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Abstract model of the eyes is used to compute statistics of the tex-

ture for different regions to aid in our classification. All

Reliable detection and tracking of eyes is an important ré€ processes, measuring eye physiology, dynamics, and
requirement for attentive user interfaces. In this paper, w aPpearance, are merged to achieve robust detection and
present a methodology for detecting eyes robustly in in- Tacking. _ _ _
door environments in real-time. We expioit the physiologi-  ONnce we know which regions are likely to be eyes, we
cal properties and appearance of eyes as well as head/eyeundertake higher-level processing on these regions. We
motion dynamics. Infrared lighting is used to capture the OPServe pairs of regions and probabilistically determine
physiological properties of eyes, Kalman trackers are used Which regions are most likely to be faces when paired to-
to model eye/head dynamics, and a probabilistic based 98ther.
appearance model is used to represent eye appearance.

By combining three separate mo_dalities, with specific en- prior Work There is much prior work [2] on finding
hancements within each modality, our approach allows faces and facial features in complex scenes. Some ap-
eyes to be treated as robust features that can be used forproaches, like Kotharkt al.[4], find eyes in images with-
other higher-level processing. out finding faces. They observed that image gradient in-
tersection points were good candidate locations for eyes.
Most false positives were removed by ensuring similar
numbers of gradient intersections for pairs, by using a pri-
ori inter-eye distances, and using temporal cues. The phys-
In this paper, we present methods for tracking and de- ical properties of the eyes are not taken into account nor are
tecting eyes in indoor environments. Robust and reliable dynamics modeled as we propose in our method. In addi-
eye detection is an importantfirst step towards the develop-tion, the technique functions on the pixel level, so there is
ment of user interfaces capable of gaze tracking and detect-no model.
ing eye contact. To support concurrent higher-level pro-  Other approaches like those of [10, 8] find faces first and
cessing, algorithms for eye detection should be cheap boththen process the facial regions to find facial features. $ace
in cost and computational complexity. For this reason, we are usually chosen to be located first because they occupy
have developed an algorithm that runs in real-time on a more of the image than their features. Our method differs
consumer-end processor using an inexpensive (under $50from these approaches in that we use eyes to reliably locate
black and white camera with infrared lighting. Our algo- faces.
rithm does not require any camera calibration and works  Scassellati [10] finds faces in cluttered scenes in real-
for all people. We also do not require users to do any pre- time. Once the faces are located, their system foveates on
registration prior to having their eyes detected. them and then zooms in on the left eye. However, their
Our main goal is to detect eyes reliably and in real- system uses ratio templates to find faces and, as such, is
time. In our method, we use the physical properties of not rotationally invariant. Also, specialized DSP chips ar
pupils along with their dynamics and appearance to extract required to achieve real-time performance. Our algorithm
regions with eyes. The detector gives us a probabilistic does not require any specialized chips to perform tracking
measure of eye detection for each region. The probability in real-time.
for each region is automatically weighted with components  Oliver, et al. [8] utilize blobs and Kalman tracking to
coming from the appearance and dynamics along with tem- find and track faces as well as facial features in real-time.
poral information. They initially use blobs and color information to create a
We use Kalman trackers to deal with the dynamics of mixture model to find the faces and then assign trackers to
head/eye movements. A probabilistic appearance basedrack each face. The system runs in real-time and achieves

1. Introduction



On-axis leds

at this stage than miss a pupil region. The algorithm com-
putes the histogram for the current frame, back-integrates
it, and keeps a certain amount of the brightest pixels (about
1/1000 of the total number of pixels in the frame). The
rest of the pixels are then set to black. This algorithm is
extremely fast, which is desired as this is the lowest level
step in our overall approach and the later steps are more
computationally expensive.

