OBJECTS AND CLASSES,
CO-ALGEBRAICALLY
Bart Jacobs

CWI, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands.

Email: bjacobs@cwi.nl

ABSTRACT

The co-algebraic perspective on objects and classes in object-oriented programming
is elaborated: classes are described as co-algebras, which may occur as models (imple-
mentations) of co-algebraic specifications. These specifications are much like deferred
(or virtual) classes with assertions in Eiffel. An object belonging to a class is an ele-
ment of the state space of the class, as co-algebra. We show how terminal co-algebras
of co-algebraic specifications give rise to canonical models (in which all observationally
indistinguishable objects are identified). We further describe operational semantics
for objects, with an associated notion of bisimulation (for objects in classes modeling

the same specification), expressing observational indistinguishability.

1 INTRODUCTION

Within the object-oriented paradigm the world consists of a collection of au-
tonomous entities, called “objects”, each dealing with a specific task. Coordi-
nation and communication takes place via sending of messages. Objects are
grouped into certain “classes” which determine (among other things) the inter-
face to the outside world (of the objects belonging to the class). Objects have
private data, only accessible via specified operations, called “methods”, which
are provided by the class of the object. Since each object is persistent, it can
be seen as a (small) database. (But it typically has no query facilities.) There
is no global state. See e.g. [5, 10, 27] for more background information. The
object-oriented paradigm is both popular and successful, but a general com-
plaint is that it lacks a proper formal foundation: it is more philosophy than

2 CHAPTER 1

mathematics. In this paper we describe a semantics for objects and classes
using so-called “co-algebras”. These are the formal duals of algebras. The
essential difference between algebras and co-algebras is that the former have
“constructors” (operations going into the underlying carrier set, which are used
to build elements) where the latter have “destructors” or “observers” (opera-
tions going out of the carrier set, which allow us to observe certain behaviour).
This distinction between construction and behaviour is in essence the distinc-
tion between abstract data types and procedural abstraction described in [9].
(The terminology of “constructors” and “destructors” comes from data type
theory, and has no connection with constructors and destructors in C++, for
example) In co-algebra one deals with state spaces as black boxes to which
one only has limited access via specified operations. This aspect is important
in the description of objects. It builds on ideas from automata theory and
from (dynamical) system theory. The notion of bisimulation forms an intrinsic
part of the co-algebraic view. It means indistinguishability of behaviour, as it
can be observed via the specified (co-algebraic) operations that we have at our
disposal. It arises automatically in a situation with limited access to a state
space.

We shall distinguish between class specifications, and class implementations.
The latter will often simply be called classes. A class specification is like an
abstract class, in which methods with their signatures are given, but with-
out their actual implementation. But assertions are there to put behavioural
constraints on methods. Implementation of the methods is given in a class
implementation also called a concrete class, or simply a class. The essentials
are put in the class specification, and the particulars in the class implementa-
tion (which is of no concern to a client). Such a separation is useful in situations
where implementation details vary (e.g. from platform to platform, or from time
to time). Also, it opens up the possibility of formal verification of classes.

There is no general agreement about what precisely constitutes an object. But
there is broad agreement about the following two aspects: (1) an object has
a local state, which is only accessible via the objects methods, and (2) an
object combines data structure with behaviour. Precisely these two aspects
are emphasized in our co-algebraic description of objects. The suitability of
co-algebras for the description of object-oriented features was recognized be-
fore, see e.g. [24, 15, 16]. Elements may be traced back to earlier sources,
like [19, 20, 9, 23], where co-algebras are not explicitly used (in [20] one finds
the phrase “abstract machine” instead). In [11] the two-level structure of speci-
fications in the object-oriented design language COLD are explained: first there
is a specification of one’s application domain using algebraic data types, and
then there is the system description in terms of “state machines”. This second

Objects and Classes, Co-algebraically 3

step corresponds to our co-algebraic (behavioural) specification. There are two
similar levels in FOOPS, described by functional modules and object modules,
see [14]. In [13, 6] the object-paradigm is explained within the algebraic world
using signatures with hidden sorts. The hidden part is given a terminal inter-
pretation in [6]. In this algebraic approach the output types of methods are
unstructured, unlike in the co-algebraic approach below. This paper elaborates
ideas from [24] and [16]. What we consider as the main points are the following.

(1) It describes a (set theoretic) semantics for some crucial notions of object-
oriented programming: there are precise notions of object, of class (implemen-
tation) and of class specification. We focus on the meaning of the concepts, and
not on syntactic details (of a particular language) but in spirit our approach is
close to Eiffel [21]. Tt is a semantical study into object-orientation.

(2) It shows (following [24]) how behaviour can be specified co-algebraically
(using conditional equations). Further, it gives operational semantics for ob-
jects (in isolation), with an associated notion of bisimulation.

(3) It describes canonical (terminal co-algebra) implementations or “mini-
mal realizations”, in system theoretic terminology (see also [12]) of class spec-
ifications, using techniques developed in [16]. It is somewhat surprising to see
that although (carriers of) terminal co-algebras obtained from methods alone
are generally huge sets of infinite trees (see Lemma 6), one can cut down these
sets to very reasonable size in case the behaviour is well-specified.

(4) And it makes effective use of coproduct (disjoint union) types +,0 for
structuring the outputs of methods. In this way the traditional distinction
between functions and procedures disappears.

In a follow-up paper [17] the co-algebraic approach is used to describe in-
heritance, a key concept of object-oriented programming. And temporal co-
algebraic specifications may be found in [18]. We shall make some use of ele-
mentary category theory in order to organize the concepts involved. In using
categories for the description of object-oriented languages one has to live with
the multiple use of the word ‘object’. Usually there is no confusion.

