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Abstract. We consider supervised learning of a ranking function, which is a
mapping from instances to total orders over a set of labels (options). The training
information consists of examples with partial (and possibly inconsistent) infor-
mation about their associated rankings. From these, we induce a ranking function
by reducing the original problem to a number of binary classification problems,
one for each pair of labels. The main objective of this work is to investigate the
trade-off between the quality of the induced ranking function and the computa-
tional complexity of the algorithm, both depending on the amount of preference
information given for each example. To this end, we present theoretical results
on the complexity of pairwise preference learning, and experimentally investi-
gate the predictive performance of our method for different types of preference
information, such as top-ranked labels and complete rankings. The domain of
this study is the prediction of a rational agent’s ranking of actions in an uncertain
environment.

1 Introduction

The problem of learning with or from preferences has recently received a lot of attention
within the machine learning literature.3 The problem is particularly challenging because
it involves the prediction of complex structures, such as weak or partial order relations,
rather than single values. Moreover, training input will not, as it is usually the case,
be offered in the form of complete examples but may comprise more general types of
information, such as relative preferences or different kinds of indirect feedback.

More specifically, the learning scenario that we will consider in this paper consists
of a collection of training examples which are associated with a finite set of decision
alternatives. Following the common notation of supervised learning, we shall refer to
the latter aslabels. However, contrary to standard classification, a training example is
not assigned a single label, but a set ofpairwise preferencesbetween labels, expressing
that one label is preferred over another.

The goal is to use these pairwise preferences for predicting a total order, aranking,
of all possible labels for a new training example. More generally, we seek to induce a

3 Space restrictions prevent a thorough review of related work in this paper, but we refer the
reader to (F̈urnkranz and Ḧullermeier, 2003).



ranking functionthat maps instances (examples) to rankings over a fixed set of decision
alternatives (labels), in analogy to aclassification functionthat maps instances to single
labels. To this end, we investigate the use ofround robin learningor pairwise classifi-
cation. As will be seen, round robin appears particularly appealing in this context since
it can be extended from classification to preference learning in a quite natural manner.

The paper is organized as follows: In the next section, we introduce the learning
problem in a formal way. The extension of pairwise classification to pairwise preference
learning and its application to ranking are discussed in section 3. Section 4 provides
some results on the computational complexity of pairwise preference learning. Results
of several experimental studies investigating the predictive performance of our approach
under various training conditions are presented in section 5. We conclude the paper with
some final remarks in section 6.

2 Learning Problem

We consider the following learning problem:

Given:
– a set oflabelsL = {λi | i = 1 . . . c}
– a set ofexamplesE = {ek | k = 1 . . . n}
– for each training exampleek:

• a set ofpreferencesPk ⊆ L× L, where(λi, λj) ∈ Pk indicates that label
λi is preferred over labelλj for exampleek (written asλi �k λj)

Find: a function that orders the labelsλi, i = 1 . . . c for any given example.

This setting has been previously introduced asconstraint classificationby Har-
Peled et al. (2002). As has been pointed out in their work, the above framework is a
generalization of several common learning settings, in particular (see ibidem for a for-
mal derivation of these and other results)

– ranking: Each training example is associated with a total order of the labels, i.e.,
for each pair of labels(λi, λj) eitherλi �k λj or λj �k λi holds.

– classification:A single class labelλi is assigned to each example. This implicitly
defines the set of preferences{λi �k λj | 1 ≤ j 6= i ≤ c}.

– multi-label classification:Each training exampleek is associated with a subset
Sk ⊆ L of possible labels. This implicitly defines the set of preferences
{λi �k λj |λi ∈ Sk, λj ∈ L \ Sk}.

As pointed out before, we will be interested in predicting a ranking (total order)
of the labels. Thus, we assume that for each instance, there exists a total order of the
labels, i.e., the pairwise preferences form a transitive and asymmetric relation. For many
practical applications, this assumption appears to be acceptable at least for thetrue
preferences. Still, more often than not the observed orrevealedpreferences will be
incomplete or inconsistent. Therefore, we do not require thedata to be consistent in
the sense that transitivity and asymmetry applies to thePk. We only assume thatPk is
irreflexive (λi 6� λi) and anti-symmetric(λi � λj ⇒ λj 6� λi). (Note that0 ≤ |Pk| ≤
c(c− 1)/2 as a consequence of the last two properties.)