Adaptively thresholded pixels are grouped i@andi-
date regions Candidate regions are those groups of pixels
that are likely to be pupils. 16x16 (pixel) windows are cen-
tered on the brightest pixel in each candidate region. Rixel
good results, but due to the fact that color and anthropo- ihat are not at least three connected are not added to can-
metric statistics (to find facial features) drive their syat didate regions and are set to black. We also ensure that the

faces might not always be detected if they are of a size andegions do not overlap as it is impossible for two pupils to
shape that the system was not trained on. This S'tuat'onoverlap.

could arise if a face is occluded by an object, or if someone
is not completely within the field of view of the camera. . ) .
Our work has a lot in common with the work of Ras- 3. Candidate Region Tracking
mussenegt al.[9]. In both works, trackers are given mul-
tiple sources of information to update their estimates. The

Figure 1. Our infrared lighting camera [7]

Higher level information can now be gathered on these

main difference is that our algorithm runs in real-time as
our model is simpler, without any degradation in perfor-
mance. Also, like in their work, we utilize a probabilistic

framework for our tracker’s components. This allows us to

candidate regions. Tracking the candidate regions yields
temporal information which is also used to handle tempo-
rary occlusions, such as blinks. Kalman filters are used be-
cause they update with a small number of highly optimiz-

combine the information from the modalities and is what able matrix operations yet perform well for our model of
makes our algorithm robust. These modalities can be in- the dynamics. Kalman trackers [13] are assigned dynami-
terchanged with stronger components for possibly better cally as new regions to track are detected, and removed as
performance as discussed in section 5. these leave the field of view.

The trackers have four dimensional state vectars:
position, y-position, velocity in ther direction, and ve-
locity in they direction. Acceleration information was not
B ) .. incorporated as it did not improve tracking performance.

Our system utilizes a black and white camera with in- The dynamics are modeled as a one pixel variance between
frared lighting [7] as a first step in pupil detection. The frames for ther andy components of the state vector, and
camera has two concentric rings of IR LEDs (Figure 1), a two pixel variance for each of the velocity components
one along the camera’s axis, and one off-axis, to exploit of the vector. This model works because we assume that
thered eye effect As the two rings are switched on and people do not perform sudden and jerky movements.
off, they generate two interlaced images (Figure 2) for a = Constant velocity is assumed for regions that do not
single frame. The image where the inner ring is on, which haye new measurements before removing their trackers, in
we refer to as théright image has white pupils. The im-  case there was a temporary occlusion. We also ensure that
age where the outer ring is on, tldark image has dark trackers never track the same regions.
pupils. The difference image that results by subtracting  \we use the Kalman filter's covariance matrix to give a
these two similar images contains interlacing artifacts an - measure of similarity between a particular region’s motion

is quite noisy because regions of high specularity will have compared to a pupil’s motion. The covariance matrix up-
large differences. We use the difference image despite its gate equation for the Kalman filter is given by:

noisiness as a preprocessing step since it contains valuabl

information. (1)
There are several things we can do to get rid of the

non-eye pixels in the difference image, such as threshold-where K is the Kalman gain matrix, H is the connection

ing the image. However, there is no guarantee that a par-petween the state vector and measurement veﬁ;olis

ticular threshold will be good for different environments. e prior estimate o, and P, is the covariance matrix

An adaptive thresholding algorithm could be used, butis gt time 1. To measure the probabilistic accuracy of each
very computationally expensive, especially when done on i5cker we compute:

a consumer-end CPU as it must be done on every frame.
We use an adaptive thresholding algorithm that is com- (2)

putationally fast. This algorithm is intended to get rid of

a conservative amount of specular reflection noise and in- This equation yields a measure of how well the current

terlacing artifacts. We would rather have excess candidate state estimate and the previous state estimate correlate to

2. Pupil Thresholding

P, =(I - KyH)P,,

P(&x41) = N(Zg, Pr).
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Figure 2. Left: the brightimage, Center: the dark image, Right: Difece Image (contrast enhanced)

the covariance of the model. If this result is near O, it The problem with PCA is that the distances to the
means that the tracker is not tracking well because the statespaces are not in any particular scale. This makes it hard
changed significantly compared to the covariance betweento combine the resultant texture analysis with the tracking
the two frames. If this result is near 1, it means that the information we are already maintaining for each region.

tracker is tracking well. As a result, we can compute: Combining these helps in deciding whether a particular re-
gion is an eye or not. Also, if we just use the distances,
M =1-P(&p41). 3) we have no measure of confidence that something belongs

_ o _ to the eye or non-eye vector space. To alleviate both of
M gives us a sense as to whether the region is moving asthese problems, we use probabilistic principal component
a pupil that is attached to a head should move. If it is near analysis (PPCA) [11, 6].
0, it implies that the region is stationary because its state
vector is varying very slowly. If it is near 1, it implies that T~
the region is moving like an eye because its state vector is 4.1 Probabilistic PCA
varying rapidly. _ o .

