret architectures. The benefit in doing so isgaisi-

cant conceptual economy: there is one way in wtactonceptualize the building blocks of producelin
architectures, yet there are multiple ways in whitdtks can be implemented. The choice of implement
tion is ultimately PLA/domain-specific.

1.3 Software Plug-and-Play

Programming with today’s components is analogousecold-fashioned way circuit boards were created
decades ago: one collects a set of chips, plugs thi® a board, and wire-wraps connections betvetgn
pins to implement a particular functionality. Irsesace, this ithe classical library paradigm: one collects a
set of software modules and writes “glue” codenteiweave calls to different modules to implement a
particular functionality. This has always been ayveuccessful and largely manual process for angati
customized hardware and software applications.

It is obvious to most people that software consiomcallows for much greater degrees of automation.
should be possible to “drop” a component into aisteyg system and — by imbuing the component with
domain-specific expertise — have it “wire-wrap” @éennections and thereby automate a tedious coding
process that experts would otherwise have to doualbn Hardware plug-and-play is a practical realiz
tion of this idea. Today we can customize PC camfijons merely by connecting components. Although
the connections are simple for us, a myriad of lewel connections are being made via standardiaed h
ware interfaces. Hardware plug-and-play makes Rénsions and reconfigurations almost trivial and ha
empowered novices to do the work once reservelifr-paid experts. We need the same for buildirdy an
extending software applications by plugging andlugging components with standardized interfaces.

1. Metaprograms can be implemented in OO languadggspoint is that a metaprogram it application source
code, but isconsiderablymore abstract and fundamentally different: it igemneratorof customized application
source.



1.4 Recap

Software development will inevitably evolve towgrbduct-line architectures, distinguishing compdnen
abstractions (refinements) from their implementagioand software plug-and-play. The challenge is to
achieve these goals. In the following sectionsplitline a particular way to do so.

2 Understanding Product-Line Architectures

There are many results that are relevant to thés/\of the future. Work on extensible or open systésn
the first step toward creating PLAs [Obe98]. Reskean “domain-specific software architectures” was
develop PLAs for a variety of military domains [M&{. Aspect-Oriented Programming, while not specif-
ically aimed at PLAs, certainly has much in commath the basic mechanisms that are needed [Kic97].
Subject-Oriented Programming, where different aggtions are constructed by composing different “sub
jects”, clearly deals with PLAs [Har83]. Featureighted Programming extends OO methodologies to
product-lines [Coh98]. There are many other rel¢\efforts (see [Cza97]). Please note that all ekth
approaches (including that of Section 3) are nattidal in their technical details — one shouldpect
them to be — but the essential problems that tlelyess are remarkably similar.

Common to most models of product-line architectuaes three ideas: (1) identifying the set of feasur
that arise in a family of applications, (2) implemtiag each feature in one or more ways, and (3notef
specific applications of a PLA by the set of featuthat it supports plus the particular implemeaotaof
each feature.

In the early 1990's, | encountered a classic examopla PLA. What attracted me to this example vas t
unscalability of its design. The Booch Componendsehundergone a long evolutionary history of
improvement [Boo87-93]. The original version wasAda containing over 400 different data structure
templates/generics. For example, there were 1&tasi of dequeues (i.e., double-ended queues).ditbw
the number 18 arise? Booch proposed a PLA wheraeadexdata structures had three features: concur-
rency, memory allocation, and ordering. The coreney feature had three implementations (which users
had to choose one): sequential (meaning there wasoncurrency), guarded (programmers had to call
waits and signals explicitly), and synchronized i(eand signals would be called automatically). The
memory allocation feature also had three implententa (choose one): bounded (meaning that elements
were stored in an array), unbounded (elements stered on a list), and dynamic (elements were dtore
on a list with memory management). The orderedufedtad two implementations (choose one): elements
were maintained in key order or they were unordeBatause feature implementations were orthogonal,
there were 18 = 8 3 x 2 distinct variations of dequeues.

