
How to Time-Stamp a Digital Document�Stuart Haberstuart@bellcore.com W. Scott Stornettastornetta@bellcore.comBellcore445 South StreetMorristown, N.J. 07960-1910AbstractThe prospect of a world in which all text, audio, picture, and video documents are indigital form on easily modi�able media raises the issue of how to certify when a documentwas created or last changed. The problem is to time-stamp the data, not the medium. Wepropose computationally practical procedures for digital time-stamping of such documents sothat it is infeasible for a user either to back-date or to forward-date his document, even withthe collusion of a time-stamping service. Our procedures maintain complete privacy of thedocuments themselves, and require no record-keeping by the time-stamping service.
�Appeared, with minor editorial changes, in Journal of Cryptology, Vol. 3, No. 2, pp. 99{111, 1991.0

Time's glory is to calm contending kings,To unmask falsehood, and bring truth to light,To stamp the seal of time in aged things,To wake the morn, and sentinel the night,To wrong the wronger till he render right.The Rape of Lucrece, l. 9411 IntroductionIn many situations there is a need to certify the date a document was created or last modi�ed. Forexample, in intellectual property matters, it is sometimes crucial to verify the date an inventor �rstput in writing a patentable idea, in order to establish its precedence over competing claims.One accepted procedure for time-stamping a scienti�c idea involves daily notations of one's workin a lab notebook. The dated entries are entered one after another in the notebook, with no pagesleft blank. The sequentially numbered, sewn-in pages of the notebook make it di�cult to tamperwith the record without leaving telltale signs. If the notebook is then stamped on a regular basis bya notary public or reviewed and signed by a company manager, the validity of the claim is furtherenhanced. If the precedence of the inventor's ideas is later challenged, both the physical evidenceof the notebook and the established procedure serve to substantiate the inventor's claims of havinghad the ideas on or before a given date.There are other methods of time-stamping. For example, one can mail a letter to oneself andleave it unopened. This ensures that the enclosed letter was created before the time postmarked onthe envelope. Businesses incorporate more elaborate procedures into their regular order of businessto enhance the credibility of their internal documents, should they be challenged at a later date. Forexample, these methods may ensure that the records are handled by more than one person, so thatany tampering with a document by one person will be detected by another. But all these methodsrest on two assumptions. First, the records can be examined for telltale signs of tampering. Second,there is another party that views the document whose integrity or impartiality is seen as vouchsa�ngthe claim.We believe these assumptions are called into serious question for the case of documents createdand preserved exclusively in digital form. This is because electronic digital documents are so easyto tamper with, and the change needn't leave any telltale sign on the physical medium. What isneeded is a method of time-stamping digital documents with the following two properties. First,one must �nd a way to time-stamp the data itself, without any reliance on the characteristics of themedium on which the data appears, so that it is impossible to change even one bit of the documentwithout the change being apparent. Second, it should be impossible to stamp a document with atime and date di�erent from the actual one.The purpose of this paper is to introduce a mathematically sound and computationally practicalsolution to the time-stamping problem. In the sections that follow, we �rst consider a naive solutionto the problem, the digital safety deposit box. This serves the pedagogical purpose of highlightingadditional di�culties associated with digital time-stamping beyond those found in conventionalmethods of time-stamping. Successive improvements to this naive solution �nally lead to practical1

ways to implement digital time-stamping.2 The SettingThe setting for our problem is a distributed network of users, perhaps representing individuals,di�erent companies, or divisions within a company; we will refer to the users as clients. Each clienthas a unique identi�cation number.A solution to the time-stamping problem may have several parts. There is a procedure that isperformed immediately when a client desires to have a document time-stamped. There should be amethod for the client to verify that this procedure has been correctly performed. There should alsobe a procedure for meeting a third party's challenge to the validity of a document's time-stamp.As with any cryptographic problem, it is a delicate matter to characterize precisely the securityachieved by a time-stamping scheme. A good solution to the time-stamping problem is one for which,under reasonable assumptions about the computational abilities of the users of the scheme and aboutthe complexity of a computational problem, and possibly about the trustworthiness of the users, it isdi�cult or impossible to produce false time-stamps. Naturally, the weaker the assumptions