2 ALGEBRAS VERSUS CO-ALGEBRAS

Assume we wish to specify a datatype X of binary A-labeled trees, for some set
of labels A. Algebraically one describes how to build up such trees by giving
their “constructors” nil and node, as on the left below (where 1 = {x} is a
one-element set): a binary A-labeled tree is either the empty tree nil, or of the

4 CHAPTER 1

form node({, a,r) where £ and r are trees, and a € A is a label.

leaf: X — A
left: X — X

node: X x AxX — X rightt X — X

{ nitl — X
A co-algebraic specification of such trees is given on the right. It does not
give the “constructors”, but the “destructors” (or “observers”): it says which
operations we have on our datatype of trees, namely taking off the label at a
node, following the left path and following the right path. But it tells nothing
about what is inside X. This X is best considered as a black box to which we
only have limited access via the operations. These examples already suggest
that algebra is about construction and co-algebra is about (observation of)
behaviour. Mathematically, the distinguishing difference between the algebraic
and the co-algebraic description is that in the first case we have operations
going into X and in the second case out of X. We can emphasize this difference
even more by combining the operations into a single one by using coproducts
(disjoint unions) + and products x. In the first case we get a single operation
1+(X xAx X) — X and in the second case X — Ax X xX. See also [9] (or [§],
describing an experimental programming language CHARITY with essentially
only such algebras and co-algebras).

The above algebraic specification has a canonical model given by the initial
algebra. Tt consists of all finite binary A-labeled trees, and may be constructed
as the set of closed terms. Also for the co-algebraic specification on the right
there is a canonical model, given by the terminal co-algebra. It consists of the
infinite binary A-labeled trees, and may be obtained as the set of “trees of ob-
servations”. Initial algebras form a basis for data type semantics (see e.g. [28]),
and terminal co-algebras play a similar role in an object-oriented setting. Alge-
braic specification is useful for the formal description of datastructures, but not
of state-based systems. In contrast, states are unproblematic in co-algebraic
specification.

The general definition of an algebra is a map of the form T (X) — X, for some
functor! T:Sets — Sets on the category Sets of sets and functions (or on
some other category). And a co-algebra is a map X — T'(X) in the reverse
direction. Such a co-algebra X — T'(X) consists of a state space X (also called
the carrier) together with a transition function (or dynamics) X — T'(X) acting
on the state space. If we have two algebras (e:T(U) — U) and (d: T(V) — V),

1This means that T is an operation X — T'(X) acting on sets, but at the same time an
operation (f: X — Y) — (T(f): T(X) — T(Y)) acting on functions, preserving identities
and composition. For simplicity one may read T'(X) as an expression for a set containing a
variable set X, like in () below. Functoriality will play a role later in Section 5.

Objects and Classes, Co-algebraically 5

then we say that an algebra map ¢ — d is a morphism f:U — V between the
“carriers” which commutes with the operations: f o ¢ = d o T(f). This gives
us a category Alg(7T'). Dually we can form a category CoAlg(T") of co-algebras
of T: a co-algebra map (c:U — T(U)) — (d:V — T(V)) is a morphism
f:U -V withdo f =T(f) oc. Werecall that in an arbitrary category C an
object 1 € C is terminal if for each object X € C there is precisely one arrow
X --» 1. Singleton sets are terminal objects in the category Sets; we typically
write 1 = {*}. The dual notion is that of initial object 0, for which there is
precisely one map 0 —-» X to any X. In Sets we have 0 = (). The binary
product X X Y is characterized by the property that maps Z — X x Y are
in (natural) bijective correspondence with pairs of maps Z — X and Z — Y.
This gives us two projections m: X XY — X, 7#: X XY — Y and a tupling
operation (—, —). Dually, we have a coproduct X + Y with the property that
maps X +Y — Z out of it correspond (naturally) to pairs of maps X — Z
and Y — Z. This gives us coprojections k: X - X +Y, k.Y - X +Y and a
cotupling operation [—, —]. In Sets, x is the usual cartesian product of pairs of
elements, and + is the disjoint union. Finally we use an exponent construction
YX, with the property that maps Z — YX correspond (naturally) to maps
Z x X — Y. In presence of these exponents we get the familiar distributivities
XxY+2Z2)=2(XxY)+ (X xZ)and X x 0= 0. We use these constructions
1, x,0,+, (*)(’) to build up so-called polynomial functors. We shall restrict
ourselves to functors of the form

T(X) = (Bi +C1 x X)* x -+ X (Bp + Cp x X) (+)

for certain (constant) sets A;, B;,C; which may be 0 or 1 so that parts of
this functor become simpler. A co-algebra ¢: U — T'(U) of this functor may be
identified with a collection of maps ¢1: U x Ay —» B1+Cy1 XU, ..., c,:UXx A, —
B, +C, xU. A co-algebra forms in this way a model of a certain signature of
operations (i.e. methods) on a state space U. And a co-algebra map is a map
between the state spaces which commutes with the operations. Note that the
¢; are maps going out of U, with a parameter from A;.