This approach had glaring problems: what happerenvehnew feature is added, such as persistence? The
consequence is every data structure/dequeue isigrgrmemory must be replicated to exist in pezsist
memory. That is, the library doubles in size! Thelgem is actually worse: if one examines even eont
porary data structure libraries for C++ (e.g., SHid Java, one discovers the data structures that a
offered are elementary and simplistic. The datacstires that are found in, for example, operatiygr s
tems, compilers, database systems, etcrmarehmore complicated. What this means is that peope a
constantly adding new features. This led me to kwlecthat no conventional library could ever encasgp

the enormous spectrum of data structures (or menemglly, applications of a product line) that wié
encountered in practice. Clearly, there had to better way to build PLAs.

The general problem that the Booch Components égHilwas the lack of librargcalability Givenn
optional features, one has a product-ling@2") distinct applications. Or more generally, if edehture
hasm different implementations, the product-line isstfeO((1+m)"). What this tells us is that libraries of
PLAs shouldn’t contain components that implememhlsimations of features. Insteastalablelibraries
contain components that implement individual anddly orthogonal features. A scalable library istgu



small — on the order dd(mn) components — but the number of applications thatle assembled from
component compositions is very large — ©¢1+m)") [Bat93, Big94].

To explore the possible impact of this approachgBal reengineered a C++ version (v1.47) of thedBoo
Components (see Table 1 and [Sin96]). For thatgfdftte library to which these ideas applied, riuced

the number of “components” from 82 to 22, the numifelines of source from 11K to under 3K, and
increasedthe number of distinct data structures (applicat)ahat could be created from 169 to 208 (i.e.,
there were applications in Booch'’s product linet tlvare unimplemented). When benchmarks were run on
corresponding data structures, Singhal’s data &tres were more efficient. More importantly, it waesry
easy to add new features (i.e. components) to Slisgibrary that would substantially enlarge themwber

of data structures that could be created; thisdtttibe done with the Booch design. Clearly, thasva big
win. The question then became: can these resultsgtieated for more complicated domains?

Booch Singhal

# of Components 82 22
Lines of Code 11,067 2,760

# of Product-Line Applications 169 208

Table 1: Comparing the Booch and Singhal Components

The answer is yes. Scalable PLA libraries for domais varied as database systems (where appligation
are individual DBMSs that cagxceedB0K LOC), protocols, compilers, avionics, handeheddios, and
audio-signal processingcog93, Bat93, Hei93, Hut91, Ren9@&}kenerally the PLAs for these domains
were created in isolation of each other, which nsetimat researchers are reinventing a common set of
ideas. In the following section, we review theseaisl which we have collectively call&knVoca the
name stems from the first known PLAs based onapoach, namely “Genesis” and “Avoca” [Bat92].

3 GenVoca

The obvious way in which to create plug-compatdmenponents is to define standardized interfacen: Ge
Voca takes the idea of components that export gpait standardized interfaces to its logical cosidn.

Virtual Machines. Every domain/PLA of applications has a small gfefundamental abstractions. Stan-
dardized interfaces or virtual machines can bengdefifor each abstraction. Virtual machineis a set of
classes, their objects, and methods that work aatigely to implement some functionality. Clientsa
virtual machine do not know how this functionaligyimplemented.

Components and RealmsA componenbr layer is an implementation of a virtual machine. The cfedll
components that implement the same virtual macfonas arealm; effectively, a realm is a library of
plug-compatible components. In Figure 1a, rea8w@ndT each have three components, whereas rgéalm
has four. All components of realB) for example, are plug-compatible because theyampnt the same
interface. The same holds for realmandw

(a) S={a,b, c} (b) S= a| b ]| c
T={d[S], e[S], f[S] } T:= dS| eS| fS;
W ={ n[W], m[W], p, q[T,S] } W= nW|ImW]| p [qTS;

Figure 1: Realms, Components, and Grammars

Parameters and RefinementsJust as components can export standardizedasesf so too can they import
standardized interfaces. A component has a (readmgmeter for every realm interface that it impo#ts

components of realm;, for example, have a single parameter of realfriThis means that every compo-
nent of T exports the virtual machine @f(because it belongs to realfhand imports the virtual machine
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interface ofS (because it has a parameter of re@m EachT component encapsulatesrefinement
between the virtual machingsands. Such refinements can be simple or they can irerdbvmain-specific
optimizations and the automated selection of allgors.