3 Pairwise Preference Ranking

A key idea of our approach is to learn a separate theory for each of thec(c − 1)/2
pairwise preferences between two labels. More formally, for each possible pair of labels
(λi, λj), 1 ≤ i < j ≤ c, we learn a modelMij that decides for any given example
whetherλi � λj or λj � λi holds. The model is trained with all examplesek for which
eitherλi �k λj or λj �k λi is known. All examples for which nothing is known about
the preference betweenλi andλj are ignored.

At classification time, an example is submitted to allc(c−1)/2 theories. If classifier
Mij predictsλi � λj , we count this as a vote forλi. Conversely, the predictionλj � λi

would be considered as a vote forλj . The labels are ranked according to the number of
votes they receive from all modelsMij . Ties are first broken according to the frequency
of the labels in the top rank (the class distribution in the classification setting) and then
randomly.

We refer to the above technique aspairwise preference rankingor round robin rank-
ing. It is a straight-forward generalization of pairwise or one-against-one classification,
aka round robin learning, which solves multi-class problems by learning a separate
theory for each pair of classes. In previous work, Fürnkranz (2002) showed that, for
rule learning algorithms, this technique is preferable to the more commonly used one-
against-all classification method, which learns one theory for each class, using the ex-
amples of this class as positive examples and all others as negative examples. Interest-
ingly, despite its complexity being quadratic in the number of classes, the algorithm is
no slower than the conventional one-against-all technique (Fürnkranz, 2002). We will
generalize these results in the next section.

4 Complexity

Consider a learning problem withn training examples andc labels.

Theorem 1. The total number of training examples over allc(c − 1)/2 binary prefer-
ence learning problems is

n∑
k=1

|Pk| ≤ n max
k
|Pk| ≤ n

(
c

2

)
= n

c(c− 1)
2

Proof. Each of then training examplesek will be added to all|Pk| binary training sets
that correspond to one of its preferencesλi �k λj . Thus, the total number of training
examples is

∑n
k=1 |Pk|. As the number of preferences for each example is bounded

from above bymaxk |Pk|, this number is no larger thann maxk |Pk|, which in turn is
bounded from above by the size of a complete set of preferencesnc(c− 1)/2. 2

Corollary 1. (Fürnkranz, 2002)For a classification problem, the total number of train-
ing examples is only linear in the number of classes.

Proof. A class label expands toc− 1 preferences, therefore
∑n

k=1 |Pk| = (c− 1)n. 2



Note that we only considered the number of training examples, but not the complex-
ity of the learner that runs on these examples. For an algorithm with a linear run-time
complexityO(n) it follows immediately that the total run-time isO(dn), whered is the
maximum (or average) number of preferences given for each training example. For a
learner with a super-linear complexityO(na), a > 1, the total run-time is much lower
thanO((dn)a) because the training effort is not spent on one large training set, but on
many small training sets. In particular, for a complete preference set, the total complex-
ity is O(c2na), whereas the complexity ford = c − 1 (round robin classification) is
only O(cna) (Fürnkranz, 2002).

For comparison, the only other technique for learning in this setting that we know
of (Har-Peled et al., 2002) constructs twice as many training examples (one positive and
one negative for each preference of each example), and these examples are projected
into a space that hasc times as many attributes as the original space. Moreover, all
examples are put into a single training set for which a separating hyper-plane has to
be found. Thus, under the (reasonable) assumption that an increase in the number of
features has approximately the same effect as a corresponding increase in the number
of examples, the total complexity becomesO((cdn)a) if the algorithm for finding the
separating hyper-plane has complexityO(na) for a two-class training set of sizen.

In summary, the overall complexity of pairwise constraint classification depends on
the number of known preferences for each training example. While being quadratic in
the number of labels if a complete ranking is given, it is only linear for the classifica-
tion setting. In any case, it is more efficient than the technique proposed by Har-Peled
et al. (2002). However, it should be noted that the price to pay is the large number of
classifiers that have to be stored and tested at classification time.

5 Empirical Results

The previous sections have shown that round robin learning can be extended to induce a
ranking function from a set of preferences instead of a single label. Yet, it turned out that
computational complexity might become an issue. Especially, since a ranking induces
a quadratic number of pairwise preferences, the complexity for round robin ranking be-
comes quadratic in the number of labels. In this context, one might ask whether it could
be possible to improve efficiency at the cost of a tolerable decrease in performance:
Could the learning process perhaps ignore some of the preferences without decreasing
predictive accuracy too much? Apart from that, incomplete training data is clearly a
point of practical relevance, since complete rankings will rarely be observable.