3 EXAMPLES OF CO-ALGEBRAIC
SPECIFICATION

We start with a specification of a class of rudimentary bank accounts (of a
single person) for which we only have methods bal giving the balance of the
account, and ch with which we can change the amount of money in the account.
An obvious equation should then be satisfied, describing the balance after the

6 CHAPTER 1

change in terms of the balance before, and the parameter of change. We use
hopefully self-explanatory notation, in the following specification—with some
comments after the ‘#’ sign.

class spec: BA # name of the specification; BA for Bank Account
public methods:
bal: X — Z # this is an attribute, or instance variable

ch: X xZ — X # this is a procedure, with parameter from Z;
it affects the local state space X.

assertions:
s.ch(a).bal = # in OO-style with post fix notation, where s € X
s.bal +a # with ‘s’ for ‘self’ or ‘state’ is a local state
creation:

new.bal =0
end class spec

In this specification we say what methods we want for our bank account and
which (equational) assertions should hold. The equation s.ch(a).bal = s.bal +a
should be read as: if one sends state s the change message ch with parameter a
and then asks for the balance bal, then the outcome is the same as first asking
state s for its balance, and then adding the amount a. The last point of the
specification mentions that newly created objects of this class BA have 0 € Z
as their balance. It describes the behaviour of the initial state. As an observer
on the outside, we do not really care how the operations of such bank accounts
are implemented in a class, as long as they meet the specification. We have no
access to the local state space X except via the above two methods. This is
co-algebra. We notice that such a class specification is very much like a deferred
(or virtual) class with assertions in Eiffel: only the methods are given with their
input and output types—and not their implementation—and the behaviour of
these methods is determined by assertions. The above equation may be seen
as a post-condition for the change method. Such class specifications are called
(behavioural) types in [2]. In the next section we shall define a class (satisfying
a specification) as a co-algebra interpreting the function symbols in such a
way that the assertions hold. This clear (model-theoretic) distinction between
a class specification and its implementation corresponds to the distinction in
actual languages between abstract classes all of whose methods are deferred
and concrete classes of all whose methods are implemented.

Here is another example. Let A be a fixed set of data elements. We wish to
specify a class of buffer objects of capacity one, which can contain a single
element a € A, but which may also be empty. The methods are store(a), to
put an element a € A in a buffer, and read to read the content of a buffer. We
should decide explicitly: (1) what happens when we send the store(a) message

Objects and Classes, Co-algebraically 7

to a buffer which is already full [we choose that nothing will happen]; (2) what
happens when we read from an empty buffer [the (observable) outcome will be
an error value], and (3) what happens when we read from a full buffer: one can
have a destructive read (DR), which means that after reading an element a
buffer will be empty, or a persistent read (PR), which means that reading
does not affect the content of a buffer; in that case one needs an explicit method
empty for emptying the buffer. Below we shall present two class specifications
PR for the persistent read buffers (on the left), and DR for the destructive
read buffers (on the right). We emphasize that these buffers are specified co-
algebraically: we only say which operations we have and how they behave (via
assertions), and nothing about what is inside the (state space X of the) buffers.

class spec: PR class spec: DR
public methods: public methods:
store:e X x A — X storee X x A — X
read: X — {error} + A read: X — {error} + A x X
empty: X — X assertions: # in sloppy notation
assertions: s.read = error +
s.empty.read = error s.store(a).read.fst = a
s.read = error + s.read = (a,y) +
s.store(a).read = a s.store(b).read.fst = a
sread = a F s.read = (a,y) +
s.store(b).read = a y.read = error
creation: creation:
new.read = error new.read = error
end class spec end class spec

The main difference between these specifications is that persistent read method
is an attribute: it does not change the local state space. The destructive
read method does have an effect on the local state space—it empties the
buffer which is reflected in the type of this method: the X occurs in the
type {error} + A x X of the output of the destructive read method. We see
how the traditional distinction between functions (having outputs, but no ef-
fect on the state) and procedures (having an effect on the state, but no output)
disappears: the destructive read method read: X — {error} + A x X yields an
output error without affecting the state if the buffer is empty, and yields both
an output and an effect on the state otherwise. Notice how this is reflected in
the typing, via the coproduct +. One may wish to push this example further
and specify buffers (still with capacity one) which can contain elements from
a dataset A persistently and from a set B destructively. This requires a read
method read: X — {error} + A + B x X, yielding either an error value, or an
element in A (without affecting the state), or an element in B with a next state.
The appropriate equations are left as an exercise in co-algebraic specification.

8 CHAPTER 1

4 OBJECTS, CLASS IMPLEMENTATIONS
AND CLASS SPECIFICATIONS

The main aspect of an object that we wish to capture co-algebraically is that it
has a local state, which is only accessible via specified operations (implemented
in the class of the object). Classes (or, class implementations) will be presented
as co-algebraic models of class specifications, and objects (belonging to a class)
as inhabitants of the carrier set of the class (as co-algebra).

Definition 1 A class specification is a structure which has a name, and
consists of three components.

(i) A finite set of (unary) “methods” (or “features” in Eiffel or “members”
in C++) of the form
XxA —B;+C; x X

on a local state space X. The functor T associated with this signature of, say,
n such co-algebraic operations is

T(X)=(B1+C1 x X) x--- x (B 4+ Cp x X)*.

If some C; is the empty set 0, then the associated method gets the form X x
A; — B;, and may be called an attribute, since it yields an “observable
element” in B; and does not change the local state space. Methods which do
affect the local state may be called procedures.

(ii) Assertions, which may be conditional. They regulate the behaviour of the
objects belonging to the class.

(iii) The observable properties which hold for newly created objects, using new.
These may be either with or without parameters.

