
1OBJECTS AND CLASSES,CO-ALGEBRAICALLYBart JacobsCWI, Kruislaan 413, 1098 SJ Amsterdam,The Netherlands.Email: bjacobs@cwi.nl
ABSTRACTThe co-algebraic perspective on objects and classes in object-oriented programmingis elaborated: classes are described as co-algebras, which may occur as models (imple-mentations) of co-algebraic speci�cations. These speci�cations are much like deferred(or virtual) classes with assertions in Ei�el. An object belonging to a class is an ele-ment of the state space of the class, as co-algebra. We show how terminal co-algebrasof co-algebraic speci�cations give rise to canonical models (in which all observationallyindistinguishable objects are identi�ed). We further describe operational semanticsfor objects, with an associated notion of bisimulation (for objects in classes modelingthe same speci�cation), expressing observational indistinguishability.1 INTRODUCTIONWithin the object-oriented paradigm the world consists of a collection of au-tonomous entities, called \objects", each dealing with a speci�c task. Coordi-nation and communication takes place via sending of messages. Objects aregrouped into certain \classes" which determine (among other things) the inter-face to the outside world (of the objects belonging to the class). Objects haveprivate data, only accessible via speci�ed operations, called \methods", whichare provided by the class of the object. Since each object is persistent, it canbe seen as a (small) database. (But it typically has no query facilities.) Thereis no global state. See e.g. [5, 10, 27] for more background information. Theobject-oriented paradigm is both popular and successful, but a general com-plaint is that it lacks a proper formal foundation: it is more philosophy than1



2 Chapter 1mathematics. In this paper we describe a semantics for objects and classesusing so-called \co-algebras". These are the formal duals of algebras. Theessential di�erence between algebras and co-algebras is that the former have\constructors" (operations going into the underlying carrier set, which are usedto build elements) where the latter have \destructors" or \observers" (opera-tions going out of the carrier set, which allow us to observe certain behaviour).This distinction between construction and behaviour is in essence the distinc-tion between abstract data types and procedural abstraction described in [9].(The terminology of \constructors" and \destructors" comes from data typetheory, and has no connection with constructors and destructors in C++, forexample) In co-algebra one deals with state spaces as black boxes to whichone only has limited access via speci�ed operations. This aspect is importantin the description of objects. It builds on ideas from automata theory andfrom (dynamical) system theory. The notion of bisimulation forms an intrinsicpart of the co-algebraic view. It means indistinguishability of behaviour, as itcan be observed via the speci�ed (co-algebraic) operations that we have at ourdisposal. It arises automatically in a situation with limited access to a statespace.We shall distinguish between class speci�cations , and class implementations .The latter will often simply be called classes. A class speci�cation is like anabstract class, in which methods with their signatures are given, but with-out their actual implementation. But assertions are there to put behaviouralconstraints on methods. Implementation of the methods is given in a classimplementation|also called a concrete class, or simply a class. The essentialsare put in the class speci�cation, and the particulars in the class implementa-tion (which is of no concern to a client). Such a separation is useful in situationswhere implementation details vary (e.g. from platform to platform, or from timeto time). Also, it opens up the possibility of formal veri�cation of classes.There is no general agreement about what precisely constitutes an object. Butthere is broad agreement about the following two aspects: (1) an object hasa local state, which is only accessible via the objects methods, and (2) anobject combines data structure with behaviour. Precisely these two aspectsare emphasized in our co-algebraic description of objects. The suitability ofco-algebras for the description of object-oriented features was recognized be-fore, see e.g. [24, 15, 16]. Elements may be traced back to earlier sources,like [19, 20, 9, 23], where co-algebras are not explicitly used (in [20] one �ndsthe phrase \abstract machine" instead). In [11] the two-level structure of speci-�cations in the object-oriented design language COLD are explained: �rst thereis a speci�cation of one's application domain using algebraic data types, andthen there is the system description in terms of \state machines". This second



Objects and Classes, Co-algebraically 3step corresponds to our co-algebraic (behavioural) speci�cation. There are twosimilar levels in FOOPS, described by functional modules and object modules,see [14]. In [13, 6] the object-paradigm is explained within the algebraic worldusing signatures with hidden sorts. The hidden part is given a terminal inter-pretation in [6]. In this algebraic approach the output types of methods areunstructured, unlike in the co-algebraic approach below. This paper elaboratesideas from [24] and [16]. What we consider as the main points are the following.(1) It describes a (set theoretic) semantics for some crucial notions of object-oriented programming: there are precise notions of object, of class (implemen-tation) and of class speci�cation. We focus on the meaning of the concepts, andnot on syntactic details (of a particular language) but in spirit our approach isclose to Ei�el [21]. It is a semantical study into object-orientation.(2) It shows (following [24]) how behaviour can be speci�ed co-algebraically(using conditional equations). Further, it gives operational semantics for ob-jects (in isolation), with an associated notion of bisimulation.(3) It describes canonical (terminal co-algebra) implementations|or \mini-mal realizations", in system theoretic terminology (see also [12])|of class spec-i�cations, using techniques developed in [16]. It is somewhat surprising to seethat although (carriers of) terminal co-algebras obtained from methods aloneare generally huge sets of in�nite trees (see Lemma 6), one can cut down thesesets to very reasonable size in case the behaviour is well-speci�ed.(4) And it makes e�ective use of coproduct (disjoint union) types +; 0 forstructuring the outputs of methods. In this way the traditional distinctionbetween functions and procedures disappears.In a follow-up paper [17] the co-algebraic approach is used to describe in-heritance, a key concept of object-oriented programming. And temporal co-algebraic speci�cations may be found in [18]. We shall make some use of ele-mentary category theory in order to organize the concepts involved. In usingcategories for the description of object-oriented languages one has to live withthe multiple use of the word `object'. Usually there is no confusion.2 ALGEBRAS VERSUS CO-ALGEBRASAssume we wish to specify a datatype X of binary A-labeled trees, for some setof labels A. Algebraically one describes how to build up such trees by givingtheir \constructors" nil and node, as on the left below (where 1 = f�g is aone-element set): a binary A-labeled tree is either the empty tree nil, or of the