The strength of the tracker does not affect the above , Probabilistic principal component analysis (PPCA)
equation because the state estimates in the previous andfames the distances in a PCA vector space probabilisti-
current frames are what are being compared. Even if we C&lly. PPCA treats all of the training data as points in
were using a perfect tracker, this equation would still hold & Probability density with Gaussian distribution. We use
because the state must either change from frame to frame” PCA because we want a means to get a probability for a

or remain stationary. In both cases, the formulation¥pr ~ Particular region; that is, we want to know the probability
is correct. that the texture for a particular candidate region belongs t

the eye vector space or to the non-eye vector space. If
is the region we are interested in classifying, we want to
4. Appearance based models for candidate calculateP(t) for both the eye vector space and for the
regions non-eye vector space. The maximum of these probabilities
yields the density that the region is most likely a part of.
Bishop, et alprovide the full derivation [11] forP(t) by
using the fact that PCA is a special case of factor analysis.
Here we present a condensed version of their derivation.
Factor analysis is similar to PCA in that dimensional
tais reduced t® dimensional data witl) < N. When
imensionality is reduced with factor analysis, we get:

Texture information must be taken into account because
a region can resemble a pupil in the difference image and
can move like a pupil, but could in reality be a moving re-
flective surface. For example, in Figure 3 we see a set of 4,
regions in one frame that are being tracked. Those regions
are being tracked because they passed our adaptive thresh-
olding pre-processing and comply with our motion model. t=Wx+p+e. (4)
However, the majority of the regions that are being tracked
are specular reflections from the glass of water, which we This means for aiv dimensionat, we can reduce it to ®
are not interested in. dimensional vectar, which represents the latent variables.

We perform appearance based matching using principal W are the factor loadings; is the mean of the training
component analysis (PCA). We create two vector spacesset, ands is the error, modeled a&’ (0, ¥), where ¥ is
as done in [12]: one for eyes, with 85 training images of diagonal. The model fot is also assumed to be normal
pupils from the dark image, and one for non-eyes, with 103 N (i, C) whereC' = ¥ + WWT. In factor analysis, ifs
training images of patches that are not eyes from the darkand C are calculated, then the probability tfelonging to
image. We take each candidate region, form a vector from a particular density is given b (¢t) = N(u, C).
its texture, and project it into both of the spaces. The vec-  If the factor loadings were indeed the principal compo-
tor is then classified as belonging to the space it is closestnents, one would be able to see the similarities to PCA.
to. This class information is then added to the information However, the loadings are not guaranteed to be the prin-
being kept for the region. cipal components, so we must calculate them. It is pos-
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Figure 3. Tracking all candidates Figure 4. Classified results

sible to calculate them because in PCA the data is as-weighted probability of all of the statistics we have at time
sumed to have a systematic component, an error term foré:

each variable, and common variance If ¥ = ¢%7 and

S = WWT + 021, where S is the covariance of the train-  £i(t) = aPeye(t) + BPuoteye(t) +vM + Pioa(t), (6)

ing data, then PCA can be treated as factor analysis. There'wherea, 3, and~ vary on the confidence of the results

fore,W = E/(X — 0®I)R, whereE are the eigenvectors  f,m the PPCA components and the Kalman tracker re-
of the training dataX. is a diagonal matrix with the eigen-  gpectively, A1 (described in section 3) is a measure of
values, and R is an arbitrary rotation matrix (sif€&@V*  \ynether the region is moving like an eye, aRd 1 () is

eliminates theft). Because we are concerned with maxi- the previous weighted probability of the particular region
mum likelihood,o= ends up being the average of the lost gn4 has an exponential dropoff. All regions have all of

variance or the average of the eigenvalues of the unusedinege statistics initialized to 0 in the first frame. The moti

eigenvectors: vation of this equation is that if the trackers are somewhat
N off-center and the probabilities that a region is an eye or
9 1 non-eye are closey will be increased andv and 5 de-
T T N_-D Z Ai. ®) creased by the system. Conversely, if the movement infor-
i=D+1 mation is not very helpful, the system relies more on the