We shall use a lay-out for class specifications as in the previous section for
the bank account and buffer examples. Each such specification introduces a
single new type, for which we write X inside the specification, but for which
one may use the specification’s name outside. No binary methods (of the form
X x X — B+C x X) are allowed in the co-algebraic approach, since they lead
to contravariant functors. (But on a different level binary methods also present
(typing) problems in combination with inheritance, see [4] for an extensive
discussion.) In the specifications that we consider in this paper we shall only
use equational logic, but from a semantical point of view there is no objection
against using a more expressive logic to formulate the assertions. (In Eiffel the
assertions should be executable, because they are used not only for specification

Objects and Classes, Co-algebraically 9

but also for run-time monitoring.) One may distinguish between public and
private methods, where one object may only send messages requiring execution
of a public method in another object. But an object may send messages to itself
asking for execution of its own private methods. The methods that we consider
have output types B + C x X. This means that they can produce either an
observable element in B, or an observable element in C' together with a new
statein X. If B = 0, then we only have the second option, and if C' = 0, only the
first one remains. We can also capture methods of the form X xA — X+Dx X
by using the isomorphism X + D x X = (1+ D) x X =20+ (1+ D) x X, so
that we have an isomorphic output of the required format. But notice that at
most one new state can be produced (in every alternative of +).

Definition 2 Consider a class specification as in the previous definition, with
functor T associated with the signature of methods.

(i) A class satisfying this class specification consists of three elements:

(a) a carrier set U, giving an interpretation of the state space;

(b) a co-algebra ¢:U — T(U) interpreting (or: implementing) the methods in
such a way that the assertions are satisfied (recall that the function ¢ can
be identified with a set of functions ¢;:U x A; — B; +C; x U);

(c) an initial state ug € U which satisfies the condition in the creation section
of the class specification (see (ii) below).

(ii) An object belonging to the class c:U — T'(U) in (i) is simply an element
u € U of the carrier set of the class. Sending the method implemented by c;
with parameter a € A; to the object u is interpreted via function application as

def ci(u,a) € B; +C; x U.

u.ci(a)
Coming back to (i), the ‘new’ operation applied to a class (c:U — T(U),uq)
yields as object of the class the initial state ug € U.

In this picture a class contains the code (implementation) of the methods, which
is the same for all objects of the class. And an object contains the particulars,
such as the data values, which can be inspected via the attributes implemented
in the class. In some situations it may be more convenient to define an object
as a pair (u € U,e:U — T(U)) consisting of an object v € U in the above
sense together with its class. One may wish to add a natural number as third
field, which can serve as unique identifier of the object. This is especially useful
when one considers systems of objects. During the lifetime of an object its local

10 CHAPTER 1

state may change through the execution of its methods (as a result of incoming
messages), but its identifier and its methods (the co-algebra of its class) remain
the same. One can call two objects identical if they only differ in their local
state. Thus, execution of methods does not change the identity of objects.
Under bisimilarity (see the next section) more objects are identified.

A class is often considered as a combination of two aspects: it is at the same
time seen as a type and as a module, see e.g. [21]. This fits well into the above
interpretation: the “class as a type” is the underlying set U, inhabitants of
which are the objects belonging to the class. And the “class as a module” is
the co-algebra ¢:U — T(U) giving us a data type structure on the type U.
For convenience we often describe a class by only giving its co-algebra, without
mentioning its initial state ug explicitly. This initial state usually arises via
a special part of a class definition, called “make” in Eiffel and “constructor”
in C++. In the type theoretic encoding of object-oriented constructs into
second (or higher) order polymorphic lambda calculus (with subtyping), see
e.g. [7, 23, 15], one uses the type Ja: Type.a x (o — T(«)) for objects with
“interface” T'. One thus has an encoding which involves hiding the local state
space a via an existential quantifier (as in [22]). An inhabitant of the product
type a x (¢ — T'(a)) is a tuple consisting of a local state in a and a co-algebra
a — T'(a), like in the above definition. But in this type theoretic encoding
there is no explicit way to deal with assertions; they play an essential role in
the specification of behaviour. One may also view an object u € U together
with its class ¢:U — T'(U) as a particular kind of automaton, with u as current
state of the automaton, and with the co-algebra c as transition function. From
an object-oriented perspective there is some degree of non-determinism in the
sense that the transition function ¢ is a tuple of methods ¢;, and the object
itself does not know which of these components is selected by a client, and with
which parameter. Also the coproduct + in output types introduces an element
of non-determinism.

As illustration of the above definition of class and object, we shall consider the
bank account specification BA from the previous section: we shall present three
possible implementations, with different interpretations of the state space X
and of the methods bal, ch. But these differences are not visible to clients. The
functor associated with the BA-signature of methods is 7'(X) = Z x X?%.

(1) A first try is to take a bank account as a sequence of consecutive changes.
Thus we take as local state space Uy = Z*, the set of finite sequences of integers.
On an arbitrary state s = (ag, ..., a,) € U; we define methods:

shal=ag+---+a, and s.ch(a) = (aq, ..., an,a).

Objects and Classes, Co-algebraically 11

These two methods together form a co-algebra ¢;: U; — T'(Uyp). It obviously
satisfies the equation s.ch(a).bal = s.bal + a. As initial state we can take the
empty sequence () in U;. The pair ({),U; — T'(Uy)) thus forms an example of
a class satisfying the BA-specification. And an example of an object belonging
to this class is the sequence (2, —3) € U; containing some specific data. The
balance of this bank account object is —1. This is a rather inefficient imple-
mentation: asking for the balance involves adding up all the changes that have
been made. But for a client who can only access objects via the balance and
change methods, these implementation details are not visible.