needed,the better.3 A Naive SolutionA naive solution, a \digital safety-deposit box," could work as follows. Whenever a client has adocument to be time-stamped, he or she transmits the document to a time-stamping service (TSS).The service records the date and time the document was received and retains a copy of the documentfor safe-keeping. If the integrity of the client's document is ever challenged, it can be compared tothe copy stored by the TSS. If they are identical, this is evidence that the document has not beentampered with after the date contained in the TSS records. This procedure does in fact meet thecentral requirement for the time-stamping of a digital document.1 However, this approach raisesseveral concerns:Privacy This method compromises the privacy of the document in two ways: a third party couldeavesdrop while the document is being transmitted, and after transmission it is availableinde�nitely to the TSS itself. Thus the client has to worry not only about the security ofdocuments it keeps under its direct control, but also about the security of its documents atthe TSS.Bandwidth and storage Both the amount of time required to send a document for time-stampingand the amount of storage required at the TSS depend on the length of the document to betime-stamped. Thus the time and expense required to time-stamp a large document might beprohibitive.Incompetence The TSS copy of the document could be corrupted in transmission to the TSS, itcould be incorrectly time-stamped when it arrives at the TSS, or it could become corrupted1The authors recently learned of a similar proposal sketched by Kanare [14].2

or lost altogether at any time while it is stored at the TSS. Any of these occurences wouldinvalidate the client's time-stamping claim.Trust The fundamental problem remains: nothing in this scheme prevents the TSS from colludingwith a client in order to claim to have time-stamped a document for a date and time di�erentfrom the actual one.In the next section we describe a solution that addresses the �rst three concerns listed above.The �nal issue, trust, will be handled separately and at greater length in the following section.4 A Trusted Time-Stamping ServiceIn this section we assume that the TSS is trusted, and describe two improvements on the naivesolution above.4.1 HashOur �rst simpli�cation is to make use of a family of cryptographically secure collision-free hashfunctions. This is a family of functions h : f0; 1g� ! f0; 1gl compressing bit-strings of arbitrarylength to bit-strings of a �xed length l, with the following properties:1. The functions h are easy to compute, and it is easy to pick a member of the family at random.2. It is computationally infeasible, given one of these functions h, to �nd a pair of distinct stringsx; x0 satisfying h(x) = h(x0). (Such a pair is called a collision for h.)The practical importance of such functions has been known for some time, and researchers have usedthem in a number of schemes; see, for example, [7, 15, 16]. Damg�ard gave the �rst formal de�nition,and a constructive proof of their existence, on the assumption that there exist one-way \claw-free"permutations [4]. For this, any \one-way group action" is su�cient [3].Naor and Yung de�ned the similar notion of \universal one-way hash functions," which satisfy,in place of the second condition above, the slightly weaker requirement that it be computationallyinfeasible, given a string x, to compute another string x0 6= x satisfying h(x) = h(x0) for a randomlychosen h. They were able to construct such functions on the assumption that there exist one-to-oneone-way functions [17]. Rompel has recently shown that such functions exist if there exist one-wayfunctions at all [20]. See x6.3 below for a discussion of the di�erences between these two sorts ofcryptographic hash functions.There are practical implementations of hash functions, for example that of Rivest [19], whichseem to be reasonably secure.We will use the hash functions as follows. Instead of transmitting his document x to the TSS, aclient will send its hash value h(x) = y instead. For the purposes of authentication, time-stampingy is equivalent to time-stamping x. This greatly reduces the bandwidth problem and the storagerequirements, and solves the privacy issue as well. Depending on the design goals for an implemen-tation of time-stamping, there may be a single hash function used by everybody, or di�erent hashfunctions for di�erent users. 3

For the rest of this paper, we will speak of time-stamping hash values y|random-appearingbit-strings of a �xed length. Part of the procedure for validating a time-stamp will be to producethe pre-image document x that satis�es h(x) = y; inability to produce such an x invalidates theputative time-stamp.4.2 SignatureThe second improvement makes use of digital signatures. Informally, a signature scheme is analgorithm for a party, the signer, to tag messages in a way that uniquely identi�es the signer.Digital signatures were proposed by Rabin and by Di�e and Hellman [18, 7]. After a long sequenceof papers by many authors, Rompel [20] showed that the existence of one-way functions can be usedin order to design a signature scheme satisfying the very strong notion of security that was �rstde�ned by