The experimental evaluation presented in this section is meant to investigate issues
related to incomplete training data in more detail, especially to increase our under-
standing about the trade-off between the number of pairwise preferences available in
the training data and the quality of the learned ranking function. For a systematic in-
vestigation of questions of such kind, we need data for which, in principle, a complete
ranking is known for each example. This information allows a systematic variation of
the amount of preference information in the training data, and a precise evaluation of
the predicted rankings on the test data. Since we are not aware of any suitable real-world
datasets, we have conducted our experiments with synthetic data.



5.1 Synthetic Data

We consider the problem of learning the ranking function of an expected utility maxi-
mizing agent. More specifically, we proceed from a standard setting of expected utility
theory: A = {a1, . . . , ac} is a set of actions the agent can choose from andΩ =
{ω1, . . . , ωm} is a set of world states. The agent faces a problem ofdecision under risk
where decision consequences are lotteries: Choosing actai in stateωj yields a utility
of uij ∈ R, where the probability of stateωj is pj . Thus, theexpected utilityof actai

is given by

E(ai) =
m∑

j=1

pj · uij . (1)

Expected utility theory justifies (1) as a criterion for ranking actions and, hence, gives
rise to the following preference relation:

ai � aj ⇔ E(ai) > E(aj). (2)

Now, suppose the probability vectorp = (p1, . . . , pm) to be a parameter of the decision
problem (whileA,Ω and the utility matrix matrixU = (uij) are fixed).

The above decision-theoretic setting can be used for generating synthetic data for
preference learning. The set of instances corresponds to the set of probability vectorsp,
which are generated at random according to a uniform distribution over{p ∈ Rm | p ≥
0, p1 + . . .+pm = 1}. The ranking function associated with an example is given by the
ranking defined in (2). Thus, an experiment is characterized by the following parame-
ters: The number of actions/labels (c), the number of world states (m), the number of
examples(n), and the utility matrix which is generated at random through independent
and uniformly distributed entriesuij ∈ [0, 1].

5.2 Experimental Setup

In the following, we will report on results of experiments with ten different states (m =
10) and various numbers of labels (c = 5, 10, 20). For each of the three configurations
we generated ten different data sets, each one originating from a different randomly
chosen utility matrixU . The data sets consisted of 1000 training and 1000 test examples.
For each example, the data sets provided the probability vectorp ∈ Rm and a complete
ranking of thec possible actions.4 The training examples were labeled with a subset
of the complete set of pairwise preferences as imposed by the ranking in the data set.
The subsets that were selected for the experiments are described one by one for the
experiments.

We used the decision tree learner C4.5 (Quinlan, 1993) in its default settings5 to
learn a model for each pairwise preference. For all examples in the test set we ob-
tained a final ranking using simple voting and tie breaking as described in section 3.

4 The occurrence of actions with equal expected utility has probability 0.
5 Our choice of C4.5 as the learner was solely based on its versatility and wide availability. If

we had aimed at maximizing performance on this particular problem, we would have chosen
an algorithm that can directly represent the separating hyperplanes for each binary preference.



The predicted ranks were then compared with the actual ranks. Our primary evalua-
tion measures were the error rate of the top rank (for comparing classifications) and the
Spearman rank correlation coefficient (for comparing complete rankings).

5.3 Ranking vs. Classification

Figure 1 shows experimental results for (a) using the full set ofc(c − 1)/2 pairwise
preferences, (b) for the classification setting which uses only thec− 1 preferences that
involve the top label, and (c) for the complementary setting with the(c − 1)(c − 2)/2
preferences that donot involve the top label. There are several interesting things to
note for these results. First, the difference between the error rates of the classification
and the ranking setting is comparably small. Thus, if we are only interested in the top
rank, it may often suffice to use the pairwise preferences that involve the top label. The
advantage in this case is of course the reduced complexity which becomes linear in the
number of labels. On the other hand, the results also show that the complete ranking
information can be used to improve classification accuracy, at least if this information
is available for each training example and if one is willing to pay the price of a quadratic
complexity.

The results for the complementary setting show that the information of the top rank
preferences is crucial: When dropping this information and using only those pairwise
preferences that do not involve the top label, the error rate on the top rank increases
considerably, and is much higher than the error rate for the classification setting. This
is a bit surprising if we consider that in the classification setting, the average number
of training examples for learning a modelMij is much smaller than in the complemen-
tary setting. Interestingly, the effective number of training examples for the top labels
might nevertheless decrease. In fact, in our learning scenario we will often have a few
dominatingactions whose utility degrees are systematically larger than those of other
actions. In the worst case, the same action is optimal for all probability vectorsp, and
the complementary set will not contain any information about it. While this situation
is of course rather extreme, the class distribution is indeed very unbalanced in our sce-
nario. For example, we determined experimentally forc = m = 10 andn = 1000 that
the probability of having the same optimal action for more than half of the examples is
≈ 2/3, and that the expected Gini-index of the class distribution is≈ 1/2.