Applications and Type Equations A hierarchicalapplicationis defined by a series of progressively more
abstract virtual machines [Dij68]. Its implementatis expressed by a named composition of compsnent
called atype equationConsider the following two equations:

Al=d[b];
A2 =fla],

Application A1 composes componedtwith b; A2 composes$ with a. Both applications are equations of
typeT (because the outermost components of both aggef). This means tha&1 andA2 implement the
same virtual machine and are plug-compatible impleations off.

Note two things: (1) composing components is edaitato stacking layers. For this reason, we uge th
termscomponentand layer interchangeably. (2) Specifying applications gsetyquations achieves the
codeless programming of software plug-and-playsoarce code (other than the components themselves)
has to be written.

Grammars, Product-Lines, and Scalability Realms and their components define a grammar evises-
tences are applications. Figure 1a enumerated reglmsandW the corresponding grammar is shown in
Figure 1b. Just as the set of all sentences déditesguage, the set of all component compositigfines
an applicatiorproduct-line Adding a new component to a realm is equivaleradding a new rule to a
grammar; the family of products that can be creatddrges substantially. Because large familigzrod-
ucts can be built using few components, GenVoesstsalablemodel of software construction.

Symmetry. Just as recursion is fundamental to grammarsirsamn in the form of symmetric components
is fundamental to GenVoca. More specifically, a poment issymmetridf it exports the same interface
that it imports (i.e., a symmetric component ofime&vhas at least one parameter of tygeSymmetric
components have the unusual property that theypearomposed in arbitrary ways. In realvof Figure 1,
components andm are symmetric wheregs andq are not. This means that compositiofisi[p]]
m[n[p]] ,n[n[p]] ,andm[m[p]] are possible, the latter two showing that a corepboan be composed
with itself.

Why are symmetric components useful? All applicadidvave open-ended sets of features. Symmetric
components enable new features to be added topdicatfon; they enrich the capabilities of applioas
(without altering the application’s fundamental é@stions). For example, all relational databasstesps
(RDBs) present users with relational abstracti@@me RDBs offer more sophisticated query languages
than others. Additional querying capabilities — whisymmetric components can provide — merely
enrich the relational abstractions that are offeMdre on this in Section 4.2.

Design Rules, Domain Models, and Generatorsn principle, any component of realghcan instantiate the
parameter of any component of realhAlthough the resulting equations wouldtgpe correctthe equa-
tion may not besemanticallycorrect. That is, there are often domain-specifinstraints that instantiating
components must satisiiy addition toimplementing a particular virtual machine. Thesdéiional con-
straints are calledesign rulesDesign rule checking (DRG3 the process of applying design rules to vali-
date type equations [Bat97a]. A GenVadamain modebr product-line modekonsists of realms of
components and design rules that govern compor@npasition. Ageneratoris an implementation of
such a model; it is a tool that translates a tygqpeadon into an executable application.

2. Components may have many other parametersdsegdlm parameters. Here we focus only on reatanpeters.
Also, parameterizations we will deal with in thiager are simple enough to dispense with formalmatar names.
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Implementations. A GenVoca model says nothing about when compafrefinements are to be composed
— the options are dynamically at run-time or stdljcat compile-time — or how components/refinements
are to be implemented — OO packages, COM componemgprograms, program transformation sys-
tems, etc. The bindings of these implementationisttats are madafter the model is created and is
largely determined by the domain and the efficieatgonstructed applications. Generally OO and COM
implementations offer no possibilities of statictiopzations. Metaprogramming implementations auto-
mate a wide range of common and simple static dosécific optimizations; program transformation
systems offer unlimited static optimization poddileis. Table 2 tallies the distribution of GenVoRaAs
according to their implementations. Most use a amif component implementation and binding-time
strategy. Others, like hand-held radios, optimiaeponents that are composed statically, and otkerwi
perform no optimizations for other components trat composed dynamically.