Goldwasser, Micali, and Rivest [10].With a secure signature scheme available, when the TSS receives the hash value, it appends thedate and time, then signs this compound document and sends it to the client. By checking thesignature, the client is assured that the TSS actually did process the request, that the hash wascorrectly received, and that the correct time is included. This takes care of the problem of presentand future incompetence on the part of the TSS, and completely eliminates the need for the TSS tostore records.5 Two Time-Stamping SchemesSed quis custodiet ipsos Custodes?Juvenal, c. 100 A.D.But who will guard the guards themselves?What we have described so far is, we believe, a practical method for time-stamping digitaldocuments of arbitrary length. However, neither the signature nor the use of hash functions inany way prevents a time-stamping service from issuing a false time-stamp. Ideally, we would like amechanism which guarantees that no matter how unscrupulous the TSS is, the times it certi�es willalways be the correct ones, and that it will be unable to issue incorrect time-stamps even if it triesto. It may seem di�cult to specify a time-stamping procedure so as to make it impossible to producefake time-stamps. After all, if the output of an algorithm A, given as input a document x and sometiming information � , is a bit-string c = A(x; �) that stands as a legitimate time-stamp for x, what isto prevent a forger some time later from computing the same timing information � and then runningA to produce the same certi�cate c? The question is relevant even if A is a probabilistic algorithm.Our task may be seen as the problem of simulating the action of a trusted TSS, in the absenceof generally trusted parties. There are two rather di�erent approaches we might take, and each oneleads to a solution. The �rst approach is to constrain a centralized but possibly untrustworthy TSSto produce genuine time-stamps, in such a way that fake ones are di�cult to produce. The secondapproach is somehow to distribute the required trust among the users of the service. It is not clearthat either of these can be done at all. 4

5.1 LinkingOur �rst solution begins by observing that the sequence of clients requesting time-stamps and thehashes they submit cannot be known in advance. So if we include bits from the previous sequenceof client requests in the signed certi�cate, then we know that the time-stamp occurred after theserequests. But the requirement of including bits from previous documents in the certi�cate also can beused to solve the problem of constraining the time in the other direction, because the time-stampingcompany cannot issue later certi�cates unless it has the current request in hand.We describe two variants of this linking scheme; the �rst one, slightly simpler, highlights ourmain idea, while the second one may be preferable in practice. In both variants, the TSS will makeuse of a collision-free hash function, to be denoted H. This is in addition to clients' use of hashfunctions in order to produce the hash value of any documents that they wish to have time-stamped.To be speci�c, a time-stamping request consists of an l-bit string y (presumably the hash valueof the document) and a client identi�cation number id. We use �(�) to denote the signing procedureused by the TSS. The TSS issues signed, sequentially numbered time-stamp certi�cates. In responseto the request (yn; idn) from our client, the nth request in sequence, the TSS does two things:1. The TSS sends our client the signed certi�cate s = �(Cn), where the certi�cateCn = (n; tn; idn; yn;Ln)consists of the sequence number n, the time tn, the client number idn and the hash valueyn from the request, and certain linking information, which comes from the previously issuedcerti�cate: Ln = (tn�1; idn�1; yn�1;H(Ln�1)).2. When the next request has been processed, the TSS sends our client the identi�cation numberidn+1 for that next request.Having received s and idn+1 from the TSS, she checks that s is a valid signature of a good certi�cate,i.e. one that is of the correct form (n; t; idn; yn;Ln), containing the correct time t.If her time-stamped document x is later challenged, the challenger �rst checks that the time-stamp (s; idn+1) is of the correct form (with s being a signature of a certi�cate that indeed containsa hash of x). In order to make sure that our client has not colluded with the TSS, the challengercan call client idn+1 and ask him to produce his time-stamp (s0; idn+2). This includes a signatures0 = �(n + 1; tn+1; idn+1; yn+1;Ln+1)of a certi�cate that contains in its linking informationLn+1 a copy of her hash value yn. This linkinginformation is further authenticated by the inclusion of the image H(Ln) of her linking informationLn. An especially suspicious challenger now can call up client idn+2 and verify the next time-stampin the sequence; this can continue for as long as the challenger wishes. Similarly, the challenger canalso follow the chain of time-stamps backward, beginning with client idn�1.Why does this constrain the TSS from producing bad time-stamps? First, observe that the useof the signature has the e�ect that the only way to fake a time-stamp is with the collaboration of theTSS. But the TSS cannot forward-date a document, because the certi�cate must contain bits fromrequests that immediately preceded the desired time, yet the TSS has not received them. The TSS5