With respect to the prediction of complete rankings, the performance for learning
from the complementary set of preferences is almost as good as the performance for
learning from the complete set of preferences, whereas the performance of the ranking
induced from the classification setting is considerably worse. This time, however, the
result is hardly surprising and can easily be explained by the amount of information
provided in the two cases. In fact, the complementary set determines the ranking ofc−1
among thec labels, whereas the top label alone does hardly provide any information
about the complete ranking.

As another interesting finding note that the classification accuracy decreases with
an increasing number of labels, whereas the rank correlation increases (this is also re-
vealed by the curves in Figure 3 below). In other words, the quality of the predicted
rankings increases, even though the quality of the predictions for the individual ranks
decreases. This effect can first of all be explained by the fact that the (classification)



c prefs error rank corr.

ranking 13.380± 8.016 0.907± 0.038

5 classification 14.400± 8.262 0.783± 0.145

complement 32.650± 14.615 0.872± 0.051

ranking 15.820± 8.506 0.940± 0.018

10 classification 16.670± 9.549 0.711± 0.108

complement 24.310± 9.995 0.937± 0.018

ranking 24.030± 4.251 0.966± 0.004

20 classification 26.370± 5.147 0.697± 0.066

complement 32.300± 3.264 0.966± 0.004

Fig. 1. Comparison of ranking (a complete set
of preferences is given) vs. classification (only
the preferences for the top rank are given).
Also shown are the results for the complemen-
tary setting (all preferences for the top rank are
omitted).

Fig. 2. Expected Spearman rank correlation as
a function of the number of labels if all models
Mij have an error rate ofε (curves are shown
for ε = 0.1, 0.2, 0.3, 0.4, 0.5).

error is much more affected by an increase of the number of labels. As an illustration,
consider random guessing: The chances of guessing the top label correctly are1/m,
whereas the expected value of the rank correlation is 0 regardless ofm. Moreover, one
might speculate that the importance of a correct vote of each individual modelMij

decreases with an increasing number of labels. Roughly speaking, incorrect classifica-
tions of individual learners are better compensated on average. This conjecture is also
supported by an independent experiment in which we simulated a set of homogeneous
modelsMij through biased coin flipping with a prespecified error rate. It turned out
that the quality measures for predicted rankings tend to increase if the number of labels
becomes large (though the dependence of the measures on the number of labels is not
necessarily monotone, see Fig. 2).

5.4 Missing Preferences

While the previous results shed some light on the trade-off between utility and costs
for two special types of preference information, namely top-ranked labels and complete
rankings, they do not give a satisfactory answer for the general case. The selected set of
preferences in the classification setting is strongly focused on a particular label for each
example, thus resulting in a very biased distribution. In the following, we will look at
the quality of predicted rankings when selecting random subsets of pairwise preferences
from the full sets with equal right.

Figure 3 shows the curves for the classification error in the top rank and the average
Spearman rank correlation of the predicted and the true ranking over the number of
preferences. To generate these curves, we started with the full set of preferences, and
ignored increasingly larger fractions of it. This was implemented with a parameterpi

that caused any given preference in the training data to be ignored with probabilitypi

(100× pi is plotted on thex-axis).



Fig. 3. Average error rate (left) and Spearman rank correlation (right) for various percentages of
ignored preferences. The error bars indicate the standard deviations. The vertical dotted lines on
the right indicate the number of preferences for classification problems (for 5,10, and 20 classes),
those on the left are the complementary sizes.

The similar shape of the three curves (for 5, 10, and 20 labels) suggests that the
decrease in the ranking quality can be attributed solely to the missing preferences while
it seems to be independent of the number of labels. In particular, one is inclined to
conclude that—contrary to the case where we focused on the top rank—it is in general
not possible to reduce the number of training preferences by an order of magnitude
(i.e., from quadratic to linear in the number of labels) without severely decreasing the
ranking quality. This can also be seen from the three dotted vertical lines in the right
half of the graphs. These lines indicate the percentage of preferences that were present
in the classification setting for 5, 10, and 20 labels (from inner-most to outer-most). A
comparison of the error rates, given by the intersection of a line with the corresponding
curve, to the respective error rates in Figure 1 shows an extreme difference between
the coincidental selection of pairwise preferences and the systematic selection which is
focused on the top rank.