4 Chapter 1form node(`; a; r) where ` and r are trees, and a 2 A is a label.� nil: 1 �! Xnode:X �A�X �! X 8<: leaf:X �! Aleft:X �! Xright:X �! XA co-algebraic speci�cation of such trees is given on the right. It does notgive the \constructors", but the \destructors" (or \observers"): it says whichoperations we have on our datatype of trees, namely taking o� the label at anode, following the left path and following the right path. But it tells nothingabout what is inside X . This X is best considered as a black box to which weonly have limited access via the operations. These examples already suggestthat algebra is about construction and co-algebra is about (observation of)behaviour. Mathematically, the distinguishing di�erence between the algebraicand the co-algebraic description is that in the �rst case we have operationsgoing into X and in the second case out of X . We can emphasize this di�erenceeven more by combining the operations into a single one by using coproducts(disjoint unions) + and products �. In the �rst case we get a single operation1+(X�A�X)! X and in the second caseX ! A�X�X . See also [9] (or [8],describing an experimental programming language CHARITY with essentiallyonly such algebras and co-algebras).The above algebraic speci�cation has a canonical model given by the initialalgebra. It consists of all �nite binary A-labeled trees, and may be constructedas the set of closed terms. Also for the co-algebraic speci�cation on the rightthere is a canonical model, given by the terminal co-algebra. It consists of thein�nite binary A-labeled trees, and may be obtained as the set of \trees of ob-servations". Initial algebras form a basis for data type semantics (see e.g. [28]),and terminal co-algebras play a similar role in an object-oriented setting. Alge-braic speci�cation is useful for the formal description of datastructures, but notof state-based systems. In contrast, states are unproblematic in co-algebraicspeci�cation.The general de�nition of an algebra is a map of the form T (X)! X , for somefunctor1 T :Sets ! Sets on the category Sets of sets and functions (or onsome other category). And a co-algebra is a map X ! T (X) in the reversedirection. Such a co-algebra X ! T (X) consists of a state space X (also calledthe carrier) together with a transition function (or dynamics)X ! T (X) actingon the state space. If we have two algebras (c:T (U)! U) and (d:T (V )! V ),1This means that T is an operation X 7! T (X) acting on sets, but at the same time anoperation (f :X ! Y ) 7! (T (f): T (X) ! T (Y )) acting on functions, preserving identitiesand composition. For simplicity one may read T (X) as an expression for a set containing avariable set X, like in (�) below. Functoriality will play a role later in Section 5.



Objects and Classes, Co-algebraically 5then we say that an algebra map c! d is a morphism f :U ! V between the\carriers" which commutes with the operations: f � c = d � T (f). This givesus a category Alg(T ). Dually we can form a category CoAlg(T ) of co-algebrasof T : a co-algebra map (c:U ! T (U)) ! (d:V ! T (V )) is a morphismf :U ! V with d � f = T (f) � c. We recall that in an arbitrary category C anobject 1 2 C is terminal if for each object X 2 C there is precisely one arrowX 9 9 K1. Singleton sets are terminal objects in the category Sets; we typicallywrite 1 = f�g. The dual notion is that of initial object 0, for which there isprecisely one map 0 9 9 KX to any X . In Sets we have 0 = ;. The binaryproduct X � Y is characterized by the property that maps Z ! X � Y arein (natural) bijective correspondence with pairs of maps Z ! X and Z ! Y .This gives us two projections �:X � Y ! X , �0:X � Y ! Y and a tuplingoperation h�;�i. Dually, we have a coproduct X + Y with the property thatmaps X + Y ! Z out of it correspond (naturally) to pairs of maps X ! Zand Y ! Z. This gives us coprojections �:X ! X + Y , �0:Y ! X + Y and acotupling operation [�;�]. In Sets, � is the usual cartesian product of pairs ofelements, and + is the disjoint union. Finally we use an exponent constructionY X , with the property that maps Z ! Y X correspond (naturally) to mapsZ �X ! Y . In presence of these exponents we get the familiar distributivitiesX � (Y +Z) �= (X �Y )+ (X �Z) and X � 0 �= 0. We use these constructions1;�; 0;+; (�)(�) to build up so-called polynomial functors. We shall restrictourselves to functors of the formT (X) = (B1 + C1 �X)A1 � � � � � (Bn + Cn �X)An (�)for certain (constant) sets Ai; Bi; Ci|which may be 0 or 1 so that parts ofthis functor become simpler. A co-algebra c:U ! T (U) of this functor may beidenti�ed with a collection of maps c1:U�A1 ! B1+C1�U , : : :, cn:U�An !Bn +Cn �U . A co-algebra forms in this way a model of a certain signature ofoperations (i.e. methods) on a state space U . And a co-algebra map is a mapbetween the state spaces which commutes with the operations. Note that theci are maps going out of U , with a parameter from Ai.3 EXAMPLES OF CO-ALGEBRAICSPECIFICATIONWe start with a speci�cation of a class of rudimentary bank accounts (of asingle person) for which we only have methods bal giving the balance of theaccount, and ch with which we can change the amount of money in the account.An obvious equation should then be satis�ed, describing the balance after the