cannot feasibly back-date a document by preparing a fake time-stamp for an earlier time, becausebits from the document in question must be embedded in certi�cates immediately following thatearlier time, yet these certi�cates have already been issued. Furthermore, correctly embedding anew document into the already-existing stream of time-stamp certi�cates requires the computationof a collision for the hash function H.Thus the only possible spoof is to prepare a fake chain of time-stamps, long enough to exhaustthe most suspicious challenger that one anticipates.In the scheme just outlined, clients must keep all their certi�cates. In order to relax this require-ment, in the second variant of this scheme we link each request not just to the next request but tothe next k requests. The TSS responds to the nth request as follows:1. As above, the certi�cate Cn is of the form Cn = (n; tn; idn; yn;Ln), where now the linkinginformation Ln is of the formLn = [(tn�k; idn�k; yn�k;H(Ln�k)); : : : ; (tn�1; idn�1; yn�1;H(Ln�1))]:2. After the next k requests have been processed, the TSS sends our client the list (idn+1; : : : ; idn+k).After checking that this client's time-stamp is of the correct form, a suspicious challenger can askany one of the next k clients idn+i to produce his time-stamp. As above, his time-stamp includesa signature of a certi�cate that contains in its linking information Ln+i a copy of the relevantpart of the challenged time-stamp certi�cate Cn, authenticated by the inclusion of the hash byH of the challenged client's linking information Ln. His time-stamp also includes client numbers(idn+i+1; : : : ; idn+i+k), of which the last i are new ones; the challenger can ask these clients for theirtime-stamps, and this can continue for as long as the challenger wishes.In addition to easing the requirement that clients save all their certi�cates, this second variantalso has the property that correctly embedding a new document into the already-existing stream oftime-stamp certi�cates requires the computation of a simultaneously k-wise collision for the hashfunction H, instead of just a pairwise collision.5.2 Distributed trustFor this scheme, we assume that there is a secure signature scheme so that each user can signmessages, and that a standard secure pseudorandom generator G is available to all users. A pseu-dorandom generator is an algorithm that stretches short input seeds to output sequences that areindistinguishable by any feasible algorithm from random sequences; in particular, they are unpre-dictable. Such generators were �rst studied by Blum and Micali [2] and by Yao [22]; Impagliazzo,Levin, and Luby have shown that they exist if there exist one-way functions [12].Once again, we consider a hash value y that our client would like to time-stamp. She uses y asa seed for the pseudorandom generator, whose output can be interpreted in a standard way as ak-tuple of client identi�cation numbers:G(y) = (id1; id2; : : : ; idk):6

Our client sends her request (y; id) to each of these clients. She receives in return from client idj asigned message sj = �j(t; id; y) that includes the time t. Her time-stamp consists of [(y; id); (s1; : : : ; sk)].The k signatures sj can easily be checked by our client or by a would-be challenger. No furthercommunication is required in order to meet a later challenge.Why should such a list of signatures constitute a believable time-stamp? The reason is thatin these circumstances, the only way to produce a time-stamped document with an incorrect timeis to use a hash value y so that G(y) names k clients that are willing to cooperate in faking thetime-stamp. If at any time there is at most a constant fraction � of possibly dishonest clients, theexpected number of seeds y that have to be tried before �nding a k-tuple G(y) containing onlycollaborators from among this fraction is ��k. Furthermore, since we have assumed that G is asecure pseudorandom generator, there is no faster way of �nding such a convenient seed y than bychoosing it at random. This ignores the adversary's further problem, in most real-world scenarios,of �nding a plausible document that hashes to a convenient value y.The parameter k should be chosen when designing the system so that this is an infeasible com-putation. Observe that even a highly pessimistic estimate of the percentage of the client populationthat is corruptible|� could be 90%|does not entail a prohibitively large choice of k. In addition,the list of corruptible clients need not be �xed, as long their fraction of the population never exceeds�. This scheme need not use a centralized TSS at all. The only requirements are that it be possibleto call up other clients at will and receive from them the required signatures, and that there be apublic directory of clients so that it is possible to interpret the output of G(y) in a standard wayas a k-tuple of clients. A practical implementation of this method would require provisions in theprotocol for clients that cannot be contacted at the time of the time-stamping request. For example,for suitable k0 < k, the system might accept signed responses from any k0 of