Nevertheless, one can also see that about half of the preferences can be ignored
while still maintaining a reasonable performance level. Even though it is quite com-
mon that learning curves are concave functions of the size of the training set, the de-
scent in accuracy appears to be remarkably flat in our case. One might be tempted
to attribute this to the redundancy of the pairwise preferences induced by a ranking:
In principle, a rankingρ could already be reconstructed from thec − 1 preferences
ρ1 � ρ2, . . . , ρc−1 � ρc, which means that only a small fraction of the pairwise pref-
erences are actually needed. Still, one should be careful with this explanation. First, we
are not trying to reconstruct a single ranking but rather to solve a slightly different prob-
lem, namely to learn a ranking function. Second, our learning algorithm does actually
not “reconstruct” a ranking as suggested above. In fact, our simple voting procedure
does not take the dependencies between individual modelsMij into account, which
means that these models do not really cooperate. On the contrary, what the voting pro-
cedure exploits is just the redundancy of preference information: The top rank is the
winner only because it is preferred inc− 1 out of thec(c− 1)/2 pairwise comparisons.



Fig. 4. Average Spearman rank correlation over various percentages of random preferences. The
error bars indicate the standard deviations. The solid thin lines are the curves for ignored prefer-
ences (Figure 3).

Finally, note that the shape of the curves probably also depends on the number of
training examples. We have not yet investigated this issue because we were mainly
interested in the possibility of reducing the complexity by more than a constant factor
without losing too much of predictive accuracy. It would be interesting, for example, to
compare (a) usingp% of the training examples with full preferences and (b) using all
training examples withp% of the pairwise preferences.

5.5 Mislabeled Preferences

Recall that our learning scenario assumes preference structures to be complete rank-
ings of labels, that is transitive and asymmetric relations. As already pointed out, we do
not make this assumption forobservedpreferences: First, we may not have access to
complete sets of preferences (the case studied in the previous section). Second, the pro-
cess generating the preferences might reproduce the underlying total order incorrectly
and, hence, produce inconsistent preferences. The latter problem is quite common, for
example, in the case of human judgments.

To simulate this behavior, we adopted the following model: Proceeding from the
pairwise preferences induced by a given ranking, a preferenceλi � λj was kept with
probability 1 − ps, whereas with probabilityps, one of the preferencesλi � λj and
λj � λi was selected by a coin flip. Thus, in approximatelyps/2 cases, the preference
will point into the wrong direction.6 For ps = 0, the data remain unchanged, whereas
the preferences in the training data are completely random forps = 1.

Figure 4 shows the average Spearman rank correlations that were observed in this
experiment. Note that the shape of the curve is almost the same as the shape of the
curves for ignored preferences. It is possible to directly compare these two curves be-
cause in both graphs a level ofn% means that100 − n% of the preferences are still

6 In fact, we implemented the procedure by selectingps/2 preferences and reversing their sign.



intact. The main difference is that in Figure 3, the remainingn% of the preferences
have been ignored, while in Figure 4 they have been re-assigned at random. To facili-
tate this comparison, we plotted the curves for ignored preferences (the same ones as in
Figure 3) into the graph (with solid, thin lines).

It is interesting to see that in both cases the performance degrades very slowly at
the beginning, albeit somewhat steeper than if the examples are completely ignored.
Roughly speaking, completely omitting a pairwise preference appears to be better than
including a random preference. This could reasonably be explained by the learning
behavior of a classifierMij : If Mij does already perform well, an additional correct
example will probably be classified correctly and thus improveMij only slightly (in
decision tree induction, for example,Mij will even remain completely unchanged if
the new example is classified correctly). As opposed to this, an incorrect example will
probably be classified incorrectly and thus produce a more far-reaching modification
of Mij (in decision tree induction, an erroneous example might produce a completely
different tree). All in all, the “expected benefit” ofMij caused by a random preference
is negative, whereas it is 0 if the preference is simply ignored.