(2) Our second implementation keeps a record of changes, but this time the
additions are done immediately so that taking the balance gives a more direct
answer. So we now take as local state space Uy = Z™, the set of non-empty
sequences of integers. For an element s = (ay,...,a,) € Uy we define

s.bal = a, and s.ch(a) = (a1,...,an,an + a).

This gives us a co-algebra c¢o: Us — T'(Us), which also satisfies the equation.
An object of this class consists of a non-empty sequence of integers, with the
last integer in the sequence as its current balance. So as initial state one can
take the sequence consisting only of 0 € Z. (But we could also take the state
(1,0); it is “bisimilar” to (0), see the next section.)

(3) We mention a third implementation which simply has as local state space
the set U3 = Z of integers. For a state s € Us we define

s.bal =s and s.ch(a) =s +a.

A bank account object with this co-algebra, call it c¢3:Us — T'(Us), has as
local state an integer that represents the current balance. In a sense this is
the most efficient implementation, containing all the information we need, and
nothing else. In a mathematical sense it distinguishes itself as the “terminal co-
algebra”, i.e. as the terminal object in the category of co-algebras X — Z x X7
satisfying the bank account equation, see Section 6. The co-algebraic approach
thus allows us to characterize these minimal realizations.

5 INDISTINGUISHABILITY
(BISIMULATION) FOR OBJECTS

In this section we shall go deeper into the technicalities of co-algebras, using
some elementary category theory. To start, consider the two bank account ob-
jects p1 = {(2,-3),¢1: Z* — T(Z*)) and ps = (—1,c3:Z — T(Z)) belonging

12 CHAPTER 1

to the first and third class at the end of the previous section. These objects
p1 and p3 are indistinguishable from the outside because we cannot see a dif-
ference, using the public methods specified for bank accounts: they have the
same balance, namely —1, and by using the change method we cannot create
a difference, since the balance after a change is determined by the equation in
the class specification. In process theory this notion of “indistinguishability via
observations” is called “bisimilarity”. The two objects p; and ps are bisimilar
because there is a bisimulation relation R C Z*x Z with R((2, —3), —1), namely

R={{ag,...,an,a) € Z* X L |ag+ - - - + an = a}.

Definition 3 Let T:Sets — Sets be the general polynomial functor T(X) =
1<, ,(Bi+Cix X)% and let c:U — T(U) and d:V — T(V) be two co-algebras
of this functor (describing classes). A relation R C U x V on the two state
spaces is called a bisimulation if for x € U and y € V, in case R(z,y) holds,
then for each i <n and a € A; we have one of the following two cases:

m both ¢;(z,a) and d;(y,a) are in B;, and they are equal.

B both c¢i(z,a) and d;(y,a) are tuples, of the form c;(x,a) = (y,z') and
di(y,a) = {v,y') with equal first components in C; and with R(z',y').
Two elementsu € U and v € V are called bisimilar if there is a a bisimulation

relation R C U x V with R(u,v). In this case one writes u < v.

Bisimulations are thus relations on carriers of co-algebras which are suitably
closed under the co-algebra operations. One can describe this notion (and also
the notion of mongruence in the next section) more abstractly in terms of the
functor T involved, see [1, 25], or [16]. Next we define bisimilarity for objects.
This notion is intended to capture observational indistinguishability and will
therefore only involve the publicly available methods.

Definition 4 Assume a class specification with two functors Ty, Th: Sets
= Sets describing the signatures of respectively the public and private methods.
Two objects uy € Uy in class ¢1:U; — Tpu(Ur) X Tpr(Ur) and ug € Uz in class
c2: Uy — Tpu(Usz) X Tpe(Usz) with ¢ and co satisfying the specification, will be
called bisimilar if there is a bisimulation relation R C Uy x Uy with respect to
the co-algebras 7 o ¢1: Uy — Tpu(Ur) and m o co: Uy — Ty (Ua) of the “public”
functor Ty, implementing the public methods.

The following standard result gives an equivalent description of bisimulation
< in terms of terminal co-algebras, see e.g. [25].

Objects and Classes, Co-algebraically 13

Lemma 5 Consider two co-algebras ¢:U — T(U) and d:V — T(V) of the
same functor T. They induce two unique co-algebra maps !, and !y to the
terminal co-algebra Z = T(Z), in:

TO)— — 2 +T(Z)~ — 2 —T(V)
) !C Tg) Td
U— — % — 2+ — 2% vy

Two elements w € U and v € V of the carriers of these co-algebras are then
bisimilar if and only if they have the same value on the terminal co-algebra,
i.e. u = v if and only if 1.(u) = 14(v). |

The terminal co-algebra in this lemma is the terminal objects in the category
CoAlg(T') of co-algebras of the functor T'. There is a standard construction
(see e.g. [26]) to compute such a terminal co-algebra via the limit Z of the
diagram 1 « T(1) « T?(1) « --- « Z. This construction applies for the
above polynomial functors because they preserve limits of such chains. We
shall give an explicit description of this terminal co-algebra.

Lemma 6 The terminal co-algebra Z = T(Z) of the polynomial functor
T(X) = [[;<,(Bi + Ci x X)™ on Sets can be described as a set of infinite
trees. Therefore, first write A = Ay + -+ A,, B = By +---+ B, and
C=0C1+---+C, for the disjoint unions of the constants in the functor. We
now have

Z ={p:AT - B+ C|Vae AT Vi< n.Va € A;. ¢((i,a) -) € B; + C;
and p((i,a) - a) € B; = Vi’ <n.Va' € A;.
(i, a") - (i,a) - o) = p({i',a') - a) }.

where - is concatenation of sequences (from AY). The interpretations of the
methods Z X A; — B; + C; X Z are given by

(o) { o((i, a)) if o((i,a)) € B;
: (p({i,a)),Aa € AT.p(a - (i,a))) otherwise.