Static Dynamic
00, COM, ... databases, avionics, compile 3‘66\05 protocols
Metaprogramming data structures\(\,‘ﬁ\éx‘ audio signal processing
Program Xform Systems protocols

Table 2: Classification of PLAs on Component Binding Time and Implementation Technologies

4 Experience

GenVoca PLAs have been very successful. Performahsgnthesized applications is comparable or sub-
stantially better than that of expert-coded sofav#roductivity increases range from a factor ¢ivdere
new components have to be written) to several srdemagnitude (where all components are available)
Further, an 8-fold reduction in errors has beemrgu. See [Bat97b] for details.

There are problems and limitations with every appig and GenVoca is ho exception. Both technicdl an
nontechnical issues abound. Experience has revealddchnical “show-stoppers”; to be sure, ther ar
plenty of interesting technical challenges, busthare solvable. The hardest problems are nonteadhni

4.1 Nontechnical Barriers

Legacy Code Companies have legacy software that they waneuse in product-line applications. They
are willing to accept the penalty of hacking soucode (for customization, efficiency improvemerits)
building PLA applications. For many domains, paricly those that have little variation, this apgeb is
reasonable. When product-lines are enormous, yursgifa re-engineering of legacy source is a vemgha
decision to make, no matter how significant theeptill benefits.

Corporate Politics. Even when re-engineering is warranted, ad hoccamhes are attractive. In my experi-
ence, it is necessary to develop prototypes to detrate scalable PLA benefits and capabilitiegrofo
the point where one can run circles around competpproaches. While necessary, prototypes arefi’'t su
ficient. Corporate politics, egos, pre-existing huets, and insecure funding can easily obscure teghn
goals. The basic problem is that technology adopdiecisions are made largely on the basis of nomAie
cal reasons, and the results of these decisionsftame confused with technical reasons.

Thin Windows of Opportunity. Thinking in terms of layered refinements and comgnts with standardized
interfaces is both the greatest strength of Gen\éxavell as its greatest weakness. Architects &fsPL
may not be open to new approaches or the risksagtbe entailed. Architects that are hardest &che
are often those that have recognized the need lié&ss Rind that have already selected their course of
action. Architects that are the easiest to infleéeae those that have the least investment. Theowmirof
opportunity is thin: it begins after the need fdtA8 has been recognized and ends when a solution
approach has been adopted.



Catch 22 There are companies whose motto is “we won’tnesg technologies until others use them”. Of
course, these other companies say the same thaudjnf to adoption deadlock. There is no techmia
son for this standoff, only one of risk aversion.

Terminology Arms Race Five years ago, the word “architecture” was rareded in the software literature.
Now every one seems to use it. Unfortunately, fisiut everyone has a different meaning (regardiess
whether they’'ve ever bothered to define the teith)s makes it difficult to compare, contrast, oer\cat-
egorize approaches. For example, to distinguisapgmoach as being “scalable product-line architestu

is largely meaningless, because everyone's appreaeissuredly “scalable” and deals with “product-
lines”. This encourages the invention new termg @stablished or possibly undeveloped concepts),
rewards those with catchy slogans, and obscureetuognition of real progress for everyone.

Not Ready for Prime Time. Ideas are adopted when the time is right; thexealh sorts of implicit precondi-
tions that must be satisfied. More often than #a mantras have to be chanted by many people to b
believed, and not just any people, but by recoghcaammunity leaders.

| recall in 1983 of a conversation with a colleagudom today as then | greatly admire) about th&spo
bility of creating customized database systems lsirbg composing plug-compatible components. His
response surprised me — “That’s impossible!”. lizeal that he was right; it was impossible fom to do
this, but that didn’t mean thatherscouldn’t do it. | also learned that pointing olu¢tfallacy of someone’s
reasoning rarely leads to lasting gratitude :-).

Years later | heard people say “My software is tomplicated to be built in that way!”. On both oeca
sions, the projects of these individuals foldechimita year. Their real statement was the prefads: Soft-
ware is too complicated, period”. Programmers havgeemingly infinite capacity for complicating the
most simple things. Even with a minimal exposuréata refinements, it is evident that programmees a
unknowingly composing refinements as they writeecdivery line of their programs can be traced to a
refinement in some composition of refinements. thidit GenVoca is doing is making this simplicity
explicit and reaping the benefits of doing so.