6 Chapter 1change in terms of the balance before, and the parameter of change. We usehopefully self-explanatory notation, in the following speci�cation|with somecomments after the `#' sign.class spec: BA # name of the speci�cation; BA for Bank Accountpublic methods:bal:X �! Z # this is an attribute, or instance variablech:X �Z�! X # this is a procedure, with parameter from Z;# it a�ects the local state space X .assertions:s:ch(a):bal = # in OO-style with post �x notation, where s 2 Xs:bal+ a # with `s' for `self' or `state' is a local statecreation:new:bal = 0end class specIn this speci�cation we say what methods we want for our bank account andwhich (equational) assertions should hold. The equation s:ch(a):bal = s:bal+ ashould be read as: if one sends state s the change message ch with parameter aand then asks for the balance bal, then the outcome is the same as �rst askingstate s for its balance, and then adding the amount a. The last point of thespeci�cation mentions that newly created objects of this class BA have 0 2 Zas their balance. It describes the behaviour of the initial state. As an observeron the outside, we do not really care how the operations of such bank accountsare implemented in a class, as long as they meet the speci�cation. We have noaccess to the local state space X except via the above two methods. This isco-algebra. We notice that such a class speci�cation is very much like a deferred(or virtual) class with assertions in Ei�el: only the methods are given with theirinput and output types|and not their implementation|and the behaviour ofthese methods is determined by assertions. The above equation may be seenas a post-condition for the change method. Such class speci�cations are called(behavioural) types in [2]. In the next section we shall de�ne a class (satisfyinga speci�cation) as a co-algebra interpreting the function symbols in such away that the assertions hold. This clear (model-theoretic) distinction betweena class speci�cation and its implementation corresponds to the distinction inactual languages between abstract classes all of whose methods are deferredand concrete classes of all whose methods are implemented.Here is another example. Let A be a �xed set of data elements. We wish tospecify a class of bu�er objects of capacity one, which can contain a singleelement a 2 A, but which may also be empty. The methods are store(a), toput an element a 2 A in a bu�er, and read to read the content of a bu�er. Weshould decide explicitly: (1) what happens when we send the store(a) message



Objects and Classes, Co-algebraically 7to a bu�er which is already full [we choose that nothing will happen]; (2) whathappens when we read from an empty bu�er [the (observable) outcome will bean error value], and (3) what happens when we read from a full bu�er: one canhave a destructive read (DR), which means that after reading an element abu�er will be empty, or a persistent read (PR), which means that readingdoes not a�ect the content of a bu�er; in that case one needs an explicit methodempty for emptying the bu�er. Below we shall present two class speci�cationsPR for the persistent read bu�ers (on the left), and DR for the destructiveread bu�ers (on the right). We emphasize that these bu�ers are speci�ed co-algebraically: we only say which operations we have and how they behave (viaassertions), and nothing about what is inside the (state space X of the) bu�ers.class spec: PR class spec: DRpublic methods: public methods:store:X �A �! X store:X �A �! Xread:X �! ferrorg+A read:X �! ferrorg+A�Xempty:X �! X assertions: # in sloppy notationassertions: s:read = error `s:empty:read = error s:store(a):read:fst = as:read = error ` s:read = ha; yi `s:store(a):read = a s:store(b):read:fst = as:read = a ` s:read = ha; yi `s:store(b):read = a y:read = errorcreation: creation:new:read = error new:read = errorend class spec end class specThe main di�erence between these speci�cations is that persistent read methodis an attribute: it does not change the local state space. The destructiveread method does have an e�ect on the local state space|it empties thebu�er|which is re
ected in the type of this method: the X occurs in thetype ferrorg + A � X of the output of the destructive read method. We seehow the traditional distinction between functions (having outputs, but no ef-fect on the state) and procedures (having an e�ect on the state, but no output)disappears: the destructive read method read:X ! ferrorg+ A �X yields anoutput error without a�ecting the state if the bu�er is empty, and yields bothan output and an e�ect on the state otherwise. Notice how this is re
ected inthe typing, via the coproduct +. One may wish to push this example furtherand specify bu�ers (still with capacity one) which can contain elements froma dataset A persistently and from a set B destructively. This requires a readmethod read:X ! ferrorg + A + B � X , yielding either an error value, or anelement in A (without a�ecting the state), or an element in B with a next state.The appropriate equations are left as an exercise in co-algebraic speci�cation.



8 Chapter 14 OBJECTS, CLASS IMPLEMENTATIONSAND CLASS SPECIFICATIONSThe main aspect of an object that we wish to capture co-algebraically is that ithas a local state, which is only accessible via speci�ed operations (implementedin the class of the object). Classes (or, class implementations) will be presentedas co-algebraic models of class speci�cations, and objects (belonging to a class)as inhabitants of the carrier set of the class (as co-algebra).De�nition 1 A class speci�cation is a structure which has a name, andconsists of three components.(i) A �nite set of (unary) \methods" (or \features" in Ei�el or \members"in C++) of the form X �Ai �! Bi + Ci �Xon a local state space X. The functor T associated with this signature of, say,n such co-algebraic operations isT (X) = (B1 + C1 �X)A1 � � � � � (Bn + Cn �X)An :If some Ci is the empty set 0, then the associated method gets the form X �Ai �! Bi, and may be called an attribute, since it yields an \observableelement" in Bi and does not change the local state space. Methods which doa�ect the local state may be called procedures.(ii) Assertions, which may be conditional. They regulate the behaviour of theobjects belonging to the class.(iii) The observable properties which hold for newly created objects, using new.These may be either with or without parameters.We shall use a lay-out for class speci�cations as in the previous section forthe bank account and bu�er examples. Each such speci�cation introduces asingle new type, for which we write X inside the speci�cation, but for whichone may use the speci�cation's name outside. No binary methods (of the formX�X �! B+C�X) are allowed in the co-algebraic approach, since they leadto contravariant functors. (But on a di�erent level binary methods also present(typing) problems in combination with inheritance, see [4] for an extensivediscussion.) In the speci�cations that we consider in this paper we shall onlyuse equational logic, but from a semantical point of view there is no objectionagainst using a more expressive logic to formulate the assertions. (In Ei�el theassertions should be executable, because they are used not only for speci�cation