the k clients named byG(y) as a valid time-stamp for y (in which case a greater value for the parameter k would be neededin order to achieve the same low probability of �nding a set of collaborators at random).6 Remarks6.1 Tradeo�sThere are a number of tradeo�s between the two schemes. The distributed-trust scheme has theadvantage that all processing takes place when the request is made. In the linking scheme, on theother hand, the client has a short delay while she waits for the second part of her certi�cate; andmeeting a later challenge may require further communication.A related disadvantage of the linking scheme is that it depends on at least some clients storingtheir certi�cates.The distributed-trust scheme makes a greater technological demand on the system: the abilityto call up and demand a quick signed response at will.The linking scheme only locates the time of a document between the times of the previous andthe next requests, so it is best suited to a setting in which relatively many documents are submittedfor time-stamping, compared to the scale at which the timing matters.It is worth remarking that the time-constraining properties of the linking scheme do not depend7

on the use of digital signatures.6.2 Time constraintsWe would like to point out that our schemes constrain the event of time-stamping both forward andbackward in time. However, if any amount of time may pass between the creation of a document andwhen it is time-stamped, then no method can do more than forward-constrain the time at which thedocument itself was created. Thus, in general, time-stamping should only be considered as evidencethat a document has not been back-dated.On the other hand, if the time-stamping event can be made part of the document creationevent, then the constraint holds in both directions. For example, consider the sequence of phoneconversations that pass through a given switch. In order to process the next call on this switch, onecould require that linking information be provided from the previous call. Similarly, at the end ofthe call, linking information would be passed onto the next call. In this way, the document creationevent (the phone call) includes a time-stamping event, and so the time of the phone call can be �xedin both directions. The same idea could apply to sequential �nancial transactions, such as stocktrades or currency exchanges, or any sequence of electronic interactions that take place over a givenphysical connection.6.3 Theoretical considerationsAlthough we will not do it here, we suggest that a precise complexity-theoretic de�nition of thestrongest possible level of time-stamping security could be given along the lines of the de�nitionsgiven by Goldwasser and Micali [9], Goldwasser, Micali, and Rivest [10], and Galil, Haber, and Yung[8] for various cryptographic tasks. The time-stamping and the veri�cation procedures would alldepend on a security parameter p. A time-stamp scheme would be polynomially secure if the successprobability of a polynomially bounded adversary who tries to manufacture a bogus time-stamp issmaller than any given polynomial in 1=p for su�ciently large p.Under the assumption that there exist one-way claw-free permutations, we can prove our linkingscheme to be polynomially secure. If we assume that there is always at most a constant frac-tion of corruptible clients, and assuming as well the existence of one-way functions (and thereforethe existence of pseudorandom generators and of a secure signature scheme), we can prove ourdistributed-trust scheme to be polynomially secure.In x4.1 above, we mentioned the di�erence between \collision-free" and \universal one-way"hash functions. The existence of one-way functions is su�cient to give us universal one-way hashfunctions. However, in order to prove the security of our time-stamping schemes, we apparentlyneed the stronger guarantee of the di�culty of producing hash collisions that is provided by thede�nition of collision-free hash functions. As far as is currently known, a stronger complexityassumption|namely, the existence of claw-free pairs of permutations|is needed in order to provethe existence of these functions. (See also [5] and [6] for further discussion of the theoretical propertiesof cryptographic hash functions.)Universal one-way hash functions were the tool used in order to construct a secure signaturescheme. Our apparent need for a stronger assumption suggests a di�erence, perhaps an essential8

one, between signatures and time-stamps. It is in the signer's own interest to act correctly infollowing the instructions of a secure signature scheme (for example, in choosing a hash function atrandom from a certain set). For time-stamping, on the other hand, a dishonest user or a colludingTSS may �nd it convenient not to follow the standard instructions (for example, by choosing a hashfunction so that collisions are easy to �nd); the time-stamping scheme must be devised so that thereis nothing to be gained from such misbehavior.If it is possible, we would like to reduce the assumptions we require for secure time-stamping tothe simple assumption that one-way functions exist. This is the minimum reasonable assumption forus, since all of complexity-based cryptography requires the existence of one-way functions [12, 13]6.4 Practical considerationsAs we move from the realm of complexity theory to that of practical cryptosystems, new questionsarise. In one sense, time-stamping places a heavier demand on presumably one-way functions thanwould some other applications. For example, if an electronic funds transfer system relies on a one-way function for authentication, and that function is broken, then all of the transfers carried outbefore it was broken are still valid. For time-stamps, however, if the hash function is broken, thenall of the time-stamps issued prior to that time are called into question.A partial answer to this problem is provided by the observation that time-stamps can be renewed.Suppose we have two time-stamping implementations, and that there is reason to believe that the�rst implementation will soon be broken. Then certi�cates issued using the old implementation canbe renewed using the new implementation. Consider a time-stamp certi�cate created using the oldimplementation that is time-stamped with the new implementation before the old one is broken.Prior to the old implementation's breaking, the only way to create a certi�cate was by legitimatemeans. Thus, by time-stamping the certi�cate itself with the new implementation, one has evidencenot only that the document existed prior to the time of the new time-stamp, but that it existed atthe time stated in the original certi�cate.Another issue to consider is that producing hash collisions alone is not su�cient to break thetime-stamping scheme. Rather, meaningful documents must be found which lead to collisions. Thus,by specifying the format of a document class, one can complicate the task of �nding meaningfulcollisions. For example, the density of ASCII-only texts among all possible bit-strings of length Nbytes is (27=28)N , or 1=2N , simply because the high-order bit of each byte is always 0. Even worse,the density of acceptable English text can be bounded above by an estimate of the entropy of Englishas judged by native speakers [21]. This value is approximately 1 bit per ASCII character, giving adensity of (21=28)N , or 1=128N .We leave it to future work to determine whether one can formalize the increased di�culty ofcomputing collisions if valid documents are sparsely and perhaps randomly distributed in the inputspace. Similarly, the fact that a k-way linking scheme requires the would-be adversary to computek-way collisions rather than collision pairs may be parlayed into relaxing the requirements for thehash function. It may also be worthwhile to explore when there exist hash functions for which thereare no k-way collisions among strings in a suitably restricted subset of the input space; the securityof such a system would no longer depend on a complexity assumption.9

7 ApplicationsUsing the theoretically best (cryptographically secure) hash functions, signature schemes, and pseu-dorandom generators, we have designed time-stamping schemes that possess theoretically desirableproperties. However, we would like to emphasize the practical nature of our suggestion: becausethere are practical implementations of these cryptographic tools, both of our time-stamp schemescan be inexpensively implemented as described. Practical hash functions like Rivest's are quite fast,even running on low-end PC's [19].What kinds of documents would bene�t from secure digital time-stamping? For documents thatestablish the precedence of an invention or idea, time-stamping has a clear value. A particularlydesirable feature of digital time-stamping is that it makes it possible to establish precedence ofintellectual property without disclosing its contents. This could have a signi�cant e�ect on copyrightand patent law, and could be applied to everything from software to the secret formula for Coca-Cola.But what about documents where the date is not as signi�cant as simply whether or not thedocument has been tampered with? These documents can bene�t from time-stamping, too, underthe following circumstances. Suppose one can establish that either the necessary knowledge or themotivation to tamper with a document did not exist until long after the document's creation. Forexample, one can imagine a company that deals with large numbers of documents each day, somefew of which are later found to be incriminating. If all the company's documents were routinelytime-stamped at the time of their creation, then by the time it became apparent which documentswere incriminating and how they needed to be modi�ed, it would be too late to tamper with them.We will call such documents tamper-unpredictable. It seems clear that many business documents aretamper-unpredictable. Thus, if time-stamping were to be incorporated into the established order ofbusiness, the credibility of many documents could be enhanced.A variation that may be particularly useful for business documents is to time-stamp a log ofdocuments rather than each document individually. For example, each corporate document createdin a day could be hashed, and the hash value added to the company's daily log of documents. Then,at the end of the business day, the log alone could be submitted for time-stamping. This wouldeliminate the expense of time-stamping each document individually, while still making it possible todetect