Notice that elements of this set Z are infinite trees. This infinity is achieved
by repetition in case an “attribute value” in a B; comes out. For example, the
set Z of both finite and infinite lists of C’s may be identified with the set of
infinite trees {¥:N — 1+ C |¥n € N.p(n) = *x = p(n + 1) = x}. This is the
terminal co-algebra of the functor T(X) =1+ C x X, according to the lemma.

14 CHAPTER 1

Example 7 (See [24]) A useful special case of the above lemma is the following:
the terminal co-algebra in Sets of the functor T(X) = B x X* associated with
the signature X — B, X x A — X is the set Z = B of functions from the set
A* of finite sequences of A’s to B. The attribute Z — B is given by ¢ — o([])
and the procedure Z x A — Z by (p,a) — da € A*.p(a-a). In [24] only these
restricted signatures (without coproducts) are used. They form a special case
of the polynomial functor T above for n = 2 and Ay =1, By = B, C; = 0,
AZZA, B2:0 andCQZI.

In the remainder of this section we describe the operational semantics O(p) of
a single object p as the tree of all possible transitions that start from p. In
such transitions the objects identifier and co-algebra remain unaltered, but its
local state may change. We shall distinguish between the transitions caused by
public methods, and transitions by both public and private methods.

Definition 8 Consider an object p = (u € U,e:U — T(U)), where T(—) =

Tou(—) X Tpe(—) is the functor combining the signatures of public and private

methods. We take the two terminal co-algebras Z = T(Z) and Z,, —=
Tou(Zpu) of the entire signature, and of the public signature only. Then, by
terminality, we get two co-algebra maps ! and !, in diagrams:

r)— 22 1) Tpa(U) = e T (24
CI | I% wocT o T%
U— —+ — ~Z U— —P 7,

We then assign operational meanings O(p) € Z and Opy(p) € Zyy to the object
p by putting O(p) = (u) and Opy(p) = lpu(u).

The operational semantics is thus obtained (“by coinduction”) via the unique
map into a terminal co-algebra. This is dual to the usual way a denotational
semantics is defined, namely (“by induction”) as unique map going out of an
initial algebra (of terms), see [28]. Remember from the explicit description of
terminal co-algebras in Lemma 6 that both O(p) and Op,(p) are infinite trees.

Lemma 9 Two objects p,q belonging to the same class are bisimilar if and
only if they have the same public operational semantics, i.e. if and only if

Opu(P) = Opul(9)- O

Objects and Classes, Co-algebraically 15

This means that two objects are indistinguishable by using their public methods
if and only if the associated trees of public observations are equal. Tt follows
from Lemma 5. We can give an explicit description of these trees O(p) and
Opu(p) via single transition steps for objects. For convenience, we shall do this
for O(p) only.

Definition 10 Consider two objects u,u’ € U belonging to the same class
U — T(U), where T is the functor X — [, (B;+C; x X)A as used before.

The single transition step

xr !
U—>Uu

Y
where x € A=A +---+ A, is an input, andy € B+ C =(B; +---+ B,) +
(Ci + -+ + C,) is an output, is defined as follows. For x = (i,a) € A with
a € A; one has

y =ci(u,a) € B; and u' = u if ¢ci(u,a) =B € B;
(v,u') = ci(u,a) € C; xU otherwise.

More explicitly, we have the following two possible transitions.

(i,a) (i,
U————m—u U u
if ¢;(u,a) = B € B; if ¢;(u,a) = (y,u')y € C; x U.

So if the outcome of applying the i-th component c; of ¢ to the local state u
with parameter a is a value in B;, then the local state does not change; but if it
yields both a value in C; and a next local state u', then the value is visible, but
the next local state gives us a different object with the original identifier and
co-algebra, but with this new local state.

Lemma 11 The operational semantics O(p) of an object p with local state
u € U as an element of the set Z of trees AT — B+ C from Lemma 6 may be
described explicitly as:

there are objects uy,...,u, € U
OW) ((Tn, Tty ... 21)) =y & and outputs y1,...,yn_1 € B+ C with
1 To Tn—1 Ty

CTy M Ty T Ty Ul Ty,

Un

Proof. This is because the description in the lemma is the unique map ! to
the terminal co-algebra, applied to w. O

16 CHAPTER 1

6 TERMINAL CO-ALGEBRAS
SATISFYING ASSERTIONS

In Lemma 6 we have described terminal co-algebras of functors associated with
signatures of methods, whereby the assertions in a specification were ignored.
The carrier sets of these terminal co-algebras are rather large sets of infinite
trees. It turns out that assertions cut down such sets considerably. One then
considers the terminal co-algebra which satisfies these assertions. It gives us
a canonical model (class implementation) for a specification. These terminal
co-algebras are comparable to initial algebras in algebraic specification, in the
sense that they form “best possible” models. For suitably specified classes
the creation conditions determine an element of the carrier of this terminal
co-algebra, which can serve as interpretation of the initial state. We start by
sketching the approach from [16] to “carve out” terminal co-algebras satisfying
equations. It is a two-step approach, like in algebra. There, one first forms
the initial algebra of operations only, and then takes a quotient with respect
to the least congruence relation induced by the equations, see e.g. [28]. By
definition, a congruence relation is closed under the (algebraic) operations. In
co-algebra one first takes the terminal co-algebra of operations and then one
carves out the subco-algebra given by the greatest “mongruence” induced by
the equations. And a mongruence is a predicate which is suitably closed under
co-algebraic operations.