Objects and Classes, Co-algebraically 9but also for run-time monitoring.) One may distinguish between public andprivate methods, where one object may only send messages requiring executionof a public method in another object. But an object may send messages to itselfasking for execution of its own private methods. The methods that we considerhave output types B + C � X . This means that they can produce either anobservable element in B, or an observable element in C together with a newstate inX . If B = 0, then we only have the second option, and if C = 0, only the�rst one remains. We can also capture methods of the formX�A �! X+D�Xby using the isomorphism X +D �X �= (1 +D) �X �= 0 + (1 +D) �X , sothat we have an isomorphic output of the required format. But notice that atmost one new state can be produced (in every alternative of +).De�nition 2 Consider a class speci�cation as in the previous de�nition, withfunctor T associated with the signature of methods.(i) A class satisfying this class speci�cation consists of three elements:(a) a carrier set U , giving an interpretation of the state space;(b) a co-algebra c:U ! T (U) interpreting (or: implementing) the methods insuch a way that the assertions are satis�ed (recall that the function c canbe identi�ed with a set of functions ci:U �Ai ! Bi + Ci � U);(c) an initial state u0 2 U which satis�es the condition in the creation sectionof the class speci�cation (see (ii) below).(ii) An object belonging to the class c:U ! T (U) in (i) is simply an elementu 2 U of the carrier set of the class. Sending the method implemented by ciwith parameter a 2 Ai to the object u is interpreted via function application asu:ci(a) def= ci(u; a) 2 Bi + Ci � U:Coming back to (i), the `new' operation applied to a class hc:U ! T (U); u0iyields as object of the class the initial state u0 2 U .In this picture a class contains the code (implementation) of the methods, whichis the same for all objects of the class. And an object contains the particulars,such as the data values, which can be inspected via the attributes implementedin the class. In some situations it may be more convenient to de�ne an objectas a pair hu 2 U; c:U ! T (U)i consisting of an object u 2 U in the abovesense together with its class. One may wish to add a natural number as third�eld, which can serve as unique identi�er of the object. This is especially usefulwhen one considers systems of objects. During the lifetime of an object its local



10 Chapter 1state may change through the execution of its methods (as a result of incomingmessages), but its identi�er and its methods (the co-algebra of its class) remainthe same. One can call two objects identical if they only di�er in their localstate. Thus, execution of methods does not change the identity of objects.Under bisimilarity (see the next section) more objects are identi�ed.A class is often considered as a combination of two aspects: it is at the sametime seen as a type and as a module, see e.g. [21]. This �ts well into the aboveinterpretation: the \class as a type" is the underlying set U , inhabitants ofwhich are the objects belonging to the class. And the \class as a module" isthe co-algebra c:U ! T (U) giving us a data type structure on the type U .For convenience we often describe a class by only giving its co-algebra, withoutmentioning its initial state u0 explicitly. This initial state usually arises viaa special part of a class de�nition, called \make" in Ei�el and \constructor"in C++. In the type theoretic encoding of object-oriented constructs intosecond (or higher) order polymorphic lambda calculus (with subtyping), seee.g. [7, 23, 15], one uses the type 9�:Type: � � (� ! T (�)) for objects with\interface" T . One thus has an encoding which involves hiding the local statespace � via an existential quanti�er (as in [22]). An inhabitant of the producttype �� (�! T (�)) is a tuple consisting of a local state in � and a co-algebra� ! T (�), like in the above de�nition. But in this type theoretic encodingthere is no explicit way to deal with assertions; they play an essential role inthe speci�cation of behaviour. One may also view an object u 2 U togetherwith its class c:U ! T (U) as a particular kind of automaton, with u as currentstate of the automaton, and with the co-algebra c as transition function. Froman object-oriented perspective there is some degree of non-determinism in thesense that the transition function c is a tuple of methods ci, and the objectitself does not know which of these components is selected by a client, and withwhich parameter. Also the coproduct + in output types introduces an elementof non-determinism.As illustration of the above de�nition of class and object, we shall consider thebank account speci�cation BA from the previous section: we shall present threepossible implementations, with di�erent interpretations of the state space Xand of the methods bal; ch. But these di�erences are not visible to clients. Thefunctor associated with the BA-signature of methods is T (X) = Z�XZ.(1) A �rst try is to take a bank account as a sequence of consecutive changes.Thus we take as local state space U1 = Z?, the set of �nite sequences of integers.On an arbitrary state s = ha0; : : : ; ani 2 U1 we de�ne methods:s:bal = a0 + � � �+ an and s:ch(a) = ha0; : : : ; an; ai:



Objects and Classes, Co-algebraically 11
These two methods together form a co-algebra c1:U1 ! T (U1). It obviouslysatis�es the equation s:ch(a):bal = s:bal + a. As initial state we can take theempty sequence hi in U1. The pair hhi; U1 ! T (U1)i thus forms an example ofa class satisfying the BA-speci�cation. And an example of an object belongingto this class is the sequence h2;�3i 2 U1 containing some speci�c data. Thebalance of this bank account object is �1. This is a rather ine�cient imple-mentation: asking for the balance involves adding up all the changes that havebeen made. But for a client who can only access objects via the balance andchange methods, these implementation details are not visible.(2) Our second implementation keeps a record of changes, but this time theadditions are done immediately so that taking the balance gives a more directanswer. So we now take as local state space U2 = Z+, the set of non-emptysequences of integers. For an element s = ha1; : : : ; ani 2 U2 we de�nes:bal = an and s:ch(a) = ha1; : : : ; an; an + ai:This gives us a co-algebra c2:U2 ! T (U2), which also satis�es the equation.An object of this class consists of a non-empty sequence of integers, with thelast integer in the sequence as its current balance. So as initial state one cantake the sequence consisting only of 0 2 Z. (But we could also take the stateh1; 0i; it is \bisimilar" to h0i, see the next section.)(3) We mention a third implementation which simply has as local state spacethe set U3 = Z of integers. For a state s 2 U3 we de�nes:bal = s and s:ch(a) = s+ a:A bank account object with this co-algebra, call it c3:U3 ! T (U3), has aslocal state an integer that represents the current balance. In a sense this isthe most e�cient implementation, containing all the information we need, andnothing else. In a mathematical sense it distinguishes itself as the \terminal co-algebra", i.e. as the terminal object in the category of co-algebras X ! Z�XZsatisfying the bank account equation, see Section 6. The co-algebraic approachthus allows us to characterize these minimal realizations.5 INDISTINGUISHABILITY(BISIMULATION) FOR OBJECTSIn this section we shall go deeper into the technicalities of co-algebras, usingsome elementary category theory. To start, consider the two bank account ob-jects p1 = hh2;�3i; c1:Z? ! T (Z?)i and p3 = h�1; c3:Z ! T (Z)i belonging



12 Chapter 1to the �rst and third class at the end of the previous section. These objectsp1 and p3 are indistinguishable from the outside because we cannot see a dif-ference, using the public methods speci�ed for bank accounts: they have thesame balance, namely �1, and by using the change method we cannot createa di�erence, since the balance after a change is determined by the equation inthe class speci�cation. In process theory this notion of \indistinguishability viaobservations" is called \bisimilarity". The two objects p1 and p2 are bisimilarbecause there is a bisimulation relation R � Z?�Zwith R(h2;�3i;�1), namelyR = fha0; : : : ; an; ai 2 Z?�Z ja0+ � � �+ an = ag:De�nition 3 Let T :Sets ! Sets be the general polynomial functor T (X) =Qi�n(Bi+Ci�X)Ai, and let c:U ! T (U) and d:V ! T (V ) be two co-algebrasof this functor (describing classes). A relation R � U � V on the two statespaces is called a bisimulation if for x 2 U and y 2 V , in case R(x; y) holds,then for each i � n and a 2 Ai we have one of the following two cases:both ci(x; a) and di(y; a) are in Bi, and they are equal.both ci(x; a) and di(y; a) are tuples, of the form ci(x; a) = h
; x0i anddi(y; a) = h
; y0i with equal �rst components in Ci and with R(x0; y0).Two elements u 2 U and v 2 V are called bisimilar if there is a a bisimulationrelation R � U � V with R(u; v). In this case one writes u$ v.Bisimulations are thus relations on carriers of co-algebras which are suitablyclosed under the co-algebra operations. One can describe this notion (and alsothe notion of mongruence in the next section) more abstractly in terms of thefunctor T involved, see [1, 25], or [16]. Next we de�ne bisimilarity for objects.This notion is intended to capture observational indistinguishability and willtherefore only involve the publicly available methods.De�nition 4 Assume a class speci�cation with two functors Tpu; Tpr: Sets� Sets describing the signatures of respectively the public and private methods.Two objects u1 2 U1 in class c1:U1 ! Tpu(U1)� Tpr(U1) and u2 2 U2 in classc2:U2 ! Tpu(U2)� Tpr(U2) with c1 and c2 satisfying the speci�cation, will becalled bisimilar if there is a bisimulation relation R � U1 �U2 with respect tothe co-algebras � � c1:U1 ! Tpu(U1) and � � c2:U2 ! Tpu(U2) of the \public"functor Tpu, implementing the public methods.The following standard result gives an equivalent description of bisimulation$ in terms of terminal co-algebras, see e.g. [25].



Objects and Classes, Co-algebraically 13Lemma 5 Consider two co-algebras c:U ! T (U) and d:V ! T (V ) of thesame functor T . They induce two unique co-algebra maps !c and !d to theterminal co-algebra Z �=�! T (Z), in:
UT (U) ZT (Z) VT (V )6c 6�= 6d-!c � !d-T (!c) � T (!d)

Two elements u 2 U and v 2 V of the carriers of these co-algebras are thenbisimilar if and only if they have the same value on the terminal co-algebra,i.e. u$ v if and only if !c(u) = !d(v). 2The terminal co-algebra in this lemma is the terminal objects in the categoryCoAlg(T ) of co-algebras of the functor T . There is a standard construction(see e.g. [26]) to compute such a terminal co-algebra via the limit Z of thediagram 1  T (1)  T 2(1)  � � �  Z. This construction applies for theabove polynomial functors because they preserve limits of such chains. Weshall give an explicit description of this terminal co-algebra.Lemma 6 The terminal co-algebra Z �=�! T (Z) of the polynomial functorT (X) = Qi�n(Bi + Ci � X)Ai on Sets can be described as a set of in�nitetrees. Therefore, �rst write A = A1 + � � � + An, B = B1 + � � � + Bn andC = C1 + � � �+ Cn for the disjoint unions of the constants in the functor. Wenow haveZ = f':A+ ! B + C j 8� 2 A+:8i � n:8a 2 Ai: '(hi; ai � �) 2 Bi + Ciand '(hi; ai � �) 2 Bi ) 8i0 � n:8a0 2 Ai0 :'(hi0; a0i � hi; ai � �) = '(hi0; a0i � �)g:where � is concatenation of sequences (from A+). The interpretations of themethods Z �Ai ! Bi + Ci � Z are given by('; a) 7! ( '(hi; ai) if '(hi; ai) 2 Bih'(hi; ai); �� 2 A+: '(� � hi; ai)i otherwise. 2Notice that elements of this set Z are in�nite trees. This in�nity is achievedby repetition in case an \attribute value" in a Bi comes out. For example, theset Z of both �nite and in�nite lists of C's may be identi�ed with the set ofin�nite trees f':N ! 1 + C j 8n 2 N: '(n) = � ) '(n + 1) = �g. This is theterminal co-algebra of the functor T (X) = 1+C�X , according to the lemma.