4.2 Technical Problems

Testing and Verification. The most challenging open problem today is tgstile can synthesize high-per-
formance, customized applications quickly and chedqut questions about the validity of the genedat
source remain. It is still necessary to subjectisysized applications to a battery of regressietst® gain
a level of confidence that it is (sufficiently) cect. The ultimate goal of PLAS is to shrink thieese time
for new products; it is not yet clear how PLA orgations can reduce testing (see [Edw98]).

There is hope from verification research. Formairapches to verified software are often based atajd
refinements (e.qg., [Sri96]). The Ensemble/Horugquts at Cornell, for example, are GenVoca-like BLA
for building verified distributed applications frosymmetric components [Ren96, Hay98]. Individual
components have been verified; so high assuraratensénts can be made about their compositions.
Boerger'sEvolving Algebra (EVpaddresses the problem of scaling proofs for imhlial applications to
families of related applications [Boe96]. EV isallly based on layered refinements.

Refinements There has been a tremendous amount of work, thethretical (e.g., [Bro86, Sri96, Boe96])
and pragmatic (e.g., [Nei84, Bax92]), on refinemserily work on GenVoca has admittedly evolved
largely in isolation from this work. The primaryason was not lack of interest, but project objexsiv
Most of the fodder that | used to develop GenVdems from my implementation projects and those of
others whose goals were to explore and develograddtplug-and-play PLAs. It was not in the purviemw
interest of these individual projects to generatlee idea of layering to other domains. Howevemg®so
raises the connection with refinements. It is aaroproblem to unify theoretical results with expegital
findings.



Design Wizards Common problems that users of GenVoca PLAs erteoamne not knowing what compo-
nents to use or what combinations of componenisfgatpplication requirements. Until a certain legé
expertise develops, it not difficult for users fesify type equations that are semantically corbedtare
not appropriate (e.g., performance-wise) for thegdgt application. An expert in the domain and PLAs
would critique a proposed design by saying “Dosé uhis combination of components, but this combina
tion instead for the following reasons...”. Thisletkind of expertise that needs to be automated.

A key to this problem is that application designs expressed as equations. Expert knowledge of tehat
use and when to use components can be captuedgedsaic rewrite rulegi.e., replace expressicnwith

y under conditiorz because of reasar). By collecting such rules and using standard-hased optimiz-
ers, a tool called design wizarcdcan be developed that walitomatically(a) optimize equations — appli-
cation designs — given workload specifications @odcritigue equations to avoid blunders. We have
developed a design wizard for one domain [Bat9®\wEler, it is open problem to show that the apgnoac
is general enough to work for other domains.

Standardized Interfaces Applications of a product line rarely have thensaprogramming interface. How
then can applications with variable interfaces bastructed from components with standardized inter-
faces? In truth, standardized interfaces do notnnuegt-in-concrete interfaces. It is possible &erha
component deep into the bowels of an applicatiow lave the exported interface of the application
change. It is only recently that we have found aegal solution to this problem [Sma98]. (See thetne
topic).

Bridging Communities. Challenging technical problems often arise duth&inability of others to under-
stand the concept of refinements in their own terfie reason is that refinements often require ualus
juxtapositions of ideas and this, in turn, leadmteresting technological advances.

As case in point, it took us several years to ustdeid a fundamental connection between refinenzams
OO — that is, how are refinements expressed as MCepds? The answer is rather simple. A refinement
of a class may involve the addition of new data iners, new methods, and overriding existing methods.
Such refinements are easily expressed via subofassisubclass (that encapsulates refinement roadifi
tions) is declared with the original class as itpesclass.