Definition 12 A mongruence on a co-algebra c:U — T(U) of a functor
T(X) = [1;<,,(Bi + Ci x X)Ai is a predicate P C U satisfying: if P(z) holds,
then also P(z') for each x' € U occurring as next state in c;(z,a) = (y,z') €
C; x U, for somei <mn and a € A;.

To find the terminal co-algebra for a specification, consider the terminal co-
algebra Z —=» T(Z) of a polynomial functor 7' induced by the signature, and
let £ C Z be the subset induced by the assertions. Let E be the greatest
mongruence on Z — T(Z) which is contained in E. Then E inherits a co-
algebra structure, and is the terminal co-algebra satisfying F.

We illustrate this with the example of the persistent read class from Section 3.
The associated functor is T(X) = X(4+1) x (1 4+ A), which has, by Example 7,
as terminal co-algebra the set of functions ¢ € (1 + A)(A+1)" with operations
defined by p.store(a) = Aa. p(a - ka), p.read = p([]), and p.empty = Aa. p(a -
k'x). The three equations in the persistent read class gives us a subset £ C (1+
A)AHD" consisting of those o satisfying (1) @.empty.read = *, i.e. p(k'%) = *;

Objects and Classes, Co-algebraically 17

(2) if p.read = %, then p.store(a).read = a, i.e. if p([]) = *, then ¢(ka) = a;
and (3) if p.read = a, then p.store(b).read = a, i.e. if p([]) = a, then p(kd) = a.
The greatest mongruence £ C (1 + A)(AHV contained in F is the greatest set
E C E satisfying: if ¢ € E, then also p.store(a) € E and p.empty € E. It is
easy to see that E is then the set of those ¢ € (1 + A)(AH)* satisfying for all
a€ (A+1D)* (1) p((k'%) - a) = %, (2) if p(a) = * then p((ka) - @) = a, and
(3) if p(a) = a then ((kd) - @) = a. Each tree ¢ € E is thus determined by
its value ¢([]) € 1 + A at the root. Hence the set E is isomorphic to 1 + A,
and this is the (carrier of the) terminal co-algebra satisfying the persistent read
equations. It is the minimal realization of an A-buffer with capacity one, since
the state space 1 + A = {x} U A contains an error element %« € 1+ A and single
data elements a € 1 + A, for a € A. Nothing else is needed.

We have two side remarks about this terminal co-algebra.

(1) We note that the two states s.empty.empty and s.empty are indistin-
guishable (bisimilar), and indeed have equal interpretations in the terminal
co-algebra 1 + A. But there is no way that we can prove from the equations
in the persistent read class that s.empty.empty and s.empty are equal since we
have no equations between states. Hence in the minimal realization more than
just the derivable equations are valid.

(2) One may be tempted from an algebraic perspective to see the “creation”
part in a class as the description of a constant new:1 — X. One can then
investigate what the initial model of the specification is. In the persistent read
example it is not the (minimal) set 1 + A of internal states that comes out in
the co-algebraic approach. Algebraically one gets more, since one cannot show
that the closed terms new and new.empty are the same.

Essential in the elimination of these trees ¢ is that they are determined by
their output ¢([]) at the root. This happens when the behaviour is “totally”
specified: the future behaviour of an arbitrary state is determined by the im-
mediate observations (via attribute outputs). The state space of the terminal
co-algebra is then a subset of the set T'(1) = [[;.,,(B: + Ci)?i of attribute
outputs. And the initial state (describing new) is an element of this set.

7 EQUATIONS BETWEEN STATES?

In the examples so far we have been careful to describe equations only between
(observable) attribute values, and not between local states (elements of X).
This reflects the idea that we do not have direct access to local states. The

18 CHAPTER 1

most we can say in comparing two states is that they are bisimilar (indistin-
guishable). This is as close as we can get to equality. The question arises: can
we, or do we want to, always avoid equations between states in co-algebraic
specifications. The answer seems to be no. It turns out to be convenient to
have equations between states, for example if one wishes an “undo” operation
for a certain procedure, which restores the original state. But in line with our
earlier mentioned view that states themselves are inaccessible, we shall write
bisimilarity < instead of equality = between states. As example, we consider
the following co-algebraic queue specifications, in last-in-first-out (LIFO) and
in first-in-first-out (FIFO) form. A fixed set A of data elements used.

class spec: FIFO
public methods:

class spec: LIFO int X xA-—X
public methods: out: X — 1+ Ax X
inXxA—X assertions:
out: X — 1+ Ax X s.in(a).out # *
assertions: s.out = x |
s.in(a).out # * s.in(a).out.fst = a
s.in(a).out.fst = a A s.in(a).out.snd & s
s.in(a).out.snd & s s.out # * F
creation: s.in(a).out.fst = s.out.fst
new.out = A s.in(a).out.snd & s.out.snd.in(a)
end class spec creation:

new.out = x
end class spec

(We use the inequality s.out # x above for convenience; it can be replaced
in a more elaborate formulation by an equality: mapping the output s.out €
1+ A X X to1l+1 via the function id+!:14+ A x X — 1+ 1, we can use the
equality (id+!)(s.out) = k’* to check that the result is in the right alternative
of +.) One can derive in the FIFO case

new.in(a).in(b).out.fst = a

new.in(a).in(b).out.snd < new.in(b).
The terminal co-algebras (minimal realizations) of these specifications both

have the set A% = A* + AN of finite and infinite sequences as carrier set. Also
the implementations of the out methods are the same: for a € A*

* if a is the empty sequence

out = . '
a-ou {(a,ﬂ) ifa=a-f.