. . PPCA component. Temporal information is also included
All of these equations allow us to calculdtét) given PCA g that single instances of misclassification from the PPCA
information for a set of training data. For a given candidate components do not bias the final classification. ORge)
region, the probability that it is an eye or not an eye can js cajculated, if it is> 0.5, we classify the region as an eye
now be determined. Since these probability densities are insq, this frame: if it is< 0.5 we do not. Probabilities were
high dimensional space, the probabilities end up being very computed for our different modalities so that they could

small, so they are normalized to be in the interval between pa combined easily and automatically at this stage without

0and 1.0. heuristics.
Figure 4 shows a frame from live video of a user doing
5. Classifying Candidate Regions some movements in front of the camera. Notice that only

eyes are detected; even the specular reflections from the
] . ) ) . glass do not fool the system. While the appearance of the

PPCA gives us probabilities of candidate regions being g|ass is indeed similar to a pupil due to specular reflections
eyes or non-eyes. This is not enough as the probabilitiesit js not classified as such because the dynamics for the
are temporally unstable and depend on the regions beingregion do not match the motion model and the appearance

centered closely around the pupils. Since the region posi- s not consistent over time with that of an eye.
tions are being driven by the results from the Kalman track-

ers, they are not necessarily exactly over eyes at a given .

time. Moreover, if classification is done just for one frame, 6. Resultsof Eye Tracking

no temporal information is used. This is undesirable be-

cause the tracker may have drifted off slightly and would Our method yields a robust pupil detector which detects

be misclassified as a result. Clearly, we would also like pupils very easily, minimizing false positives. False posi

to incorporate the movement information that we are cal- tives occur very rarely, but as a result of incorporatingtem

culating for each frame coming from the Kalman tracker’s poral information into our classifier, they always decay out

covariance matrix. quickly (within five frames or less). False positives occur
For a particular candidate region we combine all in the system when something reflects light back like an

of the modalities in the following equation which is a eye, moves slowly like an eye, and actually looks like an



Detected eyes
(900 frames)
None detected in
Average detected

Kalman tracking | Weighted prob.

(Our method)
0 frames
2.10813

eye. For false positives to occur, all three of these condi-
tions must occur and hold over a large number of frames,
which is rare.

Our implementation runs very fast. On a single proces-
sor Pentium I 200mhz, the system runs at about 25 frames
per second at an interlaced resolution of 640x480 (320x240
each for the bright image and the dark image). On a dual
processor Pentium Il 200mhz, the system runs at about 29

0 frames
3.95540

Table 3. Seq. 1: Slow and small head movements

frames per second at the same resplution. This is a resul Detected eyes Kalman tracking | Weighted prob.

of having our system largely parallelized to take advantage (900 frames) (Our method)

of multiple processors and to fully exploit the processing .

pipeline. None detected in 0 frames 81 frames
Several experiments were performed to test the reliabil- | Average detected 4.89608 1.80335

ity of the pupil regions that are detected and tracked. For
detailed evaluation, we recorded two sequences of 30 sec.
of video at 30fps. The first sequence had slow head move-
ments with small out of plane rotations. The second had

fast head movements with large out of plane rotations. For ., o erage detected close to the correct number of eyes. It

te.gﬁg frggem'gneﬁr Zee?gﬂ:%% dt?c?r ':gtman;r.gggt g%?hpsos_"did not detect eyes in the fast test case for a small portion of
lons w nually Ined tor comparison. the frames (81/900) due to its inability to exploit temporal
guences consisted of one user sitting in front of_the camera.; ¢ -mation since the head movements are very jerky and
The results of these experiments can be seen in tables 1 t%xtremely out of plane
4, : ‘
. . . In looking at all of the tables together, we see that our
Intable 1, the RMS error is only slightly better with our oy g tragks with a higher accur%cy than Kalman track-

metr;od. '(I;he rtea]:sorlw for th|ts t'fs thattLor ?malll head m;)ve-k ing with adaptive thresholding and also yields more mean-
ments ana out of piane rotations, the trackers can trac ingful regions. Our method consistently finds the right

fairly well. However, in the faster sequence, shown in table i e of pupils in the scene, and as such, is a better foun-
2, the RMS error is significantly smaller with our method dation for higher level proceséing '

when compared to Kalman tracking with adaptive thresh-
olding. Our method is 0.5 worse than just Kalman tracking
in the case of the right eye’s x value, but this is most likely 7. Pairing Candidate Regions
due to unsteady hands when locating the eyes for ground

truth. . . . . - . .
. Pairing regions with high probabilities of being pupils
Also of note are tables 3 and 4, which show that when g faces is valuable since face finding is the first step in

using Kalman tracking with adaptive thresholding there are any other higher level processing. Since our pupil list is
about double the amount of detected regions compared t0,4|isple. we can pair pupils very reliably as well.