From this consideration one may conclude that a pairwise preference should better
be ignored if it is no more confident than a coin flip. This can also be grasped intuitively,
since the preference does not provide any information in this case. If it is more confi-
dent, however, it clearly carries some information and it might then be better to include
it, even though the best way of action will still depend on the number and reliability of
the preferences already available. Note that our experiments do not suggest any strat-
egy for deciding whether or not to include anindividual preference, given information
about the uncertainty of that preference. In our case, each preference is equally uncer-
tain. Thus, the only reasonable strategies are to include all of them or to ignore the
complete sample. Of course, the first strategy will be better as soon as the probability
of correctness exceeds1/2, and this is also confirmed by the experimental results. For
example, the correlation coefficient remains visibly above 0.8 even if 80% of the pref-
erences are assigned by chance and, hence, the probability of a particular preference to
be correct is only 0.6. One may conjecture that pairwise preference ranking is partic-
ularly robust toward noise, since an erroneous example affects only a single classifier
Mij which in turn has a limited influence on the eventually predicted ranking.

6 Concluding Remarks

We have introduced pairwise preference learning as an extension of pairwise classi-
fication to constraint classification, a learning scenario where training examples are
labeled with a preference relation over all possible labels instead of a single class label
as in the conventional classification setting. From this information, we also learn one
model for each pair of classes, but focus on learning a complete ranking of all labels
instead of only predicting the most likely label. Our main interest was to investigate
the trade-off between ranking quality and the amount of training information (in terms
of the number of preferences that are available for each example). We experimentally
investigated this trade-off by varying parameters of a synthetic domain that simulates
a decision-theoretic agent which ranks its possible actions according to an unknown



utility function. Roughly speaking, the results show that large parts of the information
about pairwise preferences can be ignored in round robin ranking without losing too
much predictive performance. In the classification setting, where one is only interested
in predicting the top label, it also turned out that using the full ranking information
rather than restricting to the pairwise preferences involving the top label does even im-
prove the classification accuracy, suggesting that the lower ranks do contain valuable
information. For reasons of efficiency, however, it might still be advisable to concen-
trate on the smaller set of preferences, thereby reducing the size of the training set by
an order of magnitude.

The main limitation of our technique is probably the assumption of having enough
training examples for learning each pairwise preference. For data with a very large
number of labels and a rather small set of preferences per example, our technique will
hardly be applicable. In particular, it is unlikely to be successful in collaborative fil-
tering problems (Goldberg et al., 1992; Resnick and Varian, 1997; Breese et al., 1998),
although these can be mapped onto the constraint classification framework in a straight-
forward way. A further limitation is the quadratic number of theories that has to be
stored in memory and evaluated at classification time. However, the increase in mem-
ory requirements is balanced by an increase in computational efficiency in comparison
to the technique of Har-Peled et al. (2002). In addition, pairwise preference learning in-
herits many advantages of pairwise classification, in particular its implementation can
easily be parallelized because of its reduction to independent subproblems. Finally, we
have assumed an underlying total order of the items which needs to be recovered from
partial observations of preferences. However, partial orders (cases where several labels
are equally preferred) may also occur in practical applications. We have not yet inves-
tigated the issue of how to generate (and evaluate) partial orders from learned pairwise
predictions. Similarly, our current framework does not provide a facility for discrimi-
nating between cases where we know that a pair of labels is of equal preference and
cases where we don’t know anything about their relative preferences.

There are several directions for future work. First of all, it is likely that the predic-
tion of rankings can be improved by combining the individual models’ votes in a more
sophisticated way. Several authors have looked at techniques for combining the predic-
tions of pairwise theories into a final ranking of the available options. Proposals include
weighting the predicted preferences with the classifiers’ confidences (Fürnkranz, 2003)
or using an iterative algorithm for combining pairwise probability estimates (Hastie and
Tibshirani, 1998). However, none of the previous works have evaluated their techniques
in a ranking context, and some more elaborate proposals, like error-correcting output
decoding (Allwein et al., 2000), organizing the pairwise classifiers in a tree-like struc-
ture (Platt et al., 2000), or using a stacked classifier (Savicky and Fürnkranz, 2003) are
specifically tailored to a classification setting. Taking into account the fact that we are
explicitly seeking a ranking could lead to promising alternatives. For example, we are
thinking about selecting the ranking which minimizes the number of predicted prefer-
ences that need to be reversed in order to make the predicted relation transitive. Depart-
ing from the counting of votes might also offer possibilities for extending our method
to the prediction of preference structures more general than rankings (total orders),
such as weak preference relations where some of the labels might not be comparable.



Apart from theoretical considerations, an important aspect of future work concerns the
practical application of our method and its evaluation using real-world problems. Un-
fortunately, real-world data sets that fit our framework seem to be quite rare. In fact,
currently we are not aware of any data set of significant size that provides instances in
attribute-value representation plus an associated complete ranking over a limited num-
ber of labels.
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