But the implementations of the in methods differs: in the LIFO case

a.n(a) =a- a.

Objects and Classes, Co-algebraically 19

And in the FIFO case

a-a if a € A* i.e. if « is finite
« otherwise.

ain(a) = {

Infinite sequences are included in the terminal co-algebras since nothing in the
LIFO and FIFO specifications tells us that out: X — 14+ A x X will end in 1 at
some stage. But surely all reachable states (from new) will have finite output.

Acknowledgement. Thanks are due to Jan Rutten and Horst Reichel for
clarifying discussions.

REFERENCES

1]

2]
3]

4]

[5]

(6]

7]

8]

9]
[10]

[11]

P. Aczel and N. Mendler, A final co-algebra theorem, In: D.H. Pitt and
A. Poigné and D.E. Rydeheard (eds.), Category Theory and Computer
Science Springer LNCS 389, 1989, 357-365.

P. America, Designing an object-oriented language with behavioural sub-
typing. In: [3], 60 90.

J.W. de Bakker, W.P. de Roever and G. Rozenberg (eds.), Foundations of
Object-Oriented Languages (Springer LNCS 489, 1990).

K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. Leav-
ens and B. Pierce, On binary methods, Theory and Practice of Object
Systems, to appear.

T. Budd, An Introduction to Object-Oriented Programming (Addison-
Wesley, 1991).

R. Burstall and R. Diaconescu, Hiding and behaviour: an institutional
approach. In: A.W. Roscoe (ed.), A Classical Mind. Essays in honour of
C.A.R. Hoare (Prentice Hall, 1994), 75 92.

L. Cardelli and P. Wegner, On understanding types, data abstraction and
polymorphism, ACM Comp. Surv. 4 (1985), 471 522.

J.R.B. Cockett and D. Spencer, Strong categorical datatypes I. In:
R.A.G. Seely (ed.), Category Theory 1991 (CMS Conference Proceedings
13, 1992), 141-169.

W.R. Cook, Object-oriented programming versus abstract data types.
In: [3], 151 178.

A. Eliéns, Principles of Object-Oriented Software Development (Addison-
Wesley, 1995).

L.M.G. Feijs and H.B.M. Jonkers, Formal Specification and Design (Cam-
bridge Univ. Press, Tracts in Theor. Comp. Sci. 5, 1992).

20

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]
[21]
[22]
23]
[24]

[25]

[26]
[27]

28]

CHAPTER 1

J.A. Goguen, Realization is universal, Math. Syst. Theory 6(4) (1973),
359-374.

J.A. Goguen, Types as Theories. In: G.M. Reed. A.W. Roscoe and
R.F. Wachter (eds.), Topology and Category Theory in Computer Science
(Oxford Univ. Press, 1991), 357-390.

J.A. Goguen and J. Meseguer, Unifying functional, object-oriented and
relational programming with logical semantics. In: B. Shriver and P. Weg-
ner (eds.), Research Directions in Object-Oriented Programming (The MIT
Press series in computer systems, 1987), 417 477.

M. Hofmann and B. Pierce, A unifying type-theoretic framework for ob-
jects, Journ. Funct. Progr., to appear.

B. Jacobs, Mongruences and cofree co-algebras. In: V.S. Alagar and M. Ni-
vat (eds., Algebraic Methods and Software Technology (Springer LNCS 936,
1995), 245-260.

B. Jacobs, Inheritance and cofree constructions. In: P. Cointe (ed.), Furo-
pean Conference on Object-Oriented Programming (Springer LNCS, 1996,
to appear).

B. Jacobs, Co-algebraic specifications and models of deterministic hybrid
systems. In: M. Wirsing (ed.), Algebraic Methods and Software Technology
(Springer LNCS, 1996, to appear).

S. Kamin, Final data types and their specification, ACM Trans. on Progr.
Lang. and Systems 5(1) (1983), 97 123.

J. Meseguer and J.A. Goguen, Initiality, induction and computability. In:
M. Nivat and J.C. Reynolds (eds.), Algebraic Methods in Semantics (Cam-
bridge Univ. Press, 1985), 459 541.

B. Meyer, Object-Oriented Software Construction (Prentice Hall, 1988).
J.C. Mitchell and G.D. Plotkin, Abstract types have existential type, ACM
Trans. on Progr. Lang. and Systems 10(3) (1988), 470-502.

B.C. Pierce and D.N. Turner, Simple type theoretic foundation for object-
oriented programming Journ. Funct. Progr. 4(2) (1994), 207 247.

H. Reichel, An approach to object semantics based on terminal co-algebras
Math. Struct. in Comp. Sci. 5 (1995), 129-152.

J. Rutten and D. Turi, On the foundations of final semantics: non-
standard sets, metric spaces and partial orders. In: J.W. de Bakker,
W.P. de Roever, and G. Rozenberg (eds.), Semantics: Foundations and
Applications (Springer LNCS 666, 1993), 477-530.

M.B. Smyth and G.D. Plotkin, The category theoretic solution of recursive
domain equations, SIAM Journ. Comput. 11 (1982) 761 783.

P. Wegner, Concepts and paradigms of object-oriented programming,
OOPS Messenger 1(1) (1990), 7-87.

M. Wirsing, Algebraic Specification. In: J. van Leeuwen (ed.), Handbook
of Theoretical Computer Science, Elsevier/MIT Press 1990, Volume B,
673 788.