14 Chapter 1Example 7 (See [24]) A useful special case of the above lemma is the following:the terminal co-algebra in Sets of the functor T (X) = B�XA associated withthe signature X ! B, X�A! X is the set Z = BA? of functions from the setA? of �nite sequences of A's to B. The attribute Z ! B is given by ' 7! '([ ])and the procedure Z �A! Z by ('; a) 7! �� 2 A?: '(� � a). In [24] only theserestricted signatures (without coproducts) are used. They form a special caseof the polynomial functor T above for n = 2 and A1 = 1, B1 = B, C1 = 0,A2 = A, B2 = 0 and C2 = 1.In the remainder of this section we describe the operational semantics O(p) ofa single object p as the tree of all possible transitions that start from p. Insuch transitions the objects identi�er and co-algebra remain unaltered, but itslocal state may change. We shall distinguish between the transitions caused bypublic methods, and transitions by both public and private methods.De�nition 8 Consider an object p = hu 2 U; c:U ! T (U)i, where T (�) =Tpu(�) � Tpr(�) is the functor combining the signatures of public and privatemethods. We take the two terminal co-algebras Z �=�! T (Z) and Zpu �=�!Tpu(Zpu) of the entire signature, and of the public signature only. Then, byterminality, we get two co-algebra maps ! and !pu in diagrams:
U Z U ZpuT (U) T (Z) Tpu(U) Tpu(Zpu)6c 6�= 6� � c 6�=-! -T (!) -!pu-T (!pu)

We then assign operational meanings O(p) 2 Z and Opu(p) 2 Zpu to the objectp by putting O(p) = !(u) and Opu(p) = !pu(u).The operational semantics is thus obtained (\by coinduction") via the uniquemap into a terminal co-algebra. This is dual to the usual way a denotationalsemantics is de�ned, namely (\by induction") as unique map going out of aninitial algebra (of terms), see [28]. Remember from the explicit description ofterminal co-algebras in Lemma 6 that both O(p) and Opu(p) are in�nite trees.Lemma 9 Two objects p; q belonging to the same class are bisimilar if andonly if they have the same public operational semantics, i.e. if and only ifOpu(p) = Opu(q). 2



Objects and Classes, Co-algebraically 15This means that two objects are indistinguishable by using their public methodsif and only if the associated trees of public observations are equal. It followsfrom Lemma 5. We can give an explicit description of these trees O(p) andOpu(p) via single transition steps for objects. For convenience, we shall do thisfor O(p) only.De�nition 10 Consider two objects u; u0 2 U belonging to the same classc:U ! T (U), where T is the functor X 7!Qi�n(Bi+Ci�X)Ai as used before.The single transition step u u0-x-ywhere x 2 A = A1 + � � �+An is an input, and y 2 B +C = (B1 + � � �+Bn) +(C1 + � � � + Cn) is an output, is de�ned as follows. For x = hi; ai 2 A witha 2 Ai one has( y = ci(u; a) 2 Bi and u0 = u if ci(u; a) = � 2 Bih
; u0i = ci(u; a) 2 Ci � U otherwise.More explicitly, we have the following two possible transitions.u u-hi; ai -� u u0-hi; ai-
if ci(u; a) = � 2 Bi if ci(u; a) = h
; u0i 2 Ci � U .So if the outcome of applying the i-th component ci of c to the local state uwith parameter a is a value in Bi, then the local state does not change; but if ityields both a value in Ci and a next local state u0, then the value is visible, butthe next local state gives us a di�erent object with the original identi�er andco-algebra, but with this new local state.Lemma 11 The operational semantics O(p) of an object p with local stateu 2 U as an element of the set Z of trees A+ ! B +C from Lemma 6 may bedescribed explicitly as:O(p) (hxn; xn�1; : : : ; x1i) = y , 8>><>>: there are objects u1; : : : ; un 2 Uand outputs y1; : : : ; yn�1 2 B + C withu u1 � � � un�1 un-x1-y1 -x2-y2 -xn�1-yn�1 -xn-ynProof. This is because the description in the lemma is the unique map ! tothe terminal co-algebra, applied to u. 2