the expected number of eyes (2) in the image. Our method ~\ya se a facial appearance model to classify faces.
PPCA is used by creating a vector space of a set of the

Table 4. Seq. 2: Fast and large head movements

Table 2. Seq. 2: Fast and large head movements

upper quarter of 165 faces at a low resolution (20x11).

RMSerror | Kalman tracking | Weighted prob. Each face training sample consists of the bounding rect-
(900 frames) (Our method) angle around the left and right eyes with a small amount
Left eye x 3.06888 2.13689 of space above and below the eyes as shown in Figure 5.
Lefteyey 1.51138 1.49021 For every pair of pupils in our list of candidates at each
Right eye x 552308 2 02244 fr?me we figure out all ﬁJosgible pairings sucfh tglat a prri]ori

- information on interocular distances is satisfied. We then
Right eye y 1.46873 1.42833 find the affine warp to normalize the face candidate’s tex-

Table 1. Seq. 1: Slow and small head movements ture region so that the left and right pupil positions line up

with the left and right pupil positions of our training data.
Once this is done, we can project the candidate face’s

RMSerror | Kalman tracking | Weighted prob. texture into the vector space to calculate a probability tha
(900 frames) (Our method) the pairing constitutes a face. We find the maximum a pos-
Lefteye x 17 56796 13.53245 teripri (MAP) set of pairings for our set of pupil candidate
Lefteyey 10.27857 6.10000 regions for each frame. The pairings that result are very
: reliable even for users with their faces close together or
Right eye x 17.31363 17.89213 at different head orientations. Mispairings do not occur if
Righteyey 12.78411 5.75922 only one eye is visible; single eyes and non-eyes are left

unpaired. Figure 6 shows an example of the results of our
pairing algorithm. As a result of this pairing step, if users
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Figure 5. Facial pairing training data

are facing the camera, we can very reliably find an arbi-
trary number of faces in the scene. Otherwise, we try to
pair unpaired regions again in the next frame.

8. Discussion & Applications

Figure 6. Pairing found pupils from multiple people

There are a large number of interesting applications that
can use the methods we have outlined here. We can count
the number of people in a scene, identify facial expres-

sions, perform facial recognition, or estimate head pose steedly and Gabriel Brostow provided comments on early
for multiple people, among many other possible applica- grafts.”’Arno Schodl and Wasinee Rungsarityotin provided

tions. We are particularly interested in the last applmati
as we expect to combine our robust face finding method
with texture based head tracking to do real-time multiple
person pose detection.

Once eyes are paired off, we can do processing to tell if
someone is falling asleep by looking at how the rate of their [1]
blinking changes as has been shown possible in [1, 3, 5].
Blinks could be detected and statistics computed to do this
by measuring the delays between blinks or whether blinks
have stopped and the eyes are in fact closed.

We have shown that for our system utilizing multiple
modalities yielded increased robustness. We are intefeste
in exploring whether multiple simple modalities are always
better that single "strong” components. Another interest-
ing avenue of future investigation is how the performance
of our system would be affected by using better appearance 4l
based models, such as utilizing support vector machines in-
stead of PPCA.

—

2]

(3]

(5]

9. Summary o

In this paper we presented a real-time pupil detectorand [7]
tracker. The system is multi-modal, which adds to its ro-
bustness. Since there are plenty of leftover cycles, we can
do interesting higher level processing with them. With eyes
as robust features, we can find faces, which in turn gives us
even more information to use in tracking and classifying
pupil regions.

The system has been tested on a number of users each
with different eye shapes and skin tones. It was able to [10]
consistently locate eyes and faces for single and multiple
subjects and was able to reliably track these as well.

Being able to find and track eyes reliably in complex [11]
scenes has allowed us to do higher level processing, such
as maintaining eye contact and finding faces reliably. We [12]
foresee many other applications employing this method.

(8]

El

[13]
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