GenVoca layers encapsulate suites of interrelal@sbes. Figure 2a shows a (terminal) shaded léngtr t
encapsulates three classes. Figure 2b shows ardayke that also encapsulates three classes; wi&n
stacked on top of the shaded layer, one class besansubclass of the left-most shaded class, wigle
others begin new inheritance hierarchies. Figursltaws a white layer to encapsulate four classémniN
stacked upon the darker layer, each class becomalsctass of an existing class. Lastly, Figure [u\s
the effect of adding a black layer, which encapeslawo classes. The application (which is defibgthe
resulting layer stack) instantiates the most refinkasses (i.e., the terminal classes) of thesairigies.
These classes are circled in Figure 2d; the naniterl classes represeintermediate derivations of the
terminal classes. Thus, when GenVoca componentsaanposed, a forest of inheritance hierarchies is
created. Adding a new component (stacking a neerjapauses the forest to get progressively broaaer
deeper{Sma98]. Although straightforward, these ideasraeobvious nor are they common. It is through
the use of inheritance that new operations/metlsadsbe added to multiple application classes mdrely
plugging in a component.

It is possible to express the ideas of Figure Bguaiixins. (Amixinis a class whose superclass is specified
by a parameter). We wanted a clean expressioresetiieas in Ja\?‘aJnfortunater, neither Java or Pizza
[Ode97] (a dialect of Java that supports paramedrpolymorphism) supports parameterized inherganc
What we really needed was an extensible Java lgggimawhich it was possible to add other featuces t
express refinements.

3. We chose Java because of the language’s sitp@itd also to more clearly show the concepts phagramming
languages are lacking in order to express refingsnen
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Figure 2: Component Composition and Inheritance Hierarchies

This lead us to develop tliakarta Tool Suite (JTSyvhich is a PLA of Java dialects [Bat98]. JTSiris,
fact, a GenVoca “generator” by which dialects ofalare assembled by composing symmetric compo-
nents. Presently, JTS has components that extersd with the features that include Lisp backquote/
comma (to specify and manipulate code fragmentgjieimic macros (to avoid the inadvertent capture
problem), parameterized inheritance, and a dompétific language for container data structures. TS
bootstrapped, so that JTS is written in a dialédava that was produced by JTS itself. | inviteders to
download beta versions of JTS (in October 1998}hat web sitehttp://www.cs.utexas.edu/
users/schwartz/

5 Conclusions

Heliocentricity was advanced in 1543, yet 60 ydater it had made no impact. One reason was that mo
people didn’'t care about retrograde motions. Evpaneminded academics, such as Jean Bodin, were
skeptical [Boo83]:

“No one in his senses or imbued with the slighkestwledge of physics will ever think that the
earth staggers up and down around its own centetreat of the sun... For if the earth moved, we
would see cities, fortresses, and mountains thrdewn... Arrows shot straight up or stones
dropped from towers would not fall perpendiculabiyt either ahead or behind...”

How then did heliocentricity take hold? Acceptamaes gradual as volumes of evidence from telescopic
observations of the heavens accumulated. (Thectgdeswas invented in the early 1600s). Helioceityric
was consistent with other theories, such as thaseaah tides. But certainly a contributing facteas its
simplicity and elegance in addressing practicarstific problems that were otherwise difficult onpossi-

ble to solve.

In this paper, | have tried to motivate future difens of software technology. There is no douht throd-
uct-line architectures, refinements as generabmatiof components, and the codeless programming of
software plug-and-play will come to pass; the afdypatable points are how and when. | have offerea G
Voca as a way in which all three can be achievéitl, I is questionable that GenVoca will take tol
However, there are three reasons to be optimisitist, there is a considerable amount of experialenti-
dence for its correctness and value (and | woufteethere to be much more in the future). Sectimal,
ideas are constantly being reinvented by otherer(all, the idea of plug-compatible componentstisn
exactly novel and is quite appealing in its simipfic Third, it addresses a critical need in softezghat of
reducing complexity. It is well-known that one bktgreat advantages of OO is its ability to maregk
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control complexity through class abstractions. &aly, anyone who has ever written an OO applicatio
understands precisely this point. It is not difftdo recognize that standardizing abstractiona dbmain/
PLA is averypowerful way of managing and controlling the coexply of software in a family of applica-
tions. It is this latter point on which the succes$ailure of GenVoca may rest.

Acknowledgments | thank Yannis Smaragdakis, Rich Cardone, Larmleuda, Scott Page, and Lorenzo
Alvisi for their insights in helping me clarify pois made in this paper.
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