16 Chapter 16 TERMINAL CO-ALGEBRASSATISFYING ASSERTIONSIn Lemma 6 we have described terminal co-algebras of functors associated withsignatures of methods, whereby the assertions in a speci�cation were ignored.The carrier sets of these terminal co-algebras are rather large sets of in�nitetrees. It turns out that assertions cut down such sets considerably. One thenconsiders the terminal co-algebra which satis�es these assertions. It gives usa canonical model (class implementation) for a speci�cation. These terminalco-algebras are comparable to initial algebras in algebraic speci�cation, in thesense that they form \best possible" models. For suitably speci�ed classesthe creation conditions determine an element of the carrier of this terminalco-algebra, which can serve as interpretation of the initial state. We start bysketching the approach from [16] to \carve out" terminal co-algebras satisfyingequations. It is a two-step approach, like in algebra. There, one �rst formsthe initial algebra of operations only, and then takes a quotient with respectto the least congruence relation induced by the equations, see e.g. [28]. Byde�nition, a congruence relation is closed under the (algebraic) operations. Inco-algebra one �rst takes the terminal co-algebra of operations and then onecarves out the subco-algebra given by the greatest \mongruence" induced bythe equations. And a mongruence is a predicate which is suitably closed underco-algebraic operations.De�nition 12 A mongruence on a co-algebra c:U ! T (U) of a functorT (X) = Qi�n(Bi + Ci �X)Ai is a predicate P � U satisfying: if P (x) holds,then also P (x0) for each x0 2 U occurring as next state in ci(x; a) = hy; x0i 2Ci � U , for some i � n and a 2 Ai.To �nd the terminal co-algebra for a speci�cation, consider the terminal co-algebra Z �=�! T (Z) of a polynomial functor T induced by the signature, andlet E � Z be the subset induced by the assertions. Let E be the greatestmongruence on Z ! T (Z) which is contained in E. Then E inherits a co-algebra structure, and is the terminal co-algebra satisfying E.We illustrate this with the example of the persistent read class from Section 3.The associated functor is T (X) = X(A+1)� (1+A), which has, by Example 7,as terminal co-algebra the set of functions ' 2 (1 + A)(A+1)? with operationsde�ned by ':store(a) = ��: '(� � �a), ':read = '([ ]), and ':empty = ��: '(� ��0�). The three equations in the persistent read class gives us a subset E � (1+A)(A+1)? consisting of those ' satisfying (1) ':empty:read = �, i.e. '(�0�) = �;



Objects and Classes, Co-algebraically 17(2) if ':read = �, then ':store(a):read = a, i.e. if '([ ]) = �, then '(�a) = a;and (3) if ':read = a, then ':store(b):read = a, i.e. if '([ ]) = a, then '(�b) = a.The greatest mongruence E � (1 +A)(A+1)? contained in E is the greatest setE � E satisfying: if ' 2 E, then also ':store(a) 2 E and ':empty 2 E. It iseasy to see that E is then the set of those ' 2 (1 + A)(A+1)? satisfying for all� 2 (A + 1)?, (1) '((�0�) � �) = �, (2) if '(�) = � then '((�a) � �) = a, and(3) if '(�) = a then '((�b) � �) = a. Each tree ' 2 E is thus determined byits value '([ ]) 2 1 + A at the root. Hence the set E is isomorphic to 1 + A,and this is the (carrier of the) terminal co-algebra satisfying the persistent readequations. It is the minimal realization of an A-bu�er with capacity one, sincethe state space 1+A = f�g[A contains an error element � 2 1+A and singledata elements a 2 1 +A, for a 2 A. Nothing else is needed.We have two side remarks about this terminal co-algebra.(1) We note that the two states s:empty:empty and s:empty are indistin-guishable (bisimilar), and indeed have equal interpretations in the terminalco-algebra 1 + A. But there is no way that we can prove from the equationsin the persistent read class that s:empty:empty and s:empty are equal since wehave no equations between states. Hence in the minimal realization more thanjust the derivable equations are valid.(2) One may be tempted from an algebraic perspective to see the \creation"part in a class as the description of a constant new: 1 ! X . One can theninvestigate what the initial model of the speci�cation is. In the persistent readexample it is not the (minimal) set 1 + A of internal states that comes out inthe co-algebraic approach. Algebraically one gets more, since one cannot showthat the closed terms new and new:empty are the same.Essential in the elimination of these trees ' is that they are determined bytheir output '([ ]) at the root. This happens when the behaviour is \totally"speci�ed: the future behaviour of an arbitrary state is determined by the im-mediate observations (via attribute outputs). The state space of the terminalco-algebra is then a subset of the set T (1) = Qi�n(Bi + Ci)Ai of attributeoutputs. And the initial state (describing new) is an element of this set.7 EQUATIONS BETWEEN STATES?In the examples so far we have been careful to describe equations only between(observable) attribute values, and not between local states (elements of X).This re
ects the idea that we do not have direct access to local states. The