tampering with each document; one could also determine whether any documents had beendestroyed altogether.Of course, digital time-stamping is not limited to text documents. Any string of bits can betime-stamped, including digital audio recordings, photographs, and full-motion videos. Most ofthese documents are tamper-unpredictable. Therefore, time-stamping can help to distinguish anoriginal photograph from a retouched one, a problem that has received considerable attention of latein the popular press [1, 11]. It is in fact di�cult to think of any other algorithmic \�x" that couldadd more credibility to photographs, videos, or audio recordings than time-stamping.8 SummaryIn this paper, we have shown that the growing use of text, audio and video documents in digitalform and the ease with which such documents can be modi�ed creates a new problem: how can one10

certify when a document was created or last modi�ed? Methods of certi�cation, or time-stamping,must satisfy two criteria. First, they must time-stamp the actual bits of the document, making noassumptions about the physical medium on which the document is recorded. Second, the date andtime of the time-stamp must not be forgeable.We have proposed two solutions to this problem. Both involve the use of one-way hash functions,whose outputs are processed in lieu of the actual documents, and of digital signatures. The solutionsdi�er only in the way that the date and time are made unforgeable. In the �rst, the hashes ofdocuments submitted to a TSS are linked together, and certi�cates recording the linking of a givendocument are distributed to other clients both upstream and downstream from that document. Inthe second solution, several members of the client pool must time-stamp the hash. The membersare chosen by means of a pseudorandom generator that uses the hash of the document itself as seed.This makes it infeasible to deliberately choose which clients should and should not time-stamp agiven hash. The second method could be implemented without the need for a centralized TSS atall.Finally, we have considered whether time-stamping could be extended to enhance the authenticityof documents for which the time of creation itself is not the critical issue. This is the case for a largeclass of documents which we call \tamper-unpredictable." We further conjecture that no purelyalgorithmic scheme can add any more credibility to a document than time-stamping provides.AcknowledgementsWe gratefully acknowledge helpful discussions with Donald Beaver, Shimon Even, George Furnas,Burt Kaliski, Ralph Merkle, Je� Shrager, Peter Winkler, Yacov Yacobi, and Moti Yung.References[1] J. Alter. When photographs lie. Newsweek, pp. 44-45, July 30, 1990.[2] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-randombits. SIAM Journal on Computing, 13(4):850{864, Nov. 1984.[3] G. Brassard and M. Yung. One-way group actions. In Advances in Cryptology|Crypto '90.Springer-Verlag, LNCS, to appear.[4] I. Damg�ard. Collision-free hash functions and public-key signature schemes. In Advances inCryptology|Eurocrypt '87, pp. 203-217. Springer-Verlag, LNCS, vol. 304, 1988.[5] I. Damg�ard. A design principle for hash functions. In Advances in Cryptology|Crypto '89 (ed.G. Brassard), pp. 416-427. Springer-Verlag, LNCS, vol. 435, 1990.[6] A. DeSantis and M. Yung. On the design of provably secure cryptographic hash functions. InAdvances in Cryptology|Eurocrypt '90. Springer-Verlag, LNCS, to appear.[7] W. Di�e and M.E. Hellman. New directions in cryptography. IEEE Trans. on Inform. Theory,vol. IT-22, Nov. 1976, pp. 644-654. 11

[8] Z. Galil, S. Haber, and M. Yung. Interactive public-key cryptosystems. J. of Cryptology, toappear.[9] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28:270{299, April 1984.[10] S. Goldwasser, S. Micali, and R. Rivest. A secure digital signature scheme. SIAM Journal onComputing, 17(2):281{308, 1988.[11] Andy Grundberg. Ask it no questions: The camera can lie. The New York Times, section 2,pp. 1, 29, August 12, 1990.[12] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way functions. InProc. 21st STOC, pp. 12-24. ACM, 1989.[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based cryptogra-phy. In Proc. 30th FOCS, pp. 230-235. IEEE, 1989.[14] H. M. Kanare. Writing the laboratory notebook, p. 117. American Chemical Society, 1985.[15] R.C. Merkle. Secrecy, authentication, and public-key systems. Ph.D. thesis, Stanford Univeristy,1979.[16] R.C. Merkle. One-way hash functions and DES. In Advances in Cryptology|Crypto '89 (ed.G. Brassard), pp. 428-446. Springer-Verlag, LNCS, vol. 435, 1990.[17] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.In Proc. 21st STOC, pp. 33-43. ACM, 1989.[18] M.O. Rabin. Digitalized signatures. In Foundations of Secure Computation (ed. R.A. DeMilloet al.), pp. 155-168. Academic Press, 1978.[19] R. Rivest. The MD4 message digest algorithm. In Advances in Cryptology|Crypto '90.Springer-Verlag, LNCS, to appear.[20] J. Rompel. One-way functions are necessary and su�cient for secure signatures. In Proc. 22ndSTOC, pp. 387-394. ACM, 1990.[21] C. Shannon. Prediction and entropy of printed English. Bell System Technical Journal, vol. 30pp. 50-64, 1951.[22] A.C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS, pp. 80-91. IEEE,1982. 12