18 Chapter 1most we can say in comparing two states is that they are bisimilar (indistin-guishable). This is as close as we can get to equality. The question arises: canwe, or do we want to, always avoid equations between states in co-algebraicspeci�cations. The answer seems to be no. It turns out to be convenient tohave equations between states, for example if one wishes an \undo" operationfor a certain procedure, which restores the original state. But in line with ourearlier mentioned view that states themselves are inaccessible, we shall writebisimilarity $ instead of equality = between states. As example, we considerthe following co-algebraic queue speci�cations, in last-in-�rst-out (LIFO) andin �rst-in-�rst-out (FIFO) form. A �xed set A of data elements used.class spec: LIFOpublic methods:in:X �A �! Xout:X �! 1 +A�Xassertions:s:in(a):out 6= �s:in(a):out:fst = as:in(a):out:snd$ screation:new:out = �end class spec
class spec: FIFOpublic methods:in:X �A �! Xout:X �! 1 +A�Xassertions:s:in(a):out 6= �s:out = � `s:in(a):out:fst = a^ s:in(a):out:snd$ ss:out 6= � `s:in(a):out:fst = s:out:fst^ s:in(a):out:snd$ s:out:snd:in(a)creation:new:out = �end class spec(We use the inequality s:out 6= � above for convenience; it can be replacedin a more elaborate formulation by an equality: mapping the output s:out 21 + A�X to 1 + 1 via the function id+ ! : 1 + A�X ! 1 + 1, we can use theequality (id+ !)(s:out) = �0� to check that the result is in the right alternativeof +.) One can derive in the FIFO casenew:in(a):in(b):out:fst = anew:in(a):in(b):out:snd $ new:in(b):The terminal co-algebras (minimal realizations) of these speci�cations bothhave the set A1 = A? +AN of �nite and in�nite sequences as carrier set. Alsothe implementations of the out methods are the same: for � 2 A1�:out = � � if � is the empty sequenceha; �i if � = a � �.But the implementations of the in methods di�ers: in the LIFO case�:in(a) = a � �:
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And in the FIFO case�:in(a) = � � � a if � 2 A?, i.e. if � is �nite� otherwise.In�nite sequences are included in the terminal co-algebras since nothing in theLIFO and FIFO speci�cations tells us that out:X ! 1+A�X will end in 1 atsome stage. But surely all reachable states (from new) will have �nite output.Acknowledgement. Thanks are due to Jan Rutten and Horst Reichel forclarifying discussions.REFERENCES[1] P. Aczel and N. Mendler, A �nal co-algebra theorem, In: D.H. Pitt andA. Poign�e and D.E. Rydeheard (eds.), Category Theory and ComputerScience Springer LNCS 389, 1989, 357{365.[2] P. America, Designing an object-oriented language with behavioural sub-typing. In: [3], 60{90.[3] J.W. de Bakker, W.P. de Roever and G. Rozenberg (eds.), Foundations ofObject-Oriented Languages (Springer LNCS 489, 1990).[4] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. Leav-ens and B. Pierce, On binary methods, Theory and Practice of ObjectSystems , to appear.[5] T. Budd, An Introduction to Object-Oriented Programming (Addison-Wesley, 1991).[6] R. Burstall and R. Diaconescu, Hiding and behaviour: an institutionalapproach. In: A.W. Roscoe (ed.), A Classical Mind. Essays in honour ofC.A.R. Hoare (Prentice Hall, 1994), 75{92.[7] L. Cardelli and P. Wegner, On understanding types, data abstraction andpolymorphism, ACM Comp. Surv. 4 (1985), 471{522.[8] J.R.B. Cockett and D. Spencer, Strong categorical datatypes I. In:R.A.G. Seely (ed.), Category Theory 1991 (CMS Conference Proceedings13, 1992), 141{169.[9] W.R. Cook, Object-oriented programming versus abstract data types.In: [3], 151{178.[10] A. Eli�ens, Principles of Object-Oriented Software Development (Addison-Wesley, 1995).[11] L.M.G. Feijs and H.B.M. Jonkers, Formal Speci�cation and Design (Cam-bridge Univ. Press, Tracts in Theor. Comp. Sci. 5, 1992).



20 Chapter 1[12] J.A. Goguen, Realization is universal, Math. Syst. Theory 6(4) (1973),359{374.[13] J.A. Goguen, Types as Theories. In: G.M. Reed. A.W. Roscoe andR.F. Wachter (eds.), Topology and Category Theory in Computer Science(Oxford Univ. Press, 1991), 357{390.[14] J.A. Goguen and J. Meseguer, Unifying functional, object-oriented andrelational programming with logical semantics. In: B. Shriver and P. Weg-ner (eds.), Research Directions in Object-Oriented Programming (The MITPress series in computer systems, 1987), 417{477.[15] M. Hofmann and B. Pierce, A unifying type-theoretic framework for ob-jects, Journ. Funct. Progr., to appear.[16] B. Jacobs, Mongruences and cofree co-algebras. In: V.S. Alagar and M. Ni-vat (eds., Algebraic Methods and Software Technology (Springer LNCS 936,1995), 245{260.[17] B. Jacobs, Inheritance and cofree constructions. In: P. Cointe (ed.), Euro-pean Conference on Object-Oriented Programming (Springer LNCS, 1996,to appear).[18] B. Jacobs, Co-algebraic speci�cations and models of deterministic hybridsystems. In: M. Wirsing (ed.), Algebraic Methods and Software Technology(Springer LNCS, 1996, to appear).[19] S. Kamin, Final data types and their speci�cation, ACM Trans. on Progr.Lang. and Systems 5(1) (1983), 97{123.[20] J. Meseguer and J.A. Goguen, Initiality, induction and computability. In:M. Nivat and J.C. Reynolds (eds.), Algebraic Methods in Semantics (Cam-bridge Univ. Press, 1985), 459{541.[21] B. Meyer, Object-Oriented Software Construction (Prentice Hall, 1988).[22] J.C. Mitchell and G.D. Plotkin, Abstract types have existential type, ACMTrans. on Progr. Lang. and Systems 10(3) (1988), 470{502.[23] B.C. Pierce and D.N. Turner, Simple type theoretic foundation for object-oriented programming Journ. Funct. Progr. 4(2) (1994), 207{247.[24] H. Reichel, An approach to object semantics based on terminal co-algebrasMath. Struct. in Comp. Sci. 5 (1995), 129{152.[25] J. Rutten and D. Turi, On the foundations of �nal semantics: non-standard sets, metric spaces and partial orders. In: J.W. de Bakker,W.P. de Roever, and G. Rozenberg (eds.), Semantics: Foundations andApplications (Springer LNCS 666, 1993), 477{530.[26] M.B. Smyth and G.D. Plotkin, The category theoretic solution of recursivedomain equations, SIAM Journ. Comput. 11 (1982) 761{783.[27] P. Wegner, Concepts and paradigms of object-oriented programming,OOPS Messenger 1(1) (1990), 7{87.[28] M. Wirsing, Algebraic Speci�cation. In: J. van Leeuwen (ed.), Handbookof Theoretical Computer Science, Elsevier/MIT Press 1990, Volume